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ABSTRACT

In reinforcement learning (RL), stochastic environments can make learning a pol-
icy difficult due to high degrees of variance. As such, variance reduction methods
have been investigated in other works, such as advantage estimation and control-
variates estimation. Here, we propose to learn a separate reward estimator to train
the value function, to help reduce variance caused by a noisy reward signal. This
results in theoretical reductions in variance in the tabular case, as well as em-
pirical improvements in both the function approximation and tabular settings in
environments where rewards are stochastic. To do so, we use a modified version
of Advantage Actor Critic (A2C) on variations of Atari games.

1 INTRODUCTION

While reinforcement learning (RL) has had great successes in solving sequential decision-making
tasks, high variance of some methods can make learning difficult when environments or rewards
are strongly stochastic (Verbeeck et al., 2007; Henderson et al., 2018b). Several methods have been
used to reduce variance, sometimes at the cost of bias. This includes generalized advantage esti-
mation (Schulman et al., 2016), control-variates optimization (Grathwohl et al., 2017), updating the
target policy via the expectation of its actions (Ciosek & Whiteson, 2018; Asadi et al., 2017), and
updating the value function via the posterior mean of an estimated uncertain distribution (Hender-
son et al., 2017). Here, we propose a method for variance reduction by using a direct estimate of

rewards R̂(st) to update the discounted value function V π
γ (st), rather than the sampled rewards. In

the tabular case, this corresponds to using the sampled mean, while in the function approximation
case this corresponds to learning a one-step value function V π

γ=0(st). We prove that this method
results in theoretical variance reductions in the tabular case. We also show that it corresponds to
performance gains in the tabular and function approximation settings in situations where rewards
are highly stochastic.

1.1 BACKGROUND

We formulate our method with the fully observable Markov Decision Process (MDP). In an MDP,
an agent can take an action at based on its current state st and receive a reward rt, before transi-
tioning to the next state of the MDP st+1. We focus on the discounted MDP case, where an agent

tries to maximize the cumulative discounted reward V π
γ (s) =

[

∑T
t=0

γtrt|s0 = s, π
]

, also known

as the discounted value of a policy. It is common to learn a value estimate of the current policy
via temporal difference (TD) learning, where the current estimate of the value function is used to
bootstrap the next estimate according to the Bellman equation V π

γ (st) = rt + γV π
γ (st+1), via the

loss:
(

rt + γV π
γ (st+1)− V π

γ (st)
)2

. In the case of Advantage Actor Critic (A2C), the synchronous
version of Asynchronous Advantage Actor Critic (A3C) (Mnih et al., 2016), a stochastic parameter-
ized policy (actor, πθ(a|s)) is learned from this value estimator via the TD error. That is, the actor

loss becomes: − log π(a|s)
(

rt + γV π
γ (st+1)− V π

γ (st)
)

.
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2 REWARD ESTIMATION

To reduce variance in the value function updates, we introduce an estimator for the reward at a given

state R̂(st). In the function approximation case, learning this reward estimator becomes a simple

regression problem:
(

rt − R̂(st)
)2

. We then use this reward estimator in the TD (Sutton, 1988)

update of the value function, rather than the sample reward:
(

R̂(st) + γV π
γ (st+1)− V π

γ (st)
)2

.

Intuitively, where rewards are highly stochastic due to environment stochasticity or due to some
stochastic process in reward assignment, this estimation will reduce the variance propagated to the
value function. We use the A2C algorithm for our function approximation experiments with this
modified update. Diagrams of this process can be seen in Figure 1. For function approximation
experiments, we build on the PyTorch implementation of Kostrikov (2018).
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Figure 1: The actor-critic update process with the reward estimator.

Variance Reduction in Tabular Settings: To determine whether our method for using a reward
approximator reduces variance theoretically, we examine the tabular case. In this setting, we use

the sample mean for the reward estimator: R̂t(s) =
[

1

N

∑

i ri
∣

∣si = s
]

. That is, given N observed
reward samples at a given state s, we determine the mean of those rewards. In this scenario, the
sample mean is an unbiased estimator.

First, we determine the variance of the standard discounted Bellman equation (Bellman, 1957):
G

γ
t = rt + γV γ

π (st+1). The variance of this Bellman estimate is: Var [Gγ
t ] = Var [rt] +

Var [γV γ
π (st+1)] + 2Cov [rt, γV

γ
π (st+1)]. We make the simplifying assumption that the most term

is equal to 0 1. If we instead use an approximator for the reward, the Bellman equation be-

comes: Ĝ
γ
t = R̂t(st) + γV γ

π (st+1). Similarly, the variance becomes: Var
[

Ĝ
γ
t

]

= Var
[

R̂t(st)
]

+

Var [γV γ
π (st+1)] + 2Cov

[

R̂t, γV
γ
π (st+1)

]

. We note that the right most term in this case is also 0.

Moreover, since we assume our approximation in the tabular case is simply the sample mean, we as-

sume that Var
[

R̂t(st)
]

= 1

N
Var [rt]. Thus, we have that: Var

[

Ĝ
γ
t

]

= 1

N
Var [rt]+Var [γV γ

π (st+1)].

By re-arranging terms between the two variance estimates, we arrive at the inequality: 1

N
Var [rt] ≤

Var [rt]. And thus the inequality: Var
[

Ĝ
γ
t

]

≤ Var [Gγ
t ] , ∀N ≥ 1. Therefore, by using the empir-

ical mean of the rewards in a tabular setting, we can reduce variance. The intuitive benefit of this
becomes clear in settings with highly stochastic rewards. That is, in a given state a reward may be
provided with some probability P (r) and otherwise is 0. In such a case, the error will propagate
through longer MDP chains, whereas using the empirical mean will provide a more stable estimate,
as will be demonstrated in subsequent experimental sections.

3 EXPERIMENTS

Tabular Experiments: We first investigate the tabular case. We construct a 5 state MDP as seen
for value learning (an extended 10 state MDP can be seen in Appendix A). The MDPs contain
deterministic transitions from left to right in the states, and the agent follows a fixed policy moving
to the right and terminates on reaching the farthest state to the right. At each state it receives
a stochastic reward of 1, 2, or 5 with a fixed probability of 0.5. The value function is updated

1This holds if V (st+1) is conditionally independent of rt given st
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via the temporal difference (TD) error for 100 episodes. We measure the robustness to variance
by evaluating the root mean squared error (RMSE) of the value function across the 100 episodes.
As is seen in Figure 2, when using the reward estimator, the agent is able to learn more accurate
representations of the value function even at high learning rates. This indicates a parity with the
aforementioned theoretical variance reduction.
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Figure 2: Tabular experiments with a 5-state MDP. In all cases, rewards are assigned with probability
0.5 and, set to 0 otherwise (rewards of +1,+2,+5, from left to right). The x-axis demonstrates
various learning rates for the TD-update. We report the average RMSE over the first 100 episodes
of learning - lower is better.

Atari Experiments: For evaluating our method with function approximation, we use 5 Atari
games from the Arcade Learning Environment (ALE) (Bellemare et al., 2013). We experiment with
adding a small amount of Gaussian noise at each time step to the reward signal (after clipping it
to [−1, 1]). We use the exact same hyper parameters used in OpenAI’s Baselines implementation
(Dhariwal et al., 2017), but use an additional network (with the same architecture) as a reward
predictor and use it to train our critic as described in section 2. We compare our approach to the
standard A2C algorithm, as well as A2C with reward prediction as an auxiliary task, similar to
Jaderberg et al. (2017). We report results, averaged over 3 random seeds, for rewards with varying
levels of Gaussian noise in Table 3. For the full training curves for different amounts of noise, see
Appendix B. Across all games we see that our proposed method performs relatively better once
noise has been introduced.

σ = 0.0 σ = 0.1 σ = 0.2 σ = 0.3 σ = 0.4
(% Baseline) (% Baseline) (% Baseline) (% Baseline) (% Baseline)

BeamRider 122.68 138.76 392.86 236.78 170.73

Breakout 98.77 115.28 200.37 743.01 1917.97

Pong 99.78 121.36 98.50 1014.76 115.22

Qbert 63.27 90.16 173.10 451.56 546.90

Seaquest 71.93 91.47 92.07 157.48 173.08

SpaceInvaders 91.98 106.18 135.80 169.17 217.24

Average 91.40 110.53 182.12 462.13 523.52

Table 1: Comparison of the average episode reward over 10M steps of training between our approach
to the best of both baselines (A2C and A2C with the reward prediction auxiliary task). The results
are the average over 3 runs using different random seeds.

4 CONCLUSION

Overall, we have demonstrated that by replacing the sampled reward with reward estimator in the
value function update, we can reduce variance and improve learning overall. We expect that this
methodology can be particularly useful in settings with high degrees of uncertainty. To address the
short-comings in some Atari games (before noise is added), future work may involve learning a
distributional reward estimator as in (Bellemare et al., 2017), off-policy experience replay for the
reward estimator, or learn options for reward estimators as in (Henderson et al., 2018a).
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A TABULAR MDP EXPERIMENT
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Figure 3: Tabular experiments with a 5-state MDP (top row) and a 10-state MDP (bottom row), with
varying reward assignments at each states. In all cases, rewards are assigned with probability 0.5
and, set to 0 otherwise (rewards of +1,+2,+5, from left to right). The x-axis demonstrates various
learning rates for the TD-update, as seen in similar variance analysis experiments (Van Seijen et al.,
2009). As can be seen, using the sample mean in MDPs with stochastic processes greatly reduces
the variance, allowing for higher learning rates to be used.

0 1 2 g
+1 : 0, P (.5)+1 : 0, P (.5)+1 : 0, P (.5)

Figure 4: Depiction of the sample Markov Decision Process (MDP) used for the tabular case exper-
iments.
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B ATARI EXPERIMENTS

Figure 5: Full learning curves for 3 runs for five Atari Games over 10M training steps (corresponding
with 40M raw frames). From top to bottom: Beam Rider, Breakout, Space Invaders, Seaquest, Qbert.
We compare four different noise levels that each correspond to adding Gaussian noise centered at
zero with the labelled standard-deviation. From left to right we have: 0.0, 0.1, 0.2, 0.3, 0.4. Our
proposed method is labelled ”Ours”, while A2C and A2C with the reward prediction auxiliary task
are labelled Baseline and Baseline+ respectively.

Additional details: As mentioned in the main text, our architecture and hyper-parameters are iden-
tical to the standard A2C parameters used in Dhariwal et al. (2017). To learn the reward-predictor,
we used a completely separate network with the same overall structure as the value/policy network.

We tuned the learning rate for the reward-predictor roughly through a coarse grid-search be-
tween [0.0001, 0.00025, 0.0005, 0.00075, 0.001] on a single game Pong and then used the best one
(0.0001) on all other games.

Additionally, we found that occasionally our algorithm diverged completely due to poor initializa-
tion of the reward-predictor. To alleviate this issue, we provided a convex combination between our
estimate r̂ and the noisy environment reward (for all environments) - which we linearly decayed
over the first 25000 network updates (out of the total 125000 updates).
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