Reward learning from human preferences and
demonstrations in Atari

Borja Ibarz Jan Leike Tobias Pohlen
DeepMind DeepMind DeepMind
bibarz@google.com leike@google.com pohlen@google.com

Geoffrey Irving Shane Legg Dario Amodei
OpenAl DeepMind OpenAl
irving@openai.com legg@google.com damodei@openai.com
Abstract

To solve complex real-world problems with reinforcement learning, we cannot rely
on manually specified reward functions. Instead, we can have humans communicate
an objective to the agent directly. In this work, we combine two approaches to
learning from human feedback: expert demonstrations and trajectory preferences.
We train a deep neural network to model the reward function and use its predicted
reward to train an DQN-based deep reinforcement learning agent on 9 Atari games.
Our approach beats the imitation learning baseline in 7 games and achieves strictly
superhuman performance on 2 games without using game rewards. Additionally,
we investigate the goodness of fit of the reward model, present some reward hacking
problems, and study the effects of noise in the human labels.

1 Introduction

Reinforcement learning (RL) has recently been very successful in solving hard problems in domains
with well-specified reward functions (Mnih et al.| 2015, 2016} [Silver et al., 2016). However, many
tasks of interest involve goals that are poorly defined or hard to specify as a hard-coded reward. In
those cases we can rely on demonstrations from human experts (inverse reinforcement learning, [Ng
and Russell, [2000; Ziebart et al., 2008)), policy feedback (Knox and Stone, 2009; |Warnell et al., [2017)),
or trajectory preferences (Wilson et al.| [2012; (Christiano et al.,[2017)).

When learning from demonstrations, a policy model is trained to imitate a human demonstrator
on the task (Ho and Ermon| 2016} [Hester et al., |2018)). If the policy model mimics the human
expert’s behavior well, it can achieve the performance of the human on the task. However, to provide
meaningful demonstrations, the human demonstrator has to have some familiarity with the task and
understand how to perform it. In this sense, imitation learning puts more burden on the human than
just providing feedback on behavior, which only requires the ability to judge outcomes. Moreover,
using this imitation learning approach it is impossible to significantly exceed human performance.

To improve on imitation learning we can learn a reward function directly from human feedback, and
optimize it using reinforcement learning. In this work, we focus on reward learning from trajectory
preferences in the same way as Christiano et al.|(2017). However, learning a reward function from
trajectory preferences expressed by a human suffers from two problems:

1. It is hard to obtain a good state space coverage with just random exploration guided by
preferences. If the state space distribution is bad, then the diversity of the trajectory that we
request preferences for is low and thus the human in the loop can’t convey much meaningful
information to the agent.

32nd Conference on Neural Information Processing Systems (NeurIPS 2018), Montréal, Canada.

2. Preferences are an inefficient way of soliciting information from humans, providing only a
few hundred bits per hour per human.

Our approach addresses the problems in imitation learning and learning from trajectory preferences
by combining the two forms of feedback. First, we initialize the agent’s policy with imitation learning
from the expert demonstrations using the pretraining part of the DQfD algorithm (Hester et al., 2018)).
Second, using trajectory preferences and expert demonstrations, we train a reward model that lets us
improve on the policy learned from imitation.

We evaluate our method on the Arcade Learning Environment (Bellemare et al. 2013) because
Atari games are RL problems difficult enough to benefit from nonlinear function approximation and
currently among the most diverse environments for RL. Moreover, Atari games provide well-specified
‘true’ reward functions, which allows us to objectively evaluate the performance of our method and to
do more rapid experimentation with ‘synthetic’ (simulated) human preferences based on the game
reward.

We show that demonstrations mitigate problem 1 by allowing a human that is familiar with the task to
guide exploration consistently. This allows us to learn to play exploration-heavy Atari games such as
Hero, Private Eye, and Montezuma’s Revenge. Moreover, in our experiments, using demonstrations
typically halves the amount of human time required to achieve the same level of performance;
demonstrations alleviate problem 2 by allowing the human to communicate more efficiently.

1.1 Related work

Learning from human feedback. There is a large body of work on reinforcement learning from
human ratings or rankings (Wirth et al., 2017): [Knox and Stone|(2009), |Pilarski et al.| (2011}, /Akrour
et al.|(2012), 'Wilson et al.| (2012), |Wirth and Firnkranz (2013)), [Daniel et al.| (2015)), [E1 Asri et al.
(2016), |Wirth et al.| (2016), Mathewson and Pilarski|(2017), and others. Focusing specifically on deep
RL, Warnell et al.| (2017) extend the TAMER framework to high-dimensional state spaces, using
feedback to train the policy directly (instead of the reward function). Lin et al.[{(2017) apply deep RL
from human feedback to 3D environments and improve the handling of low-quality or intermittent
feedback. [Saunders et al.|(2018)) use human feedback as a blocker for unsafe actions rather than to
directly learn a policy. The direct predecessor of our work is (Christiano et al.|(2017), with similar
tasks, rewards, policy architectures, and preference learning scheme.

Combining imitation learning and deep RL. Various work focuses on combining human demon-
strations with deep RL. Hester et al.| (2018)), on whose method this work is based, use demonstrations
to pretrain a Q-function, followed by deep Q-learning with the demonstrations as an auxiliary margin
loss. |Vecerik et al.| (2017)) apply the same technique to DDPG in robotics, and Zhang and Ma| (2018)
pretrain actor-critic architectures with demonstrations. Nair et al.|(2018)) combine these methods with
hindsight experience replay (Andrychowicz et al., 2017). [Zhu et al.|(2018) combine imitation learning
and RL by summing an RL loss and a generative adversarial loss from imitating the demonstrator (Ho
and Ermon, [2016). Finally, the first published version of AlphaGo (Silver et al.,2016)) pretrains from
human demonstrations. Our work differs from all these efforts in that it replaces the hand-coded RL
reward function with a learned reward function; this allows us to employ the imitation learning/RL
combination even in cases where we cannot specify a reward function.

Inverse reinforcement learning (IRL). IRL (Ng and Russell, 2000; Abbeel and Ng| 2004} Ziebart;
et al., 2008)) use demonstrations to infer a reward function. Some versions of our method make use of
the demonstrations to train the reward function—specifically, our autolabel experiments label the
demonstrations as preferable to the agent policy. This is closely related to generative adversarial
imitation learning (Ho and Ermon, [2016)), a form of IRL. Note, however, that in addition to training
the reward function from demonstrations we also train it from direct human feedback, which allows
us to surpass the performance of the demonstrator in 2 out of 9 games.

Reward-free learning. Reward-free learning attempts to avoid reward functions and instead use
measures of intrinsic motivation, typically based on information theory, as a training signal (Chentanez
et al., 2005; |Schmidhuber, 2006; |Orseau et al.,2013). The intrinsic motivation measure may include
mutual information between actions and end states (Gregor et al., [2016), state prediction error
or surprise (Pathak et al.l [2017), state visit counts (Storck et al.| [1995; |[Bellemare et al., [2016),

distinguishability to a decoder (Eysenbach et al.||2018), or empowerment (Salge et al.,2014)), which
is also related to mutual information (Mohamed and Rezende} 2015). The present work differs from
reward-free learning in that it attempts to learn complex reward functions through interaction with
humans, rather than replacing reward with a fixed intrinsic objective.

2 Method

2.1 Setting

We consider an agent that is interacting sequentially with an environment over a number of time
steps (Sutton and Barto|, 2018)): in time step ¢ the agent receives an observation o; from the environ-
ment and takes an action a;. We consider the episodic setting in which the agent continues to interact
until a terminal time step 7" is reached and the episode ends. Then a new episode starts. A trajectory
consists of the sequence (01, a1), ... (or, ar) of observation-action pairs.

Typically in RL the agent also receives a reward r; € R at each time step. Importantly, in this work
we are not assuming that such reward is available directly. Instead, we assume that there is a human
in the loop who has an intention for the agent’s task, and communicates this intention to the agent
using two feedback channels:

1. Demonstrations: several trajectories of human behavior on the task.

2. Preferences: the human compares pairwise short trajectory segments of the agent’s behavior
and prefers those that are closer to the intended goal (Christiano et al., [2017)).

In our setting, the demonstrations are available from the beginning of the experiment, while the
preferences are collected during the experiment while the agent is training.

The goal of the agent is to approximate as closely as possible the behavior intended by the human. It
achieves this by 1. imitating the behavior from the demonstrations, and 2. attempting to maximize a
reward function inferred from the preferences and demonstrations. This is explained in detail in the
following sections.

2.2 The training protocol

Our method for training the agent has the following components: an expert who provides demonstra-
tions; an annotator (possibly the same as the expert) who gives preference feedback; a reward model
that estimates a reward function from the annotator’s preferences and, possibly, the demonstrations;
and the policy, trained from the demonstrations and the reward provided by the reward model. The
reward model and the policy are trained jointly according to the following protocol:

Algorithm 1 Training protocol

1: The expert provides a set of demonstrations.

Pretrain the policy on the demonstrations using behavioral cloning using loss Jg.

Run the policy in the environment and store these ‘initial trajectories.’

Sample pairs of clips (short trajectory segments) from the initial trajectories.

The annotator labels the pairs of clips, which get added to an annotation buffer.

(Optionally) automatically generate annotated pairs of clips from the demonstrations and add
them to the annotation buffer.

7: Train the reward model from the annotation buffer.

8: Pretrain of the policy on the demonstrations, with rewards from the reward model.

9: for M iterations do

AR AN

10: Train the policy in the environment for N steps with reward from the reward model.
11: Select pairs of clips from the resulting trajectories.

12: The annotator labels the pairs of clips, which get added to the annotation buffer.

13: Train the reward model for k£ batches from the annotation buffer.

14: end for

Note that we pretrain the policy model twice before the main loop begins. The first pretraining is
necessary to elicit preferences for the reward model. The policy is pretrained again because some
components of the DQfD loss function require reward labels on the demonstrations (see next section).

2.3 Training the policy

The algorithm we choose for reinforcement learning with expert demonstrations is deep Q-Learning
from demonstrations (DQfD; Hester et al., 2018]), which builds upon DQN (Mnih et al.|[2015) and
some of its extensions (Schaul et al., 2015; Wang et al.| 2016; [Hasselt et al.,|2016)). The agent learns
an estimate of the action-value function (Sutton and Barto, [2018) Q)(o, a), approximated by a deep
neural network with parameters 6 that outputs a set of action-values Q(o, -;6) for a given input
observation o. This action-value function is learned from demonstrations and from agent experience,
both stored in a replay buffer (Mnih et al.,|2015)) in the form of transitions (o, a;, Y¢+1, 0¢+1), Where
~ is the reward discount factor (fixed value at every step except 0 at end of an episode). Note that the
transition does not include the reward, which is computed from o; by the reward model 7.

During the pretraining phase, the replay buffer contains only the transitions from expert demon-
strations. During training, agent experience is added to the replay buffer. The buffer has a fixed
maximum size, and once it is full the oldest transitions are removed in a first-in first-out manner.
Expert transitions are always kept in the buffer. Transitions are sampled for learning with probability
proportional to a priority, computed from their TD error at the moment they are added to and sampled
from the buffer (Schaul et al.,[2015)).

The training objective for the agent’s policy is the the cost function J(Q) = Jpppon(Q) +
Ao JE(Q) + A3Jr2(Q). The term Jpppgy is the prioritized (Schaul et al., 2015) dueling (Wang
et al.,|2016) double (Hasselt et al.,2016) Q-loss (PDD), combining 1- and 3-step returns (Hester et al.|
2018). This term attempts to ensure that the () values satisfy the Bellman equation (Sutton and Barto|
2018). The term Jg is a large-margin supervised loss, applied only to expert demonstrations. This
term tries to ensure that the value of the expert actions is above the value of the non-expert actions by
a given margin. Finally, the term Jy5 is an L2-regularization term on the network parameters. The
hyperparameters Ay and A3 are scalar constants. The agent’s behavior is e-greedy with respect to the
action-value function Q(o, -;).

2.4 Training the reward model

Our reward model is a convolutional neural network 7 taking observation o; as input (we omit actions
in our experiments) and outputting an estimate of the corresponding reward 741 € R. Since we do
not assume to have access to an environment reward, we resort to indirect training of this model via
preferences expressed by the annotator (Christiano et al.,[2017). The annotator is given a pair of
clips, which are trajectory segments of 25 agent steps each (approximately 1.7 seconds long). The
annotator then indicates which clip is preferred, that the two clips are equally preferred, or that the
clips cannot be compared. In the latter case, the pair of clips is discarded. Otherwise the judgment is
recorded in an annotation buffer A as a triple (o, 02, 1), where o', o2 are the two episode segments
and p is the judgment label (one of (0, 1), (1,0) or (0.5,0.5)).

To train the reward model 7 on preferences, we interpret the reward model as a preference predictor
by assuming that the annotator’s probability of preferring a segment o* depends exponentially on the
value of the reward summed over the length of the segment:

Plo! = 0% = exp (Z f(o)) / <exp <Z f(o)) + exp (Z f(o)))

ocol o€ol o€o?
We train 7 to minimize the cross-entropy loss between these predictions and the actual judgment
labels:
loss(7) = — Z w(1)log Plo* = o?] 4 pu(2) log Plo? = o]
(o1,02,u)€A
This follows the Bradley-Terry model (Bradley and Terry, |1952)) for estimating score functions from

pairwise preferences. It can be interpreted as equating rewards with a preference ranking scale
analogous to the Elo ranking system developed for chess (Elo, |1978).

Since the training set is relatively small (a few thousand pairs of clips) we incorporate a number
of modifications to prevent overfitting: adaptive regularization, Gaussian noise on the input, L2
regularization on the output (details in[Appendix A)). Finally, since the reward model is trained only
on comparisons, its scale is arbitrary, and we normalize it every 100,000 agent steps to be zero-mean
and have standard deviation 0.05 over the annotation buffer A. This value for the standard deviation
was chosen empirically; deep RL is very sensitive to the reward scale and this parameter is important
for the stability of training.

2.5 Selecting and annotating the video clips

The clips for annotation are chosen uniformly at random from the initial trajectories (line 3 in
and the trajectories generated during each iteration of the training protocol. Ideally we
would select clips based on uncertainty estimates from the reward model; however, the ensemble-
based uncertainty estimates used by (Christiano et al.|(2017)) did not improve on uniform sampling
and slowed down the reward model updates. The annotated pairs are added to the annotation buffer,
which stores all the pairs that have been annotated so far. The number of pairs collected after each
protocol iteration decreases as the experiment progresses, according to a schedule (see details in
Appendix Al).

In some experiments we attempt to leverage the expert demonstrations to enrich the set of initial
labels. In particular, each clip selected for annotation from the initial trajectories is paired with a clip
selected uniformly at random from the demonstrations and a labeled pair is automatically generated
in which the demonstration is preferred. Thus the initial batch of k pairs of clips produces 2k extra
annotated pairs without invoking the annotator, where k is the number of labels initially requested
from the annotator.

In the majority of our experiments the annotator is not a human. Instead we use a synthetic oracle
whose preferences over clips reflect the true reward of the underlying Atari game. This synthetic
feedback allows us to run a large number of simulations and investigate the quality of the learned
reward in some detail (see[Section 3.2)).

3 Experimental results

Our goal is to train an agent to play Atari games without access to the game’s reward function. There-
fore typical approaches, such as deep RL (Mnih et al., 2015/|2016) and deep RL with demos (Hester,
et al.l |2018)) cannot be applied here. We compare the following experimental setups (details are

provided in[Appendix A):

1. Imitation learning (first baseline). Learning purely from the demonstrations without rein-
forcement learning (Hester et al., |2018)). In this setup, no preference feedback is provided to
the agent.

2. No demos (second baseline). Learning from preferences without expert demonstrations,
using the setup from Christiano et al.| (2017 with PDD DQN instead of A3C.

3. Demos + preferences. Learning from both preferences and expert demonstrations.

4. Demos + preferences + autolabels. Learning from preferences and expert demonstrations,
with additional preferences automatically gathered by preferring demo clips to clips from

the initial trajectories (see[Section 2.5)).

We’ve selected 9 Atari games, 6 of which (Beamrider, Breakout, Enduro, Pong, Q*bert, and Seaquest)
feature in Mnih et al.| (2013) and |Christiano et al.|(2017). Compared to previous work we exclude
Space Invaders because we do not have demonstrations for it. The three additional games (Hero,
Montezuma’s Revenge, and Private Eye) were chosen for their exploration difficulty: without the
help of demonstrations, it is very hard to perform well in them (Hester et al., 2018).

In each experimental setup (except for imitation learning) we compare four feedback schedules. The
full schedule consists of 6800 labels (500 initial and 6300 spread along the training protocol). The
other three schedules reduce the total amount of feedback by a factor of 2, 4 and 6 respectively (see

details in|Appendix Al).

Beamrider Breakout Enduro

7000 [N No demos
6000 200 1500 I 20% demos + preferences
5000 150 [Demos + preferences
1000
4000 1 oo B Demos + pr. + autolabels
3000
200 - 500 [Demos + human preferences
50 o .
1000 L . _] _ - Imitation
...................... o+ -- - - - 0
c Hero Montezuma's Revenge Pong
5 40000 o 3500 R
8 3000 2 & et
© 30000 T B 2500 10
o
S 20000 2000 0
2 | 1500
g 10000 1000 “10
o r - - - N - 500 + -l - - -l - - - z -
% 0 o =20 4 - - . - -
Private Eye Q*bert Seaquest

60000

50000 N - L
1000
40000
"""" 800 |
30000 . R R
T 600
20000 | o _ N _
400
10000
i 200 {- . -] -
0

133 1700 3400 6800 133 1700 3400 6800 133 1700 3400 6800
Number of labels

Figure 1: Performance of our method on 9 Atari games after 50 million agent steps, for different
annotation schedules and training setups: no demos is the reward learning setup used by
letal|(2017), trained with DQN; imitation is the baseline from DQfD without RL; demos + preferences
and demos + pr. + autolables use all demos and synthetic labels, with and without automatic labels
from demos; 20% demos + preferences is like demos + preferences but uses only 20% of the available
demos; demos + human preferences is the same setup as demos + preferences, but with a human
instead of the synthetic oracle. The vertical lines depict the standard deviation across three runs of
each experiment.

The majority of the experiments use the synthetic oracle for labeling. We also run experiments with
actual human annotators in the demos + preferences experimental setup, with the full schedule and
with the schedule reduced by a factor of 2. In our experiments the humans were contractors with no
experience in RL who were instructed as in |Christiano et al.| (2017) to only judge the outcome visible
in the segments. We label these experiments as human.

[Figure 1| displays the mean episode returns in each game, setup and schedule, after 50 million agent
steps. We can compare the relative performance across four different experimental setups:

How much do preferences help (demos + preferences vs. imitation)? Our approach outperforms the
imitation learning baseline in all games except Private Eye. In 6 of the 9 games this holds in every
condition, even with the smallest amount of feedback. The bad performance of imitation learning in
most Atari tasks is a known problem (Hester et all 2018)) and in the absence of a reward function
preference feedback offers an excellent complement. Private Eye is a stark exception: imitation is
hard to beat even with access to reward (Hester et al.,[2018), and in our setting preference feedback is
seriously damaging, except when the demonstrations themselves are leveraged for labeling.

How much do demos help (demos + preferences vs. no demos)? Hero, Montezuma’s Revenge, Private
Eye and Q*bert benefit greatly from demonstrations. Specifically, in Montezuma’s Revenge and
Private Eye there is no progress solely from preference feedback; without demonstrations Hero does
not benefit from increased feedback; and in Q*bert demonstrations allow the agent to achieve better
performance with the shortest label schedule (1100 labels) than with the full no-demos schedule.
With just 20% of the demonstrations (typically a single episode) performance already improves
signiﬁcantlyﬂ In the rest of the games the contribution of demonstrations is not significant, except for
Enduro, where it is harmful, and possibly Seaquest. In Enduro this can be explained by the relatively
poor performance of the expert: this is the only game where the trained agents are superhuman in all
conditions. Note that our results for no demos are significantly different from those in

"Experiments with 50% of the demonstrations (not shown) produced scores similar to the full demo
experiments—the benefits of demonstration feedback seem to saturate quickly.

Distribution over all games

No demos

20% demos + preferences
Demos + preferences
Demos + pr. + autolabels
Demos + human preferences
- Imitation

© o o m
> o o o

Normalized return

o
[N}

©
=}

21 2.9 5.1 9.7
Human hours

Figure 2: Aggregated performance over all games after 50 million agent steps for different schedules
and training setups. Performance is normalized for each game between 0 (return of a random policy)
and 1 (best return across all setups and schedules). The boxplots show the distribution over all 9
games, the bright notch representing the median, boxes reaching the 25 and 75 percentiles, and
whiskers the whole range. Their position along the x axis shows with the total number of annotation
labels used.

et al.[(2017) because we use DQN (Mnih et al., 2015) instead of A3C (Mnih et al.| 2016)) to optimize
the policy (see[Appendix F).

How does human feedback differ from the synthetic oracle (demos + preferences vs. human)? Only in
Beamrider is human feedback superior to synthetic feedback (probably because of implicit reward
shaping by the human). In most games performance is similar, but in Breakout, Montezuma’s Revenge
and Pong it is clearly inferior. This is due to attempts at reward shaping that produce misaligned
reward models (see|Figure 3|and [Appendix D)) and, in the case of Montezuma’s Revenge, to the high
sensitivity of this game to errors in labeling (see [Appendix E).

How much do automatic preference labels help (demos + preference vs. demos + preferences + auto
labels)? Preference labels generated automatically from demonstrations increase performance in
Private Eye, Hero, and Montezuma’s Revenge, where exploration is difficult. On most games, there
are no significant differences, except in Breakout where human demonstrations are low quality (they
do not ‘tunnel behind the wall’) and thus hurt performance.

3.1 Use of human time

summarizes the overall performance of each setup by human time invested. More than
half of the games achieve the best performance with full feedback and the help of demonstrations
for imitation and annotation, and, for each feedback schedule, the majority of games benefit from
demonstrations, and from the use of demonstrations in annotation. With only 3400 labels even the
worst-performing game with demonstrations and automatic labels beats the median performance
without demonstrations and the full 6800 labels. If demonstrations are not available there are games
that never go beyond random-agent scores; demonstrations ensure a minimum of performance in any
game, as long as they are aided by some preference feedback. For further details refer to

3.2 Quality of reward model

In our experiments we are evaluating the agent on the Atari game score, which may or may not
align with the reward from the reward model that the agent is trained on. With synthetic labels the
learned reward should be a good surrogate of the true reward, and bad performance can stem from
two causes: (1) failure of the reward model to fit the data, or (2) failure of the agent to maximize the
learned reward. With human labels there are two additional sources of error: (3) mislabeling and
(4) a misalignment between the true (Atari) reward function and the human’s reward function. In this
section we disentangle these possibilities.

Learning the reward model is a supervised learning task, and in[Appendix C| we argue that it succeeds
in fitting the data well. compares the learned reward model with the true reward in three

Accum. over 25 steps Accum. over 1000 steps

I
e 1111168 P

2.0

Enduro

-10.0

20.0 4
4.0

~coe
ommm
o
oo
..
-

-4.0 : -0.0

Model reward
Montezuma's Revenge
-ty
L Y

0 2800 0 5400

3.0 ¢ *
.o5h Lkk ad
o --«.fm.'l?ﬂ‘g“‘
| St
‘_.'."J >
1 -20.0 .
100 1900 2000 14000

True reward

Q*bert

-1.0

Figure 3: True vs. learned reward accumulated in sequences of 25 (left) and 1000 (right) agent steps
in Enduro, Montezuma’s Revenge and Q*bert. Magenta and gray dots represent the model learned
from synthetic and human preferences, respectively. A fully aligned reward model would have all
points on a straight line. For this evaluation, the agent policy and reward model were fixed after
successful full-schedule training (in the case of synthetic preference feedback we chose the most
successful seed; in the case of human preference feedback only one run was available).

games (see [Appendix D] for the other six games). Both synthetic (demos + pr. + autolabels in
Figure 1) and human preference models are presented for comparison. Perfect alignment between
true reward and modelled reward is achieved if they are equal up to an affine-linear transformation; in
this case all points in the plot would be on a straight line. In most games the synthetically trained
reward model is reasonably well-aligned, so we can rule out cause (1).

In Enduro both human and synthetic preferences produce well-aligned reward models, especially
over long time horizons. Q*bert presents an interesting difference between human and synthetic
preferences: on short timescales, the human feedback does not capture fine-grained reward distinc-
tions (e.g., whether the agent covered one or two tiles) which are captured by the synthetic feedback.
However, on long timescales this does not matter much and both models align well. A similar pattern
occurs in Hero. Finally, in Montezuma’s Revenge human feedback fails while synthetic feedback
succeeds. This is partially due to a misalignment (because the human penalizes death while the Atari
score does not) and partially due to the sensitivity of the reward function to label noise. For more

details, see

The difference between synthetically and human-trained reward model captures causes (3) and (4).
To disentangle (3) and (4), we also provide experiments with a mislabeling rate in

Reward hacking. To further evaluate the quality of the reward model, we run experiments with
frozen reward models obtained from successful runs. The result is shown in left. Although
a fully trained model should make learning the task easier, in no case is the fixed-model performance
significantly better than the online training performance, which suggests that joint training of agent
and reward is not intrinsically problematic. Moreover, in Hero, Montezuma, and Private Eye the
performance with a fully trained reward model is much worse than online reward model training. In
these cases the drop in performance happens when the agent learns to exploit undesired loopholes in
the reward function 1m, right), dramatically increasing the predicted reward with behaviors
that diminish the true score}| These loopholes can be fixed interactively when the model is trained
online with the agent, since exploitative behaviors that do not lead to good scores can be annotated as
soon as they feature significantly in the agent’s policy, similar to adversarial training (Goodfellow
et al.,2014)). With online training we also observed cases where performance temporarily drops, with
simultaneous increases in model reward, especially when labels are noisy (Appendix E).

2Videos at https://youtube.com/playlist?1ist=PLehfUYSAEKX-g-QNM7FsxRHgiTOC1- 1hv

https://youtube.com/playlist?list=PLehfUY5AEKX-g-QNM7FsxRHgiTOCl-1hv

Beamrider

I[
Hero

Breakout

i

Montezuma's Revenge

Enduro

1500
|
) I|i I|i
o

Pong

m Normal training
LI Fixed predictor
I Normal training
L= Fixed predictor

Montezuma's Revenge

return

,j‘4
I

3000
” I :

1500

1000

Private Eye

Mean episode return
Mean reward model return

Private Eye

Q*bert Seaquest

wa

Demos + Demos + pr. + o 200
preferences autolabels Training time (hours)

14000

12000

.........

,,,,,,,, - ‘

Demos + Demos + pr. + Demos +
preferences autolabels preferences

Demos + pr. +
autolabels

Figure 4: Failure modes when training from a frozen reward model (contrary to our method). Left:
performance at each game after 50 million agent steps. The darker colored bars show the results from
our training protocol (same as [Figure 1)) with the full label schedule. The reward model from the
best seed in these experiments is then frozen and used to train an agent from scratch, resulting in the
lighter colored bars. Right: average true return (blue) and average reward model return (red) during
training of three games (only one seed shown per game) from a frozen reward model. This showcases
how the agent learns to exploit the reward model: over time the perceived performance (according to
the reward model) increases, while the actual performance (according to the game score) plummets.

4 Discussion

Combining both preferences and demonstrations outperforms using either in isolation. Their combi-
nation is an effective way to provide guidance to an agent in the absence of explicit reward (Figure TJ).
Even small amounts of preference feedback (about 1000 comparisons) let us outperform imitation
learning in 7 out of 9 games. Moreover, the addition of demonstrations to learning from preferences
typically results in substantial performance gains, especially in exploration-heavy games. We achieve
superhuman performance on Pong and Enduro, which is impossible even with perfect imitation.

Synthetic preference feedback proved more effective than feedback provided by humans. It could
be expected that human feedback has the advantage in the exploration-heavy games, where the
human can shape the reward to encourage promising exploration strategies. Analysis of the labels
shows that the human annotator prefers clips where the agent seems to be exploring in particular
directions. However, instead of encouraging exploration, this feedback produces ‘reward pits’ that
trap the agent into repetitive and fruitless behaviors. This effect is not novel; MacGlashan et al.|
have previously argued that humans are bad at shaping reward. However, our results show
that demonstrations can provide consistent exploration guidance.

In addition to the experiments presented here, we were unsuccessful at achieving significant per-
formance improvements from a variety of other ideas: distributional RL (Bellemare et al,[2017),
quantile distributional RL (Dabney et al,[2017)), weight sharing between reward model and policy,
supplying the actions as input to the reward model, pretrained convolutional layers or semi-supervised
training of the reward model, phasing out of the large-margin supervised loss along training, and

other strategies of annotation from demos (see[Appendix H).

In contrast to |Christiano et al.[(2017)), whose work we build upon here, we use the value-based
agent DQN/DQIfD instead of the policy-gradient-based agent A3C. This shows that learning reward
functions is feasible across two very different RL algorithms with comparable success. |[Appendix H
compares the scores of the two agents.

Finally, [Section 3.2] highlights a caveat of reward learning: sometimes the agent learns to exploit
unexpected sources of reward. This so-called reward hacking problem (Amodei et al.| 2016} [Everitt,
[2018) is not unique to reward learning; hard-coded reward functions are also exploitable in this
way (Lehman et al}[2018). Importantly, we only found persistent reward hacking when the preference
feedback was frozen. This suggests that our method, keeping a human in the training loop who
provides online feedback to the agent, is effective in preventing reward hacking in Atari games.

Acknowledgements

We thank Serkan Cabi, Bilal Piot, Olivier Pietquin, Tom Everitt, and Miljan Martic for helpful
feedback and discussions. Moreover, we thank Elizabeth Barnes for proofreading the paper and
Ashwin Kakarla, Ethel Morgan, and Yannis Assael for helping us set up the human experiments. Last
but not least, we are grateful to the feedback annotators for their many hours of meticulous work.

References

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
International Conference on Machine Learning, pages 1-8, 2004.

Riad Akrour, Marc Schoenauer, and Michele Sebag. April: Active preference learning-based
reinforcement learning. In Joint European Conference on Machine Learning and Knowledge
Discovery in Databases, pages 116-131, 2012.

Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and Dan Mané.
Concrete problems in Al safety. arXiv preprint arXiv:1606.06565, 2016.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob
McGrew, Josh Tobin, OpenAl Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Advances in Neural Information Processing Systems, pages 5048-5058, 2017.

Marc Bellemare, Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Remi Munos.
Unifying count-based exploration and intrinsic motivation. In Advances in Neural Information
Processing Systems, pages 1471-1479, 2016.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The Arcade Learning
Environment: An evaluation platform for general agents. Journal of Artificial Intelligence Research,
47:253-279, 2013.

Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforcement
learning. In International Conference on Machine Learning, pages 449-458, 2017.

Ralph A Bradley and Milton E Terry. Rank analysis of incomplete block designs: I. The method of
paired comparisons. Biometrika, 39(3/4):324-345, 1952.

Nuttapong Chentanez, Andrew G Barto, and Satinder P Singh. Intrinsically motivated reinforcement
learning. In Advances in Neural Information Processing Systems, pages 1281-1288, 2005.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. In Advances in Neural Information Processing
Systems, pages 4302—4310, 2017.

Will Dabney, Mark Rowland, Marc G Bellemare, and Rémi Munos. Distributional reinforcement
learning with quantile regression. arXiv preprint arXiv:1710.10044, 2017.

Christian Daniel, Oliver Kroemer, Malte Viering, Jan Metz, and Jan Peters. Active reward learning
with a novel acquisition function. Autonomous Robots, 39(3):389—-405, 2015.

Layla El Asri, Bilal Piot, Matthieu Geist, Romain Laroche, and Olivier Pietquin. Score-based
inverse reinforcement learning. In International Conference on Autonomous Agents and Multiagent
Systems, pages 457465, 2016.

Arpad Elo. The Rating of Chessplayers, Past and Present. Arco Pub., 1978.

Tom Everitt. Towards Safe Artificial General Intelligence. PhD thesis, Australian National University,
2018.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need:
Learning skills without a reward function. arXiv preprint arXiv:1802.06070, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. arXiv preprint arXiv:1412.6572, 2014.

10

Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

Hado van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double Q-
learning. In AAAI pages 2094-2100, 2016.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot, Tom Schaul, Bilal Piot, Andrew
Sendonaris, Gabriel Dulac-Arnold, Ian Osband, John Agapiou, Joel Z Leibo, and Audrunas
Gruslys. Deep Q-learning from demonstrations. In AAAI, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Advances in Neural
Information Processing Systems, pages 4565-4573, 2016.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International Conference on Machine Learning, pages
448-456, 2015.

Max Jaderberg, Volodymyr Mnih, Wojciech Marian Czarnecki, Tom Schaul, Joel Z Leibo, David
Silver, and Koray Kavukcuoglu. Reinforcement learning with unsupervised auxiliary tasks. In
International Conference on Learning Representations, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

W Bradley Knox and Peter Stone. Interactively shaping agents via human reinforcement: The
TAMER framework. In International Conference on Knowledge Capture, pages 9—16, 2009.

Joel Lehman, Jeff Clune, Dusan Misevic, Christoph Adami, Julie Beaulieu, Peter J Bentley, Samuel
Bernard, Guillaume Belson, David M Bryson, Nick Cheney, Antoine Cully, Stephane Doncieux,
Fred C Dyer, Kai Olav Ellefsen, Robert Feldt, Stephan Fischer, Stephanie Forrest, Antoine Frénoy,
Christian Gagné, Leni Le Goff, Laura M Grabowski, Babak Hodjat, Frank Hutter, Laurent Keller,
Carole Knibbe, Peter Krcah, Richard E Lenski, Hod Lipson, Robert MacCurdy, Carlos Maestre,
Risto Miikkulainen, Sara Mitri, David E Moriarty, Jean-Baptiste Mouret, Anh Nguyen, Charles
Ofria, Marc Parizeau, David Parsons, Robert T Pennock, William F Punch, Thomas S Ray, Marc
Schoenauer, Eric Shulte, Karl Sims, Kenneth O Stanley, Frangois Taddei, Danesh Tarapore, Simon
Thibault, Westley Weimer, Richard Watson, and Jason Yosinski. The surprising creativity of digital
evolution: A collection of anecdotes from the evolutionary computation and artificial life research
communities. arXiv preprint arXiv:1803.03453, 2018.

Zhiyu Lin, Brent Harrison, Aaron Keech, and Mark O Riedl. Explore, exploit or listen: Combining
human feedback and policy model to speed up deep reinforcement learning in 3D worlds. arXiv
preprint arXiv:1709.03969, 2017.

James MacGlashan, Mark K Ho, Robert Loftin, Bei Peng, David Roberts, Matthew E Taylor, and
Michael L Littman. Interactive learning from policy-dependent human feedback. In International
Conference on Machine Learning, pages 2285-2294, 2017.

Kory Mathewson and Patrick Pilarski. Actor-critic reinforcement learning with simultaneous human
control and feedback. arXiv preprint arXiv:1703.01274, 2017.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, lIoannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing Atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, Stig Petersen, Charles
Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane
Legg, and Demis Hassabis. Human-level control through deep reinforcement learning. Nature,
518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap, Tim

Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning, pages 19281937, 2016.

11

Shakir Mohamed and Danilo Jimenez Rezende. Variational information maximisation for intrinsically
motivated reinforcement learning. In Advances in Neural Information Processing Systems, pages
2125-2133, 2015.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Overcom-
ing exploration in reinforcement learning with demonstrations. In International Conference on
Robotics and Automation, pages 6292-6299, 2018.

Andrew Y Ng and Stuart Russell. Algorithms for inverse reinforcement learning. In International
Conference on Machine Learning, pages 663—-670, 2000.

Laurent Orseau, Tor Lattimore, and Marcus Hutter. Universal knowledge-seeking agents for stochastic
environments. In Algorithmic Learning Theory, pages 158-172, 2013.

Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. Curiosity-driven exploration by
self-supervised prediction. In International Conference on Machine Learning, pages 2778-2787,
2017.

Patrick M Pilarski, Michael R Dawson, Thomas Degris, Farbod Fahimi, Jason P Carey, and Richard
Sutton. Online human training of a myoelectric prosthesis controller via actor-critic reinforcement
learning. In International Conference on Rehabilitation Robotics, pages 1-7, 2011.

Christoph Salge, Cornelius Glackin, and Daniel Polani. Empowerment—an introduction. In Guided
Self-Organization: Inception, pages 67—114. Springer, 2014.

William Saunders, Girish Sastry, Andreas Stuhlmueller, and Owain Evans. Trial without error:
Towards safe reinforcement learning via human intervention. In International Conference on
Autonomous Agents and MultiAgent Systems, pages 2067-2069, 2018.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. CoRR,
abs/1511.05952, 2015.

Jirgen Schmidhuber. Developmental robotics, optimal artificial curiosity, creativity, music, and the
fine arts. Connection Science, 18(2):173-187, 2006.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, loannis Antonoglou, Veda Panneershelvam, Marc Lanctot, Sander Dieleman,
Dominik Grewe, John Nham, Nal Kalchbrenner, Ilya Sutskever, Timothy Lillicrap, Madeleine
Leach, Koray Kavukcuoglu, Thore Graepel, and Demis Hassabis. Mastering the game of Go with
deep neural networks and tree search. Nature, 529(7587):484-489, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine Learning
Research, 15(1):1929-1958, 2014.

Jan Storck, Sepp Hochreiter, and Jiirgen Schmidhuber. Reinforcement driven information acquisition
in non-deterministic environments. In International Conference on Artificial Neural Networks,
pages 159-164, 1995.

Richard Sutton and Andrew Barto. Reinforcement Learning: An Introduction. MIT press, 2nd edition,
2018.

Antti Tarvainen and Harri Valpola. Weight-averaged consistency targets improve semi-supervised
deep learning results. arXiv preprint arXiv:1703.01780, 2017.

Matej Vecerik, Todd Hester, Jonathan Scholz, Fumin Wang, Olivier Pietquin, Bilal Piot, Nicolas Heess,
Thomas Rothorl, Thomas Lampe, and Martin Riedmiller. Leveraging demonstrations for deep
reinforcement learning on robotics problems with sparse rewards. arXiv preprint arXiv:1707.08817,
2017.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando Freitas. Dueling
network architectures for deep reinforcement learning. In International Conference on Machine
Learning, pages 1995-2003, 2016.

12

Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. Deep TAMER: Interactive
agent shaping in high-dimensional state spaces. arXiv preprint arXiv:1709.10163,2017.

Aaron Wilson, Alan Fern, and Prasad Tadepalli. A Bayesian approach for policy learning from
trajectory preference queries. In Advances in Neural Information Processing Systems, pages
1133-1141, 2012.

Christian Wirth and Johannes Fiirnkranz. Preference-based reinforcement learning: A preliminary
survey. In ECML/PKDD Workshop on Reinforcement Learning from Generalized Feedback:
Beyond Numeric Rewards, 2013.

Christian Wirth, J Fiirnkranz, and Gerhard Neumann. Model-free preference-based reinforcement
learning. In AAAI, pages 2222-2228, 2016.

Christian Wirth, Riad Akrour, Gerhard Neumann, and Johannes Fiirnkranz. A survey of preference-
based reinforcement learning methods. The Journal of Machine Learning Research, 18(1):4945—
4990, 2017.

Xiaoqin Zhang and Huimin Ma. Pretraining deep actor-critic reinforcement learning algorithms with
expert demonstrations. arXiv preprint arXiv:1801.10459, 2018.

Yuke Zhu, Ziyu Wang, Josh Merel, Andrei Rusu, Tom Erez, Serkan Cabi, Saran Tunyasuvunakool,
Janos Kramar, Raia Hadsell, Nando de Freitas, and Nicolas Heess. Reinforcement and imitation
learning for diverse visuomotor skills. arXiv preprint arXiv:1802.09564, 2018.

Brian D Ziebart, Andrew L Maas, J] Andrew Bagnell, and Anind K Dey. Maximum entropy inverse
reinforcement learning. In AAAI, pages 14331438, 2008.

13

