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Abstract  

 The prospect of rewards can have strong modulatory effects on response preparation. 

Importantly, selection and execution of movements in real life happens under an environment 

characterized by uncertainty and dynamic changes. The current study investigated how the 

brain’s motor system adapts to the dynamic changes in the environment in pursuit of rewards. 

In addition, we studied how the prefrontal cognitive control system contributes in this adaptive 

control of motor behavior. To this end, we tested the effect of rewards and expectancy on the 

hallmark neural signals that reflect activity in motor and prefrontal systems, the lateralized 

readiness potential (LRP) and the mediofrontal (mPFC) theta oscillations, while participants 

performed an expected and unexpected action to retrieve rewards. To better capture the 

dynamic changes in neural processes represented in the LRP waveform, we decomposed the 

LRP into the preparation (LRPprep) and execution (LRPexec) components. The overall pattern of 

LRPprep and LRPexec confirmed that they each reflect motor preparation based on the expectancy 

and motor execution when making a response that is either or not in line with the expectations. 

In the comparison of LRP magnitude across task conditions, we found a greater LRPprep when 

large rewards were more likely, reflecting a greater motor preparation to obtain larger rewards. 

We also found a greater LRPexec when large rewards were presented unexpectedly, suggesting a 

greater motor effort placed for executing a correct movement when presented with large 

rewards. In the analysis of mPFC theta, we found a greater theta power prior to performing an 

unexpected than expected response, indicating its contribution in response conflict resolution. 

Collectively, these results demonstrate an optimized motor control to maximize rewards under 

the dynamic changes of real-life environment.     

 

Keywords: reward, expectancy, motor control, ERPs, lateralized-readiness potential, mPFC theta 
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Introduction 

 

It is a long-standing belief that rewards drive human behavior (Anderson, 2017; Berridge 

and Robinson, 1998). In particular, mounting evidence demonstrates that rewards can directly 

modulate selection and execution of movements (Chen et al., 2018). Modulation by reward is 

shown for example by reduction in response time and improvement in performance accuracy 

during oculomotor and reaching movements (Carroll et al., 2019; Galaro et al., 2019; Hickey and 

van Zoest, 2012; Klein et al., 2012; Summerside et al., 2018; Takikawa et al., 2002), as well as 

during acquisition and expression of complex motor skills (Chen et al., 2018; Nikooyan and 

Ahmed, 2015; Wächter et al., 2009). The effect of reward on motor performance is further 

supported by studies showing reward modulations in neural signals of motor control (Alamia et 

al., 2019; Bijleveld et al., 2014; Chen et al., 2019; Gluth et al., 2013; Hare et al., 2011; 

Kapogiannis et al., 2008; Pastor-Bernier and Cisek, 2011; Roesch and Olson, 2003; Sul et al., 

2011; Wunderlich et al., 2009) and corticospinal excitability (Galaro et al., 2019; Klein-Flügge 

and Bestmann, 2012; Klein et al., 2012). These studies demonstrate that presentation of 

rewards or reward predicting cues increases cortical motor activity which facilitates the 

movement towards obtaining the reward, also providing support for the idea that the brain 

motor’s system contributes to value-based decision making (Cisek, 2007, 2006; Cisek and 

Pastor-Bernier, 2014; Freedman and Assad, 2011; Friston, 2010; Gold and Shadlen, 2007).    

Importantly, the dynamic nature of real-life environment imposes several factors that 

can influence selection and execution of actions. Firstly, the environment is characterized by 

uncertainty, indicating that we have imperfect knowledge about the outcomes of our actions 

(Platt and Huettel, 2008). Under these circumstances, we often take actions without knowing 
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whether or not we’ll be rewarded as shown by the example of investing on stocks or pursuing 

higher education. In such cases, we rely on information about the prospect or expectation of 

reward delivery to guide our actions (Platt and Huettel, 2008).  Another feature of dynamic 

real-life environment is that it changes constantly and in certain cases, action plans should be 

flexibly modified to take an alternative action (Krämer et al., 2011; Liebrand et al., 2018; Serrien 

and Sovijärvi-Spapé, 2013). For instance, take the example of investment decisions. Due to the 

ever-changing financial market, a once believed ideal stock option can suddenly become 

devalued. In such scenarios of sudden environment change, your course of action should be 

adjusted adaptively to maximize rewards in a given state. Adjustment in actions are inevitable 

especially when considering that we rely on limited information on the prospect or 

expectations about rewards to guide our behavior and these expectations can sometime be 

violated (Schultz, 2016).   

The current study investigated how the brain’s motor system adapts to the dynamic 

changes in environment in its pursuit of reward. In particular, using electroencephalography 

(EEG) we studied how reward magnitude and expectancy influenced the lateralized readiness 

potential (LRP) (Coles, 1989). Crucially to investigate the effect of sudden environment change 

on the motor system, we compared the LRPs while participants were performing an expected 

vs. unexpected action to retrieve a reward. LRPs can be used as an index of activity in the 

lateralized motor cortex, where the signal is observed as a contralateral negativity that peaks 

prior to the actual response (Clark et al., n.d.; Mattler et al., 2006; Smulders et al., 2012). It is 

known to be sensitive to response expectations (Mattler et al., 2006) and a few studies have 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.02.450521doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.02.450521
http://creativecommons.org/licenses/by-nc-nd/4.0/


 5 

also shown indication of reward modulation in LRP showing greater negativity for rewarded 

responses (Pornpattananangkul and Nusslock, 2015; Wang et al., 2019).  

Extending onto prior findings, we studied how varying levels of reward magnitude and 

expectancy modulate LRP patterns. In doing so we leveraged on the high temporal resolution of 

EEG to uncover the fine-grained temporal cascade of LRP modulation. To this end, we analyzed 

both the stimulus-locked LRPs reflecting response selection and preparation and the response-

locked LRPs reflecting response execution per se (Leuthold et al., 2004, 1996; Osman and 

Moore, 1993). Additionally, we used a novel analytic approach to further segment the stimulus-

locked LRP into an earlier component relevant for processing movement preparation and a 

later component relevant in movement execution. This new approach was taken based on 

previous studies showing that an earlier slow wave lateralized activity in stimulus-locked LRP 

reflected expectations about a response prior to execution (Kemper et al., 2012). By testing the 

reward modulations in each of the LRP components across time, we determined how rewards 

shape our motor system across motor hierarchy, while navigating through the dynamic changes 

in the environment. We hypothesized that reward magnitude and expectancy will modulate 

LRPs during both the preparation and execution components, suggesting modulation across all 

levels of motor control.   

Apart from LRP, we also investigated the involvement of mediofrontal (mPFC) theta 

oscillations, known to have significant contributions in both the proactive control of motor 

plans during action selection (Derosiere et al., 2018; van Driel et al., 2015; van Noordt et al., 

2015) and reactive control of readily specified motor commands (Cavanagh et al., 2012; Zavala 

et al., 2015). We hypothesized that mPFC modulation by task conditions will support its 
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involvement in response conflict resolution (Cavanagh et al., 2010; Töllner et al., 2017; Zavala 

et al., 2014), further suggesting its role in adaptive control of motor behavior.  

 

Materials and Methods 

Participants 

Thirty-seven right-handed college students (16 males, 19.94 ± 1.16 yrs), without a 

history of psychiatric and neurological disorders or alcohol/drug dependence, were recruited 

from the University of Massachusetts Amherst. All study participants signed a written informed 

consent, approved by the UMass Amherst Institutional Review Board. Participants received 

course credits or monetary compensation of $15 for participation after completion. In addition 

to the flat rate of credit/money for participation itself, we also granted a bonus ranging 

between $1 and $5 based on the reward points they earned throughout the value-based 

action-selection task. 

Value-based action-selection task 

The experiment consisted of two stages – the baseline followed by the task stage. In the 

baseline stage, participants were presented with a left- or right-oriented grating stimulus (200 

msec) (e.g., the 3rd screen in Fig. 1A) and were asked to make a corresponding response within 

1000 msec, by pressing either the left key (“A” on the standard 101 keyboard) using their left 

index finger, or the right key (“L”) using their right index finger. Response times (RT) longer than 

1000 msec were considered as incorrect response. Response times from correct responses 

during the baseline stage were used to calculate the RT categories for determining rewards in 

the task stage (as in Chen et al., 2019). Four RT categories were determined based on the 
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lognormal distribution of RTs (Category 1: RT < μ – σ; Category 2: μ – σ ≤ RT< μ; Category 3: μ ≤ 

RT < μ + σ; Category 4: RT ≥ μ + σ; μ and σ refers to the mean and standard deviation of the 

lognormal distribution). The baseline stage lasted approximately five minutes.  

In the task stage (Fig. 1A), participants were first presented with a decision cue (2000 

msec), which consisted of the reward points (large: 120 or small: 6) associated with the left vs. 

right grating stimuli and the probability that the left vs. right stimulus will appear (25% vs. 75%, 

50% vs. 50% or 75% vs. 25%). Probability assignment was indicated by the area of the red and 

blue segments in a horizontal bar (Fig. 1B). Combinations of reward and probability assignments 

resulted in three different expectancies about the target stimulus: 1) expecting large reward 

stimulus (expecting large), 2) neutral expectation for the two stimuli (neutral) and 3) expecting 

small reward stimulus (expecting small). To randomize the (left/right) position of relative 

reward points across trials, we used two sets of decision cues identical in terms of the reward-

probability combinations. The two cues only varied in terms of the positioning of reward points. 

The color of the probability bar (i.e., red and blue) indicating the left and right directions were 

counterbalanced across subjects to control for color preference.  
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Figure 1. Example trial sequence of the value-based action-selection task (A). Baseline stage of the task 
only consists of the second to fourth screen on the displayed sequence, during which they make a left- 
and right-hand response to the left and right grating stimulus. The task stage starts from the 
presentation of the decision cues and ends with the presentation of the reward feedback. List of task 
conditions based on the decision cues and target stimulus (B). There were three categories of decision 
cues based on expectancy (Cue expectancy), each followed by the presentation of a grating stimulus 
that was associated with a small or large reward (Target stimulus). Finally, the trials could also be 
categorized based on the alignment between the cue and the target (Cue-Target alignment). For each 
Cue expectancy condition, there two decision cues to counterbalance the left and right positioning of 
the small and large reward. The listings in parenthesis is relevant for the decision cue on the right.   

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.02.450521doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.02.450521
http://creativecommons.org/licenses/by-nc-nd/4.0/


 9 

A variable fixation cross (400-500 msec) was presented after the decision cue, followed by the 

target left or right grating stimulus determined by the probability assignment. Participants were 

only allowed to make a response after being presented with the target stimulus. A premature 

response while still being presented with a decision cue or a fixation cue immediately cancelled 

the trial. Similar to the baseline stage, a response was required using the corresponding finger 

within 1000 msec. A correct response was rewarded based on the RT using the pre-defined RT 

categories determined from the baseline stage. For trials that met the Category 1, 2, 3, and 4, 

the participants eared 100%, 50%, 25%, 0% of the total number of points assigned to target 

stimulus, respectively. An incorrect response resulted in loss of total points assigned to the side 

of the key press (i.e. resulted in -120 or -6). For example, in Figure 1A, if a participant made a 

correct right-hand response to a right-oriented stimulus, a proportion of 120 points determined 

by the speed of response was granted. If the participant made an incorrect right-hand response 

to a left-oriented stimulus, 120 points assigned to the right-hand response were lost (i.e., -120 

points). Earned and lost points were displayed in green and red respectively at the end of each 

trial (1000 msec), followed by a variable inter-trial interval (400-500 msec). Participants 

completed total of 480 trials across 10 blocks. Within a block, each of the six decision cues were 

chunked into a semi-block with 4-12 trials which consisted of the same cue. Inclusion of semi-

blocks was to make the processing of the decision cues easier by repeating the same cue 

several times. The order of semi-blocks was randomized within each block. Each of the six cues 

were presented in 80 trials throughout the experiment. After each block, participants were 

shown the accumulated amount of points they have earned up until then. The task stage lasted 

approximately 50 min. 
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EEG recording and analysis 

The electroencephalogram (EEG) was continuously recorded using 64 scalp electrodes 

embedded in an extended coverage, triangulated equidistant cap (M10, EasyCap, GmbH) using 

a low-pass filter of 100 Hz at a sampling rate of 1000 Hz (actiCHamp, Brain Products, GmbH). 

The electro-oculogram (EOG) was monitored with electrodes below the left eye and just lateral 

to the left and right canthi. In rare cases, channel impedances up to 25 kΩ were tolerated, but 

in most cases, they were kept below 15 kΩ. The EEG was amplified with a BrainAmp system 

(Brain Products GmbH, Gilching, Germany). All channels were referenced to the vertex (Cz) 

during recording.  

Offline EEG data was exported to Matlab using the EEGLAB software package (Delorme 

and Makeig, 2004), and custom scripts. The data were re-referenced to the average of mastoid 

channels and were high-pass filtered at 0.1 Hz. We created two epochs– one time-locked to the 

target stimulus (-250 to 1000 msec) and one time-locked to the response (-1000 to 500 msec).  

For each participant, we implemented a procedure for artifact removal based on an 

independent component analysis (ICA) approach (Delorme et al., 2012; Makeig et al., 2004; 

Onton and Makeig, 2006) that has been known to greatly diminish the contribution of 

ocular/biophysical artifacts. Single trials were also visually inspected to exclude epochs with 

excessively noisy EEG or muscle artifacts. On average, 96.98% of the stimulus-locked epochs 

and 95.88% of the response-locked epochs were included in the final analysis.  

For the analysis of dynamics in neural oscillations, oscillatory power of was calculated by 

means of Fast Fourier Transformation (FFT) as implemented in the newtimef function in 

EEGLAB. This procedure implements the calculation of changes in oscillatory power by means of 
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a moving window (steps = 10 msec). The stimulus locked, and response locked data (both 

oscillatory responses and ERPs) were subsequently binned (excluding trials during which an 

incorrect response was given) and averaged within each task condition. 

To determine the fine-grained temporal cascade of LRPs, we identified the LRP in both 

the stimulus-locked and response-locked data. We focused on the following cortical motor 

regions of interest (ROI) on each side of the hemisphere: left motor (FC3, FC5, C3, C5), right 

motor (FC4, FC6, C4, C6) (Deiber et al., 2012; Gregory et al., 2016; López-Larraz et al., 2015; 

Picazio et al., 2014). Lateralized motor signals were identified by contrasting the ERPs of the 

ipsilateral from contralateral motor ROI relative to the hand that was used to respond (Fig. 2). 

Furthermore, to study the engagement of mediofrontal theta oscillations reflecting cognitive 

control, we studied the oscillatory signal from the mediofrontal ROI (FCz, Fz) (Frank et al., 2015; 

Mas-Herrero et al., 2015). Analysis if oscillatory power was conducted using cluster-based 

permutation testing (Maris and Oostenveld, 2007) across frequency and time points within a 

specified time range (-400-0 msec from response onset). 

 
Figure 2. Grand average ERP traces from the left and right motor ROI 
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Statistical analysis 

Analyses of the behavioral and EEG data were focused on determining the effect of the 

three decision cues reflecting decision scenarios that varied in terms of reward magnitude and 

expectancy: “expecting large”, “neutral”, “expecting small” (Fig. 1B). Following the decision cue, 

an actual target of either a “large” of “small” reward stimulus appeared to which a response 

was made. Depending on the alignment between the cue expectancy and target stimulus, each 

outcome can be considered as “expected” (e.g., small reward stimulus after expecting small 

cue), “unexpected” (e.g., large reward stimulus after expecting small cue) or “neutral” (e.g., 

either small or reward stimulus after a neutral cue). For comparisons across all of the outlined 

task conditions, we used a repeated measures ANOVA model (with type 3 sums of squares) 

(Herr, 1986) including three main effects: Cue expectancy, Target stimulus and Cue-Target 

alignment (see Fig. 1B for the different level of each factor). In addition, we added a term for 

the interaction between Cue expectancy and Target stimulus and between Target stimulus and 

Cue-Target alignment, to specifically focus on how the effect of stimulus reward magnitude was 

modulated by prior expectation based on the cues as well as whether or not these expectations 

were met. ANOVAs are reported with Greenhouse-Geisser corrected p-values (Greenhouse and 

Geisser, 1959) if sphericity assumptions were violated when tested using Mauchly's W test 

(Mauchly, 1940). As mentioned, there were two sets of decision cues that varied only in terms 

of right and left positioning of reward points. The two sets were combined for all the behavioral 

(RTs and accuracy) and neural measures prior to the analysis across conditions. For simplicity 

we only report significant F test in all our results, unless mentioned otherwise.  
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Results 

Behavioral results 

Analysis of RT (Fig. 3A) showed a main effect of Target stimulus suggesting faster 

response to a large (M = 342, SE = 5.9) as compared to a small (M = 354, SE = 5.5) reward 

stimulus (F(1,36) = 36.19, p < .001). We also found a main effect of Cue-Target alignment 

(F(2,72) = 92.81, pgg < 0.0001) suggesting faster responses to expected (M = 332, SE = 6.1) as 

compared to unexpected (M = 364, SE = 5.8) condition and the neutral (M = 349, SE = 5.4) 

condition in between (all post hoc comparisons p < .001). Finally, we observed a significant Cue 

expectancy by Target stimulus interaction (F(2,72) = 101.97, pgg < .001). Post-hoc analysis 

showed that after the large reward cue, as well as following the neutral cue, response was 

significantly faster to the large than small reward stimulus (expecting large cue: Mlarge = 359, SE 

= 6.4, Msmall = 368, SE = 5.8; neutral cue: Mlarge = 343, SE = 5.8, Msmall = 354, SE = 5.2, both ps 

< .001). After the small cue, responses were faster to small (M = 339, SE = 6.0) than large (M = 

359, SE: 6.2) reward stimulus (p < .001).  
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 A similar pattern was found in the analysis of accuracy (Fig. 3B). Here we found a 

significant main effect of Cue expectancy (F(2,72) = 8.83, pgg < .001), suggesting higher accuracy 

in neutral as compared to the expecting small (p = 0.013) and expecting large reward cue (p = 

0.0002) (Mexpecting small = .88, SD = .07, Mneutral = .90, SE = .01, Mexpecting large = .88, SE = .01). We also 

found a main effect of Cue-Target alignment (F(2,72) = 64.7, pgg < .001) which suggested higher 

accuracy for expected (M = .94, SE = .01) compared to unexpected (M = .82, SE = .02) condition 

and the neutral (M = 0.90, SE = .01) condition in between (all post hoc comparisons p < .001). 

Finally, we found Cue expectancy by Target stimulus interaction (F(2,72) = 61.51, pgg < .001) 

(Fig. 3B). Post-hoc analysis showed a significantly higher accuracy for large (M = .95, SE = .01) 

than small reward stimulus (M = .81, SE = .02) (p < .001) after expecting large cue. After 

Figure 3. Response time (A) and accuracy (B) in each task condition. The labeling of task conditions are 
based on the combination across different levels of the factors, Cue expectancy, Target stimulus and Cue-
Target alignment in serial order [Cue expectancy; Target stimulus; Cue-Target alignment]. Solid and grated 
bars denote small and large reward target stimulus conditions; blue, gray and red denote expecting small, 
neutral and expecting large cue expectancy conditions, respectively.  
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expecting a small cue, accuracy was significantly higher for small (M = .94, SE = .01) than large 

reward stimulus (M = .83, SE = .02) (p < .001). No significant difference was found in the neutral 

condition (p = .154).  

Stimulus-locked LRP (slLRP)  

The stimulus-locked data showed an slLRP (Fig. 5A and B) starting at ~175msec, and 

peaking at ~320msec. No significant condition effects were found on slLRP peak latency (all Fs < 

1.56, p > 0.21). The peak amplitude (averaged across 315 ± 20msec) of the slLRP was slightly 

larger (more negative) for unexpected as compared to expected condition (main effect of Cue-

Target alignment: F(2,72) = 3.57, pgg = 0.034; all other F < 2.2, p > 0.12). Furthermore, there 

seemed to be some reward magnitude and expectancy modulations preceding 175msec. For 

instance, following an expecting large cue, we observed a contra-lateralized negative variation 

when the target stimulus also gave a large reward. However, with a small reward stimulus after 

the same “expecting large” cue, we observed a positive variation followed by a sharp change 

from positive to negative polarity. This reflects an increased motivation to use the other hand 

(assigned with the large reward), before a sudden change in movement plan for execution of 

correct response. This suggest that slLRP waveform reflects at least two separate motor 

processes: 1) continuation of motor preparation based on the preceding decision cue and 2) 

motor execution after the identification of the actual target stimulus. 
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To model these two separate motor processes in the slLRP waveform we used a 

piecewise regression method (Rashid et al., 2019). Two linear regression lines were fitted 

through the stimulus locked LRP averaged within each condition in each individual (Fig. 4A). The 

starting point of the first line was set at stimulus onset (0 msec – the intercept) and the ending 

point of the second line was set at the LRP peak latency, determined based on the average 

across all conditions within an individual (since peak latency was not significantly influenced by 

condition, collapsing within individual improved our power to detect the LRP peak latency; 

between 0 and 400msec). The two regression lines met at a knot. The location of the knot was 

Figure 4. Procedures for segmenting the stimulus locked LRP (Time 0 = stimulus onset) into 
preparation and execution components using piecewise regression. Two linear lines were fit to the 
raw stimulus-locked LRP (A). The two lines met at a knot, where the slope of the two lines together 
explained most variance(B-D).  
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optimized by moving the knot position along the x-axis (i.e., across time) and identifying the 

time point that resulted in the least amount of unexplained variance by the two regression lines 

(Fig. 4 B-D). This approach to independently model motor preparation and execution allows for 

efficient isolation of the slow wave activity preceding the actual slLRP dip, which is known to be 

influenced by expectations related to preparing a specific motor response (Kemper et al., 2012; 

Mattler et al., 2006). 

After decomposing the stimulus-locked LRP waveform into preparation (slLRPprep) and 

execution (slLRPexec) related components, we separately investigated the task condition effects 

on each component. We used the slope of each of the two regression lines as a proxy for 

amplitudes of slLRPprep and slLRPexec. The slLRPprep showed a significant main effect of Target 

stimulus (F(1,36)  = 19.99, p < 0.001); the slLRPprep was more negative for large (M = -0.08, SE = 

0.056) than small (M = 0.26, SE = 0.051) reward stimuli (Fig. 5C), suggesting a preparational bias 

towards the large reward regardless of expectancy. We also found a significant main effect of 

Cue-Target alignment (F(2,72) = 5.47, pgg  = 0.007), with the slLRPprep being more positive (i.e. 

reflecting preparation effects of the other hand) for unexpected (M = 0.29 , SE = 0.087) 

compared to expected (M = -0.016, SE = 0.0533) condition and the neutral condition in 

between (M = -0.0077, SE = 0.0736) (expected vs. unexpected: p = 0.0099; neutral vs 

unexpected: p = 0.042). The pattern is in line with our task manipulations, demonstrating 

response preparation towards the other side when the cue and the target was not aligned.  

Finally, we observed a significant Cue expectancy by Target stimulus interaction (F(2,72) = 5.04, 

pgg = .009). Post-hoc analysis showed that the slLRPprep was significantly more negative for large 

than small reward stimulus after the expecting large cue (p < .0001, Mlarge = -.21, SE = .09, Msmall 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.02.450521doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.02.450521
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

= .44, SE = .13) and the neutral cue (p = .012, Mlarge = -.16, SE = .10, Msmall = 0.15, SE = 0.09). No 

difference in slLRPprep amplitude was observed following the expecting small cue. These results 

indicate a stronger preparational bias towards the large reward side when expecting large 

rewards and even in neutral expectancy, while no such bias is detected when expecting small 

rewards. 

For the slLRPexec we found a significant main effect of Cue-Target Alignment (F(2,72) = 

3.4, pgg  = 0.039), with the slLRPexec being more negative for unexpected (M = -1.73 , SE = 0.18) 

compared to expected (M = -1.45, SE = 0.15) condition and the neutral condition in between (M 

= -1.65, SE = 0.16) (unexpected vs expected: p = .043; no other pairwise comparisons significant, 

all other ps > 0.16 (Fig. 5C). Furthermore, we observed a significant Cue expectancy by Target 

stimulus interaction (F(2,72) = 4.82, pgg = .011). After expecting small cue, the slLRPexec was 

larger (more negative) for the large (M = -1.94, SE = 0.23) as compared to the small (M = -1.45, 

SE = 0.15) reward stimulus (p = 0.006). No such difference was found in expecting large or 

neutral cue (p > 0.3). The Target stimulus by Cue-Target alignment interaction was marginally 
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Figure 5. Evoked lateralized motor responses time-locked to the stimulus (slLRP). LRP was extracted from 
the motor ROI by subtracting the ipsilateral from the contralateral hemisphere relative to response (A). 
The LRP onset (as determined by the 50% fractional peak latency) is depicted by the set of vertical lines 
between 200 and 300 msec. The vertical lines between 300 and 400 msec depict response time in each 
condition. The topographical plot of LRP across time (B). The different rows depict each task condition. 
Comparison of LRP amplitude across task conditions in the preparation (slLRPprep) and execution 
(slLRPexec) component (C) 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 4, 2021. ; https://doi.org/10.1101/2021.07.02.450521doi: bioRxiv preprint 

https://doi.org/10.1101/2021.07.02.450521
http://creativecommons.org/licenses/by-nc-nd/4.0/


 20 

significant (F(2,72)=2.4, pgg  = 0.08). Here, an exploratory follow up tests revealed a marginal 

difference between unexpected small and large reward stimuli (p = 0.096). These results 

suggest a greater motor effort being placed to execute a correct response specifically when a 

large reward stimulus appeared unexpectedly.  

  After investigating the amplitudes of slLRP components, we also tested for the 

difference in the timing of the knot which is at the end of slLRPprep and the start of slLRPexec (see 

Fig. 4 for approaches identifying knot timing). This time point will reflect relative timing of 

preparation vs. execution process. A significant effect of Cue-Target alignment (F(2,72) = 3.59, 

pgg = 0.0326) suggested that the slLRP knot location was earlier for expected (M = 171, SE = 

8.42) (p = .056), and neutral (M = 174, SE = 7.36) (p = .062) as compared to unexpected (M 

=197, SE = 8.51) condition. Furthermore we observed a Cue expectancy by Target stimulus 

interaction (F(2,72) = 5.89, p = .0048). When expecting small, the knot location was later for 

large (M = 210, SE = 11) than small reward (M = 160, SE = 10.70) stimuli (p = .0012). Such 

difference was not found in expecting large and neutral cue expectancy conditions (all ps > 

0.13). We also found a significant Target stimulus by Cue-Target alignment interaction (F(2,72) = 

3.69, p = .0298). When Cue-Target alignment was “unexpected”, the difference between the 

large (M = 210, SE = 11) and small reward (M = 185, SE = 11) stimuli was marginally significant 

(p = 0.07), with the knot location happening later for large reward stimulus. No such difference 

was found in neutral and expected conditions (all ps > 0.13). 

Next, we used the combination of the two slopes to model when the 50% fractional LRP 

onset latency (i.e. when the slLRP amplitude was equal to 50% of its peak amplitude (Kiesel et 

al., 2008; Mordkoff and Gianaros, 2000). 50% peak amplitude latency has been previously used 
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to estimate the start of the LRP. The vertical color-coded vertical lines between 300 and 400 

msec in Fig. 5A depict the extracted onset latency. The pattern of the stimulus locked LRP onset 

matched the pattern as observed in the actual behavioral responses (smaller color-coded 

vertical lines labeled as “behavioral response times” between 300-400 msec in Fig. 5A). 

Statistical analysis revealed a significant effect of Cue-Target alignment (F(2,72) = 10.31, pgg 

= .0001). Here, the LRP onset was much earlier for expected (M = 237, SE = 7.2, SD = 43) than 

unexpected (M = 271, SE = 7.46) stimuli (p < 0.001), with the onset following neutral cue in 

between (M = 249, SE = 7.36). We also found a Cue expectancy by Target stimulus interaction 

(F(2,72) = 8.75, pgg = 0.00048). When expecting large, the LRP onset was earlier for large (M = 

235, SE = 10) than small reward (M = 274, SE = 10) stimulus (p = .005). However, when 

expecting small, the onset was later for large (M = 269, SE = 8) than small reward (M = 239, SE = 

9) stimuli (p = .005). Such difference was not found in neutral cue expectancy conditions (p> 

0.32).  

Response-locked LRP (rlLRP) 

In the response-locked data, we observed the rlLRP peak around 40 msec prior to 

response (Fig. 6). The rlLRP amplitude was subsequently extracted between -60 and -20 msec 

prior to the given response (peak latency ± 20msec) (Luck, 2014). We found a significant Cue 

expectancy by Target stimulus interaction effect (F(2,72) = 5.294,  pgg = 0.014). After expecting 

small cue, rlLRP was more negative for large (M = -2.31; SE = 0.28) than small (M = -1.81; SE = 

0.19) reward stimulus (p = 0.012). No such effect was found after expecting large or neutral 

cues (all ps > 0.23). These results are parallel to the execution component of stimulus-locked 
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LRP (slLRPexec), suggesting that a greater motor effort is placed when a large reward stimulus 

appeared unexpectedly.  

 

Neural oscillations 

After studying the LRP, we investigated the involvement of mediofrontal theta 

oscillations to test for the prefrontal cognitive control mechanism during motor selection and 

execution (Cavanagh et al., 2012; Derosiere et al., 2018; van Driel et al., 2015; van Noordt et al., 

2015; Zavala et al., 2015). Starting around 200msec prior to response (Fig. 7A), oscillatory theta 

power (4-7Hz) was higher for unexpected compared to expected condition (cluster-based 

correction p < 0.001) indicative of increased cognitive control due to a response conflict 

Figure 6. Evoked lateralized motor responses time-locked to response (rlLRP). Similar to slLRP, we 
extracted LRP by subtracting the signal in ipsilateral from the contralateral motor ROI relative to 
response. The LRP amplitude preceding the response (between -60 and -20 msec) when a large reward 
stimulus appeared unexpectedly.  
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resulting from the discrepancy between the cue and the target (Fig. 7B). Confirming this, a 

repeated measures ANOVA on mean theta power from -200 until response showed a significant 

effect of Cue-Target alignment (F(2,72) = 20.3, pgg < .0001), with higher theta power for 

unexpected (M = 0.872, SE = 0.019) compared to both neutral (M = 0.846, SE = 0.019) and 

expected (M = 0.841, SE = 0.019) condition (both ps < .001; difference between expected and 

neutral p > 0.34). There was also a significant interaction between Cue expectancy and Target 

stimulus (F(2,72) = 22.1, pgg < .0001). When expecting large, theta power was lower for large (M 

= 0.839, SE = 0.019) than small reward (M = 0.873, SE = 0.019) stimulus (p < 0.001). However, 

when expecting small, theta power was higher for large (M = 0.87, SE = 0.019) than small 

reward (M = 0.843, SE = 0.019) stimuli (p < 0.001). Such difference was not found in neutral cue 

expectancy conditions (p > 0.24).  
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Figure 7. Response locked oscillatory responses. Theta power (4-7Hz) extracted from the frontocentral ROI (A). Prior to the 
response, theta power was higher for unexpected compared to expected stimuli (solid grey rectangle). Cluster based 
permutation testing reveal significant differences for the effect of expectancy in the 4-7Hz frequency range, indicative of theta 
modulation due to stimulus response conflict (B). After the response there was significant decrease in high alpha / low beta (10-
18Hz range) for both the effect of reward and expectancy (dashed grey rectangles). Topographical distribution of high Alpha/ low 
Beta power for the effect of expectancy (top), and reward (large minus small) (bottom) (C). 
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  Additionally, we observed decreased power in the high alpha/low beta range (10-18 Hz) 

for unexpected compared to expected condition (cluster based p < 0.001), starting around 

50msec after response and for large compared to small reward stimulus (cluster based p < 

0.001), starting around 100 after response (Fig. 7B and C). An exploratory repeated measures 

ANOVA on mean power from 50 until 250msec post response revealed a significant main effect 

of Target stimulus (F(1,36)  = 20.11, p < 0.001) with higher alpha/beta power for small (M = 

0.483, SE = 0.02) compared to large reward (M = 0.501, SE = 0.02). Furthermore there was also 

a main effect of cue-target alignment (F(2,72) = 17.2, pgg < 0.001) with high alpha / low beta for 

unexpected (M = 0.477, SE = 0.02)  compared to both neutral (M = 0.497, SE = 0.02) and 

expected (M = 0.50, SE = 0.02) condition (both ps < .001; difference between expected and 

neutral p > 0.15). There was also a significant interaction between Cue expectancy and Target 

stimulus (F(2,72) = 15.1, pgg < 0.001). When expecting large, alpha power was higher for large 

(M = 0.493, SE = 0.02) than small reward (M = 0.483, SE = 0.02) stimulus (p < 0.001). However, 

when expecting small, alpha power was lower for large (M = 0.471, SE = 0.02) than small reward 

(M = 0.512, SE = 0.022) stimuli (p < 0.001). Such difference was not found in neutral cue 

expectancy conditions (p > 0.15).  

 

Discussion 

 Rewards have strong modulatory effect on human behavior (Berridge, 2012; Berridge 

and Robinson, 1998). Much research to date shows evidence of direct reward modulation on 

movement selection and execution (Chen et al., 2018). The current study investigated the effect 

of reward on the brain’s motor system by probing the ERP component, Lateralized Readiness 
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Potential (LRP). In our study, we focused on the fact that in real life, pursuit and retrieval of 

rewards happen in an environment characterized by uncertainty and dynamic changes. To 

model the behavior under such circumstances, we compared neural processes related to 

response preparation and execution across task conditions where participants were presented 

with decision cues that varied in term of the reward magnitude and expectancy. After the 

decision cue, participants were presented with a target stimulus that were either or not in line 

with the expectations based on the probabilistic nature of the cue.  

 Our behavioral data confirmed that our task conditions captured the effect of reward 

magnitude and expectancy as well as how much the expectations from the cue were aligned 

with the target stimulus. Participants responded faster to a large reward stimulus and their 

responses were more accurate when the stimulus came after a non-biasing (neutral) cue. 

Responses were both faster and more accurate when the expectations were aligned with the 

target. The observed modulation of motor behavior by reward magnitude and expectancy can 

happen at multiple levels of motor control from movement selection, planning to execution. To 

explore the motor system across these levels, we studied the effect of task conditions across 

fine-grained temporal windows of LRP, leveraging on the high temporal resolution of the ERP 

signal time locked to both the stimulus onset and response registration. 

 Previous works have suggested that while the stimulus-locked LRP reflects response 

selection and preparation, the response-locked LRP reflects specifically response execution  

(Leuthold et al., 2004, 1996; Osman and Moore, 1993). These studies  also suggesting functional 

differences that are in line with the levels of motor control or motor hierarchy (Grafton and 

Hamilton, 2007; Haruno et al., 2003; Uithol et al., 2012).   
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In looking at the stimulus-locked LRP, we found noticeable task condition effects on an 

earlier slow wave component. Previous studies have reported that lateralized slow wave motor 

activity in stimulus-locked signal are influenced by expectations related to preparing a motor 

response (Kemper et al., 2012; Mattler et al., 2006). To tease apart this slow wave activity from 

the rest of the stimulus-locked LRP, we applied a piecewise regression approach and identified 

a knot that reflects the end of preparation and start execution. We analyzed the amplitudes of 

both the preparation and execution components as well as the knot timing. 

We found a differential pattern of effects on the preparatory and execution 

components of lateralized motor activity in terms of the cue and target stimulus alignment. 

While in the preparation component LRP amplitude were more positive in the unexpected 

compared to neutral and expected condition, the pattern was reversed in the execution 

component with greater negativity observed in the unexpected followed by neutral and 

expected condition. This reflects preparation towards the other hand followed by a greater 

effort in making a response when the expectations about the target were not met. This 

contrasting pattern confirmed that the preparation and execution components have different 

functional implications, with the former reflecting a continuation of motor preparation based 

on the decision cues and the latter reflecting the motor efforts after identifying the target 

stimulus. Additionally, the preparation component showed a stronger preparation towards the 

large reward side, especially when expecting a large reward stimulus as well as in neutral 

expectancy condition. No such bias towards one side was shown when expecting a small 

reward stimulus, suggesting no preparational bias when a small reward was highly likely. These 
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results collectively demonstrate a strong preference for high reward at the stage of movement 

preparation.  

In the execution of component of LRP, we also found an interaction between decision 

cue and stimulus reward levels. Significant differences across reward levels were only found 

after the expecting small cue. LRP amplitude was larger when a large reward stimulus followed 

the expecting small cue, which is in line with the results showing greater LRP (i.e., more 

negativity) when expectations were not aligned with the target as described above. 

Interestingly, such difference across stimulus reward levels was not significant when following 

the expecting large cue. In other words, a significantly greater motor effort was placed to 

correct for the movement plan only when confronting a large reward after expecting small but 

not when confronting a small reward after expecting large. This is also supported by the Target 

stimulus by Cue-Target alignment interaction, showing larger LRP in large than small reward, 

particularly when the cue and target was not aligned. A similar pattern was observed with 

response-locked LRP amplitude. Together these results demonstrate significant modulation of 

motor efforts by reward magnitude and expectancy. The results from the preparation and 

execution components of stimulus-locked LRP extend the larger literature on LRP, by 

demonstrating how the discrete shape and features of LRP depicts modulation of motor 

behavior by for example, response complexity, expectancy and advance preparation (Hackley 

and Miller, 1995; Hsieh and Yu, 2003; Leuthold, 2003; Masaki et al., 2004; Mattler et al., 2006; 

Meckler et al., 2010; Müller-Gethmann et al., 2003).     

 In addition to examining the LRP amplitudes, we compared the timing of different LRP 

indices. First, we looked at the timing of the knot in stimulus-lock LRP, which reflects the 
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transition from preparation to execution. Overall, we found a later knot timing when cue and 

target were not aligned and when confronting a large reward stimulus that was unexpected, 

which is in line with the LRP magnitude results. The later knot timing in these conditions may 

imply greater amount of mental processing required before transitioning from preparation to 

execution of response. These mental processes may involve cognitive control related with 

switching over from previous motor plans to an alternate plan which may also be influenced by 

reward magnitude (Kenner et al., 2010; Krämer et al., 2011; Liebrand et al., 2018; Rangel-

Gomez et al., 2015; Serrien and Sovijärvi-Spapé, 2013). We also analyzed the LRP onset latency 

and, as opposed to the knot timing, found an almost identical pattern to response time. This is 

in line with the previous discussions about the implications of LRP latency on the timing of 

motor preparation and execution (Mordkoff and Gianaros, 2000; Schwarzenau et al., 1998; 

Smulders et al., 2012). Our results suggest that the LRP latency indeed can accurately estimate 

the timing of behavioral responses. Furthermore, these findings provide additional support for 

knot timing as a distinctive measure reflecting mental process that happens prior to response 

execution.  

Apart of the analysis of LRP, analysis of neural oscillations gave us further insights about 

how the prefrontal cognitive control mechanisms contribute to motor selection and execution. 

The mediofrontal theta oscillations in particular, was significantly increased when confronting 

an unexpected than expected cue-target alignment. Importantly this increased theta 

oscillations appeared before response—around -250 msec from when response was 

registered—and disappeared shortly after the response was registered. This indicates that the 

role of mediofrontal theta is involved when response conflict is present to optimize the 
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forthcoming response, replicating prior studies (Gbadeyan et al., 2016; Miller and Cohen, 2001; 

Stokes et al., 2013). The fact that the mediofrontal theta and LRP modulation started and ended 

around the same time may suggest that two processes in the prefrontal and motor regions, 

respectively, are tightly coupled across time. Future studies should directly address how the 

two signals interact for optimal motor control.   

The neural oscillations results have also identified an interesting post-response decrease 

in high alpha/low beta power in unexpected compared to expected cue-target alignment and 

large compared to small target stimulus. These results are in line with previous studies showing 

alpha and beta band activity related with reward valence and magnitude (Cohen et al., 2008; 

HajiHosseini and Holroyd, 2015; Mas-Herrero et al., 2015) as well as reward prediction error 

(Ergo et al., 2019; HajiHosseini et al., 2012). Furthermore, these findings are also in line with the 

larger literature suggesting increase in cortical processing or neural arousal and increased 

cortical activity with desynchronization of alpha and beta oscillations (Neuper et al., 2006; 

Scheeringa et al., 2012). Increased mediofrontal activations, as indicated by the 

desynchronization in alpha and beta frequency, may imply additional prefrontal processing with 

regards to the recently completed action. For example, these oscillations could reflect adaptive 

prefrontal control mechanism that solidifies and promotes the recent course of action that led 

to larger rewards and an accurate response despite facing an unexpected target. 

In summary, our study shows modulation of brain’s motor system by rewards under a 

real-life context involving dynamic changes where different magnitude of rewards are 

presented either expectedly or unexpectedly. In particular, by teasing apart the neural 

processes of movement preparation from execution in the widely investigated LRP signal, we 
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determined the effect of reward magnitude and expectancy across the processing stream of 

motor hierarchy. In general, our results showed a greater motor preparation when large 

rewards were more likely and greater motor effort to execute a response when large rewards 

were presented unexpectedly. These motor activities appeared and ended around the same 

time as the deployment of prefrontal cognitive control, suggesting a close communication 

between the two systems to facilitate behavioral performance. Together these results 

demonstrate an optimized motor control to maximize rewards under the dynamic changes of 

real-life environment.     
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