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Behavioral/Cognitive

Reward Learning over Weeks Versus Minutes Increases the
Neural Representation of Value in the Human Brain

X G. Elliott Wimmer,1,2 X Jamie K. Li,2 X Krzysztof J. Gorgolewski,2 and X Russell A. Poldrack2

1Max Planck University College London Centre for Computational Psychiatry and Ageing Research and the Wellcome Centre for Human Neuroimaging,

University College London, London WC1B 5EH, United Kingdom, and 2Department of Psychology, Stanford University, Stanford, California, 94305

Over the past few decades, neuroscience research has illuminated the neural mechanisms supporting learning from reward feedback.

Learning paradigms are increasingly being extended to study mood and psychiatric disorders as well as addiction. However, one poten-

tially critical characteristic that this research ignores is the effect of time on learning: human feedback learning paradigms are usually

conducted in a single rapidly paced session, whereas learning experiences in ecologically relevant circumstances and in animal research

are almost always separated by longer periods of time. In our experiments, we examined reward learning in short condensed sessions

distributed across weeks versus learning completed in a single “massed” session in male and female participants. As expected, we found

that after equal amounts of training, accuracy was matched between the spaced and massed conditions. However, in a 3-week follow-up,

we found that participants exhibited significantly greater memory for the value of spaced-trained stimuli. Supporting a role for short-

term memory in massed learning, we found a significant positive correlation between initial learning and working memory capacity.

Neurally, we found that patterns of activity in the medial temporal lobe and prefrontal cortex showed stronger discrimination of spaced-

versus massed-trained reward values. Further, patterns in the striatum discriminated between spaced- and massed-trained stimuli

overall. Our results indicate that single-session learning tasks engage partially distinct learning mechanisms from distributed training.

Our studies begin to address a large gap in our knowledge of human learning from reinforcement, with potential implications for our

understanding of mood disorders and addiction.

Key words: hippocampus; reinforcement learning; reward; spacing; striatum

Introduction
When making a choice between an apple and a banana, our
decision often relies on values shaped by countless previous ex-

periences. By learning from the outcomes of these repeated expe-
riences, we can make efficient and adaptive choices in the future.
Over the past few decades, neuroscience research has revealed the
neural mechanisms supporting this kind of learning from reward
feedback, demonstrating a critical role for the striatum and the
midbrain dopamine system (Houk et al., 1995; Schultz et al.,
1997; Dolan and Dayan, 2013; Steinberg et al., 2013). However,
research in humans has tended to focus on two different time-
scales: short-term learning from reward feedback across minutes,
for example, in “bandit” or probabilistic selection tasks (Frank et
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Significance Statement

Humans and animals learn to associate predictive value with stimuli and actions, and these values then guide future behavior.

Such reinforcement-based learning often happens over long time periods, in contrast to most studies of reward-based learning in

humans. In experiments that tested the effect of spacing on learning, we found that associations learned in a single massed session

were correlated with short-term memory and significantly decayed over time, whereas associations learned in short massed

sessions over weeks were well maintained. Additionally, patterns of activity in the medial temporal lobe and prefrontal cortex

discriminated the values of stimuli learned over weeks but not minutes. These results highlight the importance of studying

learning over time, with potential applications to drug addiction and psychiatry.
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al., 2004; Daw et al., 2006), or choices based on well-learned
values, for example, over snack foods (Plassmann et al., 2007).
There has been remarkably little research in humans that exam-
ines how value associations are acquired or maintained beyond a
single session (Herbener, 2009; Tricomi et al., 2009; Grogan et al.,
2017; de Wit et al., 2018), even though our preferences are often
shaped across multiple days, months, or years of experience.

Recently, researchers have begun to use learning tasks in com-
bination with reinforcement learning models to investigate be-
havioral dysfunctions in mood and psychiatric disorders as well
as addiction in the growing area of “computational psychiatry”
(Maia and Frank, 2011; Schultz, 2011; Montague et al., 2012;
Whitton et al., 2015; Moutoussis et al., 2017). This translational
work on human reward-based learning builds on research in an-
imals where circuit functions can be extensively manipulated
(Steinberg et al., 2013; Ferenczi et al., 2016). However, at the
condensed timescale of most human paradigms, “massed” tim-
ing likely allows processes in addition to dopaminergic mecha-
nisms of feedback-based learning, such as working memory, to
support behavior (Collins and Frank, 2012; Collins et al., 2014).

Although no studies have directly compared values learned in
massed vs spaced sessions, several recent neuroimaging studies
have examined the neural representation of values learned across
days (Tricomi et al., 2009; Wunderlich et al., 2012), supporting a role
for the human posterior striatum in representing the value of well-
learned stimuli. These findings align with neurophysiological re-
cordings in the striatum of animals (Yin and Knowlton, 2006; Kim
and Hikosaka, 2013). However, reward-related BOLD responses in
the putamen are not selective to consolidated or “habitual” reward
associations (O’Doherty et al., 2003; Dickerson et al., 2011; Wimmer
et al., 2014); moreover, previous studies did not allow for a matched
comparison between newly-learned reward associations and consol-
idated associations.

In addition to the striatum, fMRI and neurophysiological
studies have shown that responses in the medial temporal lobe
and hippocampus are correlated with reward and value (Lebre-
ton et al., 2009; Wirth et al., 2009; Lee et al., 2012; Wimmer et al.,
2012). Although these responses are not easily explained by a
relational memory theory of MTL function (Eichenbaum and
Cohen, 2001), they may fit within a more general view of the
hippocampus in supporting some forms of statistical learning
(including stimulus-stimulus associations; Schapiro et al., 2012,
2014). Memory mechanisms in the MTL may also play a role in
representing previous episodes that can be sampled to make a
reward-based decision (Murty et al., 2016; Wimmer and Büchel,
2016; Bornstein et al., 2017), a role that could be enhanced by
consolidation.

To characterize the cognitive and neural mechanisms that
support learning long-term reward associations, we used a simple
reward-based learning task. Participants initially learned value
associations for spaced stimuli in the laboratory and then online
across 2 weeks in multiple short massed sessions. Associations for
massed stimuli were acquired during a second in-lab session over
�20 min (followed by fMRI scanning in one group), similar to
the kind of training commonly used in reinforcement learning
tasks. Finally, to examine maintenance of learning, a long-term
test was administered 3 weeks after the completion of training.

Materials and Methods
Participants and overview. Participants were recruited via advertising on
the Stanford Department of Psychology paid participant pool web portal
(https://stanfordpsychpaid.sona-systems.com). Informed consent was
obtained in a manner approved by the Stanford University Institutional

Review Board. In Study 1, behavioral and fMRI data acquisition pro-
ceeded until fMRI seed grant funding expired, leading to a total of 33
scanned participants in the reward learning task. To ensure that the fMRI
sessions 2 weeks after the first in-lab session were fully subscribed, a total
of 62 participants completed the first behavioral session. Of this group, a
total of 29 participants did not complete the fMRI and behavioral exper-
iment described below. The results of 33 participants (20 female) are
included in the analyses and results, with a mean age of 22.8 years (range:
18 –34). Participants were paid $10/h for the first in-lab session and $30/h
for the second in-lab (fMRI) session, plus monetary rewards from the
learning phase and choice test phase.

In Study 2, a total of 35 participants participated in the first session of
the experiment, but four were excluded from the final dataset, as de-
scribed below. Our sample size was designed to approximately match the
size of Study 1. The final dataset included 31 participants (24 female),
with a mean age of 23.3 years (range: 18 –32). Two participants failed to
complete the second in-lab session and all data were excluded; one other
participant exhibited poor performance the first session (�54% correct
during learning and �40% correct in the choice test) and was therefore
excluded from participation in the follow-up sessions. Of the 31 included
participants, one participant failed to complete the third in-lab session,
but data from other sessions were included. Participants were paid $10/h
for the two in-lab sessions, monetary rewards from the learning phase
and choice test phase, plus a bonus of $12 for the 5 min duration third
in-lab session.

Both Study 1 and Study 2 used the same reward-based learning task
(adapted from Gerraty et al., 2014). Participants learned the best re-
sponse for individual stimuli to maximize their payoff. Two different sets
of stimuli were either trained in multiple massed sessions spaced across 2
weeks (“spaced-trained” stimuli) or in a single session (“massed-trained”
stimuli; Fig. 1A). Initial spaced learning began in the first in-lab session
and continued across three online training sessions spread across �2
weeks. Initial learning about massed stimuli began in the second in-lab
session and continued until training was complete. Spaced training al-
ways preceded massed training so that, by the end of the second in-lab
session, both sets of stimuli had been shown on an equal number of
learning trials. This design was the same across Study 1 and Study 2, with
the difference that Study 1 included an fMRI portion at the time of the
second in-lab session and that post-learning tests were conducted at
different points during learning in the two studies. Additionally, the
3-week follow-up measurement was conducted online for Study 1 and
in-lab for Study 2.

We chose to use a simple instrumental learning task (adapted from
Gerraty et al., 2014) instead of a choice-based learning task for three
reasons. First, the majority of the animal work that we are translating
involves relatively simple instrumental or Pavlovian value learning de-
signs with a single focal stimulus (Schultz et al., 1997; O’Doherty et al.,
2003; Tricomi et al., 2009), including previous work on spacing effects in
feedback learning (Spence and Norris, 1950; Teichner, 1952). Most di-
rectly, the present design was inspired by the work of Hikosaka and
colleagues on long-term memory for value (Kim and Hikosaka, 2013;
Kim et al., 2015; Ghazizadeh et al., 2018) and by the work of Collins and
colleagues on short-term memory contributions to rapid feedback-based
learning (Collins and Frank, 2012; Collins et al., 2014). Second, a single-
stimulus design avoids differential attentional allocation toward the
relatively more valuable stimulus in a set, which is inherent in multi-
stimulus designs (Daw et al., 2006; Pessiglione et al., 2006). Third, our
reward learning paradigm has been shown previously to effectively es-
tablish stimulus–value associations (Gerraty et al., 2014), as evidenced by
the ability of newly learned stimulus–reward associations to transfer or
generalize across previously established relational associations. Such
transfer is related to striatal correlates of learned value (Wimmer and
Shohamy, 2012). Although our in-task learning measures are related to
“Yes”/“No” action value, this previous work and recent human fMRI
research indicate that mechanisms supporting the learning of stimulus–
action and stimulus–value associations operate at the same time (Colas et
al., 2017).

Study 1 experimental design. In Study 1, before the learning phase,
participants rated a set of 38 landscape picture stimuli based on liking
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using a computer mouse, preceded by one practice trial. The same selec-
tion procedure and landscape stimuli were used previously (Wimmer
and Shohamy, 2012). These ratings were used to select the 16 most
neutrally-rated set of stimuli per participant to be used in Study 1. Stim-
uli were then randomly assigned to condition (spaced or massed) and
value (reward or loss). In Study 2, we used the ratings collected across
participants in Study 1 to find the most neutrally-rated stimuli on aver-
age and then created two counterbalanced lists of stimuli from this set.

Next, in the reward game in both studies, participants’ goal was to
learn the best response (arbitrarily labeled “Yes” and “No”) for each
stimulus. Participants used up and down arrow keys to make “Yes” and
“No” responses, respectively. Reward-associated stimuli led to a win of
$0.35 on average when “Yes” was selected and a small loss of �$0.05
when “No” was selected. Loss-associated stimuli led to a neutral outcome
of $0.00 when “No” was selected and �$0.25 when “Yes” was selected.
These associations were probabilistic such that the best response led to
the best outcome 80% of the time during training. If no response was
recorded, at feedback, a warning was given: “Too late or wrong key!
�$0.50” and participants lost $0.50.

In a single reward learning trial, a stimulus was first presented with the
options “Yes” and “No” above and below the image, respectively (Fig.
1B). Participants had 2 s to make a choice. After the full 2 s choice period,
a 1 s blank screen inter-trial interval (ITI) preceded feedback presenta-
tion. Feedback was presented in text for 1.5 s, leading to a total trial
duration of 4.5 s. Reward feedback above �$0.10 was presented in green
and feedback below $0.00 was presented in red; other values were pre-
sented in white. After the feedback, an ITI of duration 2 preceded the next
trial (min, 0.50 s; max, 3.5 s), where in the last 0.25 s before the next trial,
the fixation cross turned from white to black. The background for all
parts of the experiment was gray (RGB value [111 111 111]). We specif-
ically designed the timing of feedback (3 s from the onset of choice) to fall
within the range of previous studies on feedback-based learning and the
dopamine system, which show a strong decay of the fidelity of the dopa-
mine reward prediction error response as feedback is delayed beyond
several seconds (Fiorillo et al., 2008); beyond this point, other (e.g., hip-
pocampal) mechanisms may support learning (Foerde et al., 2013).

To increase engagement and attention to the feedback, we introduced
uncertainty into the feedback amounts in two ways: first, all feedback
amounts were jittered �$0.05 around the mean using a flat distribution.
Second, for the reward-associated stimuli, half were associated with a
high reward amount ($0.45) and half with a low reward amount ($0.25).
We did not find that this second manipulation significantly affected
learning performance at the end of the training phase, so our analyses and
results collapse across the reward levels.

In the initial spaced learning session in-lab, participants learned asso-
ciations for spaced-trained stimuli, which differed from the training for
massed-trained stimuli only in that training for spaced stimuli was
spread across four “massed” sessions, one in-lab and three online. Initial
learning followed by completion of learning for massed-trained stimuli
occurred in the subsequent second in-lab session. The spaced- and
massed-trained conditions each included eight different stimuli, of
which half were associated with reward and half were associated with loss.
In the initial learning session for both conditions, each stimulus was
repeated 10 times. The lists for the initial learning session were pseudo-
randomized, with constraints introduced to facilitate initial learning and
to achieve ceiling performance before the end of training.

To more closely match the delay between repetitions commonly found
in human studies of feedback-based learning (Pessiglione et al., 2006),
where only several different trial types are included, we staged the intro-
duction of the eight stimuli into two sets. In the initial learning session for
both spaced- and massed-trained stimuli, four stimuli were introduced
in the first 40 trials and the other four stimuli were introduced in the
second 40 trials. Further, when a new stimulus was introduced, the first
repetition followed immediately. The phase began with four practice
trials, including one reward-associated practice stimulus and one loss-
associated practice stimulus, followed by a question about task under-
standing. Three rest breaks were distributed throughout the rest of the
phase.

After the initial learning session in both conditions, participants com-
pleted a reward rating phase and an incentive-compatible choice phase.
In the reward rating phase, participants tried to remember whether a
stimulus was associated with reward or loss. They were instructed to use
a rating scale to indicate their memory and their confidence in their
memory using a graded scale, with responses made via computer mouse
(Fig. 1C). Responses were self-paced. After 0.5 s, trials were followed by a
3 s ITI. For analyses, responses (recorded in pixel left–right location
values) were transformed to 0 –100%.

In the incentive-compatible choice phase, participants made a forced-
choice response between two stimuli, only including spaced stimuli in
the first in-lab session and only including massed stimuli in the second
in-lab session. Stimuli were randomly presented on the left and right side
of the screen. Participants made their choice using the 1– 4 number keys
in the top row of the keyboard, with a “1” or “4” response indicating a
confident choice of the left or right option, respectively, and a “2” or “3”
response indicating a guess choice of the left or right option, respectively.
The trial terminated 0.25 s after a response was recorded, followed by a
2.5 s ITI. Responses were self-paced. Participants were informed that they
would not receive feedback after each choice, but that the computer

Figure 1. A, Experimental timeline. Learning for the spaced-trained stimuli is indicated in blue and learning for the massed-trained stimuli is indicated in gray. The initial learning session for

spaced-trained stimuli was completed on day 1. Learning for spaced stimuli was then completed in multiple short (massed) sessions, whereas learning for massed stimuli was completed in a single

session �14 d later. Aside from the separation of spaced learning into multiple condensed sessions, inter-trial timing was matched across conditions. A forced-choice test was also collected after

initial learning and the completion of learning. A long-term follow-up measure of reward value using ratings was collected after �3 weeks. B, Reward learning task. Participants learned to select

“Yes” for reward-associated stimuli and “No” for loss-associated stimuli. Choices were presented for 2 s and feedback followed after a 1 s delay. C, Reward association rating test. This rating phase

followed the initial in-lab learning sessions and was also administered 3 weeks after the last learning session.
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would keep track of the number of correct choices of the reward-

associated stimuli that were made and pay a bonus based on their per-

formance. Because the long-term follow-up only included ratings, choice

analyses were limited to comparing how choices aligned with ratings.

At the end of the session, participants completed two additional mea-

sures. We collected the Beck Depression Inventory, but scores were too

low and lacked enough variability to enable later analysis (median

score � 2 of 69 possible; scores �13 indicate mild depression). The

second measure we collected was the operation-span task (OSPAN),

which was used as an index of working memory capacity (Lewandowsky

et al., 2010; Otto et al., 2013). In the OSPAN, participants made accuracy

judgments about simple arithmetic equations (e.g., “2 � 2 � 5”). After a

response, an unrelated letter appeared (e.g., “B”), followed by the next

equation. After arithmetic-letter sequences ranging in length from 4 to 8,

participants were asked to type in the letters that they had seen in order,

with no time limit. Each sequence length was repeated three times. To

ensure that participants were fully practiced in the task before it began,

the task was described in-depth in instruction slides, followed by five

practice trials. Scores were calculated by summing the number of letters

in fully correct letter responses across all 15 trials (mean, 49.9; range,

19 – 83) (Otto et al., 2013); mean performance on the arithmetic compo-

nent was 81.9%.

Online training. Subsequent to the first in-lab session where training

on spaced stimuli began, participants completed three short online

“massed” sessions with the spaced-trained stimuli (see also Eldar et al.

2018). Sessions were completed on a laptop or desktop computer (but

not on mobile devices) using the expfactory.org platform (Sochat et al.,

2016). Code for the online reward learning phase can be found at: https://

github.com/gewimmer-neuro/reward_learning_js. Each online training
session included five repetitions of the eight spaced-trained stimuli in a
random order, leading to 15 additional repetitions per spaced-trained
stimulus overall. The task and timing were the same as in the in-lab
sessions, with the exception that the screen background was white and
the white feedback text was replaced with gray. Participants completed
the online sessions across �2 weeks, initiated with an E-mail from the
experimenter including login details for that session. If participants had
not yet completed the preceding online session when the notification
about the next session was received, participants were instructed to com-
plete the preceding session that day and the next session the following
day. Therefore, at least one overnight period was required between ses-
sions. Participants were instructed to complete the session when they
were alert and not distracted. We found that data for two sessions in one
participant were missing and, for an additional seven participants, data
for one online session was missing. Based on follow-up with a subset of
participants, we can conclude that missing data was due in some cases to
technical failures and in some cases due to noncompliance. Among par-
ticipants with a missing online spaced training session, performance dur-
ing scanning for spaced-trained stimuli was above the group mean
(94.8% vs 91.0%). Note that, if a subset of participants did not complete
some part of the spaced training, this would, if anything, weaken any
differences between spaced and massed training.

Second in-lab session. Next, participants returned for a second in-lab
session �2 weeks later (mean, 13.5 d; range, 10 –20 d). Here, participants
began and completed learning on the massed-trained stimuli. Initial
training across the first 10 repetitions was conducted as described above
for the first in-lab session. Next, participants completed a rating phase
including both spaced- and massed-trained stimuli and a choice phase
involving only the massed-trained stimuli. After this, participants fin-
ished training on the massed-trained stimuli, bringing total experience
up to 25 repetitions, the same as for the spaced-trained stimuli to that
point.

In Study 1, participants next entered the scanner for an intermixed
learning session. Across two blocks, participants engaged in additional
training on the spaced- and massed-trained stimuli, with six repetitions
per stimulus. With four initial practice trials, there were 100 total trials.
During scanning, task event durations were as in the behavioral task
above and ITI durations were on average 3.5 s (min, 1.45 s; max, 6.55 s).
Responses were made using a button cylinder with the response box

positioned to allow finger responses to mirror those made on the up and

down arrow keys on the keyboard.

Following the intermixed learning session, participants engaged in a

single no-feedback block, where stimuli were presented with no response

requirements. This block provided measures of responses to stimuli

without the presence of feedback. Lists were designed to allow for tests of

potential cross-stimulus repetition suppression (Barron et al., 2013;

Klein-Flügge et al., 2013; Barron et al., 2016). Stimuli were presented for

1.5 s, followed by a 1.25 s ITI (range, 0.3–3.7 s). To provide a measure of

attention and to promote recollection and processing of stimulus value,

participants were instructed to remember whether a stimulus had been

associated with reward or with no reward. On �10% of trials, 1 s after the

stimulus had disappeared, participants were asked to answer whether the

best response to the stimulus was a “Yes” or a “No.” Participants had a 2 s

window in which to make their response; no feedback was provided

unless a response was not recorded, in which case the warning “Too late

or wrong key! �$0.50” was displayed. Each stimulus was repeated 10

times during the no-feedback phase, yielding 160 trials. Different stimuli

of the same type (spaced training by reward value) were repeated on

sequential trials to allow for repetition suppression analyses. At least 18

sequential events for each of these critical four comparisons were pre-

sented in a pseudorandom order.

In Study 1, participants also engaged in an additional unrelated cog-

nitive task during the scanning session (�30 min) and a resting scan (8

min). The order of the cognitive task and the reward learning task were

counterbalanced across participants. Results from the cognitive task will

be reported separately.

After scanning, participants engaged in an exploratory block to study

whether and how participants would reverse their behavior given a shift
in feedback contingencies. Importantly, the “reversed” stimuli and con-
trol non-reversed stimuli (4 per condition per participant) were not
included in the analyses of the 3-week follow-up data. One medium
reward stimulus and one loss-associated stimulus each from the spaced
and massed conditions were subject to reversal. These reversed stimuli
were pseudorandomly interspersed with a non-reversed medium reward
stimulus and a non-reversed loss stimulus from each condition, yielding
eight stimuli total. In the reversal, the feedback for the first presentation
of the reversed stimuli was as expected, whereas the remaining nine
repetitions were reversed (at a 78% probability).

We did not find any reliable effect of spaced training on reversal of
reward or loss associations. Massed-trained reward-associated stimulus
performance across the repetitions following the reversal (3–10) was
65.7% [58.7 76.9]; spaced-trained performance was 60.1% [49.1 71.1].
Although performance on the spaced-trained stimuli was lower, this
effect was not significant (t(30) � 1.06, CI [�5.2 16.5]; p � 0.30; two
one-sided test [TOST], t(30) � 1.89, p � 0.034). Massed-trained loss-
associated stimulus performance across the repetitions following the re-
versal was 36.3% [23.6 49.0]; spaced-trained performance was 38.3%
[23.9 52.8] (t(30) � �0.26, CI [�18.0 13.0]; p � 0.80; TOST equivalence
test, t(30) � �2.69, p � 0.005). Because the reversal phase came after a
long experiment before and during scanning, including an unrelated
demanding cognitive control task, it is possible that the results were
affected by general fatigue. The lack of an effect of spaced training on
reversal performance indicates that alternative cognitive or short-term
learning mechanisms can override well-learned reward associations.

Three-week follow-up. We administered a follow-up test of memory for
the value of conditioned stimuli �3 weeks later (mean, 24.5 d; range,
20 –37 d). An online questionnaire was constructed with each partici-
pant’s stimuli using Google Forms (https://docs.google.com/forms).
Participants were instructed to try to remember whether a stimulus was
associated with winning money or not winning money using an adapted
version of the scale from the rating phase of the in-lab experiment. Re-
sponses were recorded using a 10-point radio button scale anchored with
“0% lucky” on the left to “100% lucky” on the right. Similar to the in-lab
ratings, participants were instructed to respond to the far right end of the
scale if they were completely confident that a given stimulus was associ-
ated with reward and to the far left if they were completely confident that
a given stimulus was associated with no reward. Therefore, distance from
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the center origin represented confidence in their memory. Note that no
choice test measures were collected at the long-term follow-up.

In-lab portions of the study were presented using Psychtoolbox 3.0
(Brainard, 1997), with the initial in-lab session conducted on 21.5-inch
Apple iMacs. Online training was completed using expfactory.org (So-
chat et al., 2016), with functions adapted from the jspsych library (de
Leeuw, 2015). At the second in-lab session, before scanning, participants
completed massed-stimulus training on a 15-inch MacBook Pro laptop.
During scanning, stimuli were presented on a screen positioned above
the participant’s eyes that reflected an LCD screen placed in the rear of
the magnet bore. Responses during the fMRI portion were made using a
five-button cylinder button response box (Current Designs). Partici-
pants used the top button on the side of the cylinder for “Yes” responses
and the next lower button for “No” responses. We positioned the re-
sponse box in the participant’s hand so that the arrangement mirrored
the relative position of the up and down arrow keys on the keyboard from
the training task sessions.

Study 2 experimental design. The procedure for Study 2 was the same as
for Study 1, with the important difference that the long-term follow-up
was conducted in the laboratory rather than online. There were two
smaller differences: learning for massed stimuli was conducted in full
without interruption for intermediate ratings and choices and fMRI data
were not collected.

Stimuli for Study 2 were composed of the most neutrally-rated land-
scape stimuli from Study 1 pre-experiment ratings. Two counterbalance
stimulus lists were created and assigned randomly to participants. The
initial learning session for the spaced-trained stimuli and the three online
training sessions were completed as described above. Following the train-
ing and testing phases, participants completed the OSPAN to collect a
measure of working memory capacity. Scores were calculated as in Study
1 (mean, 49.7; range 17– 83); mean performance on the arithmetic com-
ponent was 93.1%.

During the 2 weeks between the in-lab sessions, participants com-
pleted three short “massed” online training sessions for the spaced-
trained stimuli, as described above. We found that data for three sessions
in one participant were missing, data for two sessions in one participant
were missing, and data for one session in five participants was missing.
Based on the information from Study 1, we can infer that some data were
missing for technical reasons and some missing because of noncompli-
ance. Among participants with at least one missing online session, per-
formance during scanning for spaced-trained stimuli was near the group
mean (84.8% vs 86.4%). Note that the absence of spaced training in some
participants would, if anything, weaken any differences between the
spaced and massed condition.

Second in-lab session. The second in-lab session was completed �2
weeks after the first session (mean, 12.8 d; range, 10 –17 d). Here, partic-
ipants engaged in the initial massed learning session, which then contin-
ued through all 25 repetitions of each “massed” stimulus. Short rest
breaks were included, but Study 2 omitted the intervening reward rating
and choice test phases of Study 1. In the last part of the learning phase, to
assess end-state performance on both spaced-trained and massed-
trained stimuli, three repetitions of each stimulus were presented in a
pseudorandom order. Rating and choice phase data were acquired after
this learning block, with trial timing as described above.

After the choice phase, we administered an exploratory phase to assess
potential conditioned stimulus-cued biases in new learning. This phase
was conducted in a subset of 25 participants because the task was still
under development when the data from the initial six participants were
acquired. Participants engaged in learning about new stimuli (abstract
characters) in the same paradigm as described above (Fig. 1B), whereas
unrelated spaced- or massed-trained landscape stimuli were presented
tiled in the background during the choice period. Across all trials, we
found a positive influence of background prime reward value on the rate
of “Yes” responding (reward prime mean 54.4% CI [48.2 60.4]; loss
prime mean 43.2% CI [36.6 48.0). This did not differ between the spaced
and massed conditions (spaced difference, 13.0% CI [4.4 21.6]; massed
difference, 11.0% CI [1.6 20.4]; t(24) � 0.71, CI [�3.8 7.8]; p � 0.49;
TOST equivalence test, p � 0.017). One limitation in this exploratory
phase was that learning for the new stimuli, similar to that reported below

for the regular phases, was quite rapid, likely due to the sequential order-
ing of the first and second presentations of a new stimulus (performance
reached 77.5% correct by the second repetition). Rapid learning about
the new stimuli may have minimized the capacity to detect differences in
priming due to spaced versus massed training.

Three-week follow-up. Approximately 3 weeks after the second in-lab
session (mean, 21.1 d; range, 16 –26 d), participants returned to the
laboratory for the third and final in-lab session. Using the same testing
rooms as during the previous sessions (which included the full training
session on massed stimuli), participants completed another rating phase.
Participants were reminded of the reward rating instructions and told to
“do their best” to remember whether individual stimuli had been asso-
ciated with reward or loss during training. Trial timing was as described
above and the order of stimuli was pseudorandomized. As in Study 1, we
did not collect any choice test data in the follow-up session.

fMRI data acquisition. Whole-brain imaging was conducted on a GE
Healthcare 3 T Discovery system equipped with a 32-channel head coil
(Stanford Center for Cognitive and Neurobiological Imaging). Func-
tional images were collected using a multiband (simultaneous multi-
slice) acquisition sequence (TR � 680 ms, TE � 30 ms, flip angle � 53,
multiband factor � 8; 2.2 mm isotropic voxel size; 64 8 	 8 axial slices
with no gap). For participant 290, TR was changed due to error, resulting
in runs of 924, 874, and 720 ms TRs. Slices were tilted �30° relative to the
AC–PC line to improve signal-to-noise ratio in the orbitofrontal cortex
(OFC) (Deichmann et al., 2003). Head padding was used to minimize
head motion.

During learning phase scanning, two participants were excluded for
excessive head motion (5 or more �1.5 mm framewise displacement
translations from TR to TR). No other participant’s motion exceeded 1.5
mm in displacement from one volume acquisition to the next. For seven
other participants with 1 or more events of �0.5 mm displacement TR-
to-TR, any preceding trial within 5 TRs and any current/following trial
within 10 subsequent TRs of the motion event were excluded from mul-
tivariate analyses; for univariate analyses, these trials were removed from
regressors of interest. For participant 310, the display screen failed in the
middle of the first learning phase scanning run. This run was restarted at
the point of failure and functional data were concatenated. For four
participants, data from the final no-feedback fMRI block was not col-
lected due to time constraints. Additionally, for the no-feedback block,
three participants were excluded for excessive head motion, leaving 26
remaining participants for the no-feedback phase analysis.

For each functional scanning run, 16 discarded volumes were collected
before the first trial to both allow for magnetic field equilibration and to
collect calibration scans for the multiband reconstruction. During the
scanned learning phase, two functional runs of an average of 592 TRs (6
min and 42 s) were collected, each including 50 trials. During the no-
feedback phase, one functional runs of an average of 722 TRs (8 min and
11 s) was collected, including 160 trials. Structural images were collected
either before or after the task, using a high-resolution T1-weighted mag-
netization prepared rapid acquisition gradient echo (MPRAGE) pulse
sequence (0.9 	 0.898 	 0.898 mm voxel size).

Behavioral analysis. Behavioral analyses were conducted in MATLAB
2016a (The MathWorks). Results presented below are from the following
analyses: t tests versus chance for learning performance, within-group
(paired) t tests comparing differences in reward- and loss-associated
stimuli across conditions, Pearson correlations, and Fisher z-trans-
formations of correlation values. We additionally tested whether nonsig-
nificant results were weaker than a moderate effect size using the TOST
procedure (Schuirmann, 1987; Lakens, 2017) and the TOSTER library in
R (Lakens, 2017). We used bounds of Cohen’s d � 0.51 (Study 1) or d �

0.53 and d � 0.54 (Study 2), where power to detect an effect in the
included group of participants is estimated to be 80%.

End-state learning accuracy in Study 1 averaged across the last five of
six repetitions in the scanned intermixed learning session. End-state
learning accuracy for Study 2 averaged across the last two of three repe-
titions in the final intermixed learning phase. For the purpose of cor-
relations with working memory, initial learning repetitions 2–10 were
averaged (because repetition 1 cannot reflect learning). In Study 1,
the post-learning ratings were taken from the ratings collected before the
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scan (after 25 repetitions across all massed- and spaced-trained stimuli).
In Study 2, the post-learning ratings were collected after all learning
repetitions were completed.

For the analysis of maintenance of learned values in Study 2, we
computed a percentage maintenance measure. This was calculated by
dividing the long-term reward rating difference (reward- minus loss-
associated mean stimulus ratings) by the post-learning rating difference.
The same analysis but with a range restricted to a minimum of 0 (elimi-
nating any reversals in ratings) and a maximum of 100% yielded similar
results but with lower variance and correspondingly higher t-value.

fMRI data analysis. Data from all participants were preprocessed sev-
eral times to fine tune the parameters. After each iteration, the decision to
modify the preprocessing was purely based on the visual evaluation of the
preprocessed data and not based on results of model fitting. Results
included in this manuscript come from application of a standard prepro-
cessing pipeline using FMRIPREP version 1.0.0-rc2 (http://fmriprep.
readthedocs.io), which is based on Nipype (Gorgolewski et al., 2011).
Slice timing correction was disabled due to short TR of the input
data. Each T1 weighted volume was corrected for bias field using
N4BiasFieldCorrection version 2.1.0 (Tustison et al., 2010), skull-
stripped using antsBrainExtraction.sh version 2.1.0 (using the OASIS
template), and coregistered to skull-stripped ICBM 152 Nonlinear
Asymmetrical template version 2009c (Fonov et al., 2009) using nonlin-
ear transformation implemented in ANTs version 2.1.0 (Avants et al.,
2008). Cortical surface was estimated using FreeSurfer version 6.0.0
(Dale et al., 1999).

Functional data for each run was motion corrected using MCFLIRT
version 5.0.9 (Jenkinson et al., 2002). Distortion correction for most
participants was performed using an implementation of the TOPUP
technique (Andersson et al., 2003) using 3dQwarp version 16.2.07 dis-
tributed as part of AFNI (Cox, 1996). In case of data from participants
276, 278, 310, 328, and 388, spiral fieldmaps were used to correct for
distortions due to artifacts induced by the TOPUP approach in those
participants. This decision was made based on visual inspection of the
preprocessed data before fitting any models. The spiral fieldmaps were
processed using FUGUE version 5.0.9 (Jenkinson, 2003). Functional data
were coregistered to the corresponding T1-weighted volume using
boundary-based registration 9 degrees of freedom implemented in
FreeSurfer version 6.0.0 (Greve and Fischl, 2009). Motion correcting
transformations, field distortion correcting warp, T1-weighted transfor-
mation, and MNI template warp were applied in a single step using
antsApplyTransformations version 2.1.0 with Lanczos interpolation.
Framewise displacement (Power et al., 2014) was calculated for each
functional run using Nipype implementation. For more details of the pipe-
line, see http://fmriprep.readthedocs.io/en/1.0.0-rc2/workflows.html.

General linear model (GLM) analyses were conducted using SPM
(SPM12; Wellcome Trust Centre for Neuroimaging). MRI model regres-
sors were convolved with the canonical hemodynamic response function
and entered into a GLM of each participant’s fMRI data. Six scan-to-scan
motion parameters (x, y, z dimensions as well as roll, pitch, and yaw)
produced during realignment were included as additional regressors in
the GLM to account for residual effects of participant movement.

We first conducted univariate analyses to identify main effects of value
and reward in the learning phase, as well as effects of presentation with-
out feedback in the final phase. The learning phase GLM included regres-
sors for the stimulus onset (2 s duration) and feedback onset (2 s
duration). The stimulus onset regressor was accompanied by a modula-
tory regressor for reward value (reward vs loss) separately for spaced- and
massed-trained stimuli. The feedback regressor was accompanied by
four modulatory regressors for reward value (reward vs loss) and spacing
(spaced- vs massed-trained). The median performance in the scanner
was 97.5% and, because learning was effectively no longer occurring
during the scanning phase, we did not use a reinforcement learning
model to create regressors.

The no-feedback phase GLM included regressors for the stimulus on-
set (1.5 s duration) and query onset (3.0 s duration). In the no-feedback
phase, we conducted an exploratory cross-stimulus repetition suppression
analyses (XSS) (Klein-Flügge et al., 2013). Here, non-perceptual features
associated with a stimulus are predicted to activate the same neural pop-

ulation representing the feature. This feature coding is then predicted to
lead to a suppressed response in subsequent activations, for example,
when a different stimulus sharing that feature is presented immediately
after the first stimulus (Barron et al., 2016). In the XSS model, we con-
trasted sequential presentations of stimuli that shared value association
(reward and loss) and spacing (spaced vs massed), yielding four regres-
sors. For example, if two different reward-associated and spaced-trained
stimuli followed in successive trials, the first trial would receive a value of
1 and the second trial would receive a �1. These regressors were entered
into contrasts to yield reward versus loss XSS for spaced-trained stimuli
and reward versus loss XSS for massed-trained stimuli.

For multivariate classification analyses, we estimated a mass-univariate
GLM where each trial was modeled with a single regressor, giving 100
regressors for the learning phase. The learning phase regressor duration
modeled the 2-s-long initial stimulus presentation period. Models in-
cluded the six motion regressors and block regressors as effects of no
interest. Multivariate analyses were conducting using The Decoding
Toolbox (Hebart et al., 2014). Classification used a L2-norm learning
support vector machine (LIBSVM; Chang and Lin, 2011) with a fixed
cost of c � 1. The classifier was trained on the full learning phase data,
with the two scanning blocks subdivided into four runs (balancing
the number of events within and across runs). We conducted four
classification analyses: overall reward- versus loss-associated stimulus
classification, spaced- versus massed-trained stimulus classification,
and reward- versus loss-associated stimulus classification separately for
spaced- and massed-trained stimuli. For the final two analyses, the results
were compared to test differences in value classification performance for
spaced versus massed stimuli. Leave-one-run-out cross-validation was used,
with results reported in terms of percentage correct classification. Statistical
comparisons were made using t tests versus chance (50%); for the compar-
ison of two classifier results, paired t tests were used.

In addition to the two ROI analyses, we conducted a searchlight anal-
ysis using The Decoding Toolbox (Hebart et al., 2014). We used a
4-voxel-radius spherical searchlight. Training of the classifier and testing
were conducted as described above for the region of interest (ROI) mul-
tivoxel pattern analysis. Individual subject classification accuracy maps
were smoothed with a 4 mm FWHM kernel before group-level analysis.
A comparison of value classification between spaced- and massed-
trained stimuli was conducted using a t test on the difference between
participant’s spaced- and massed-trained classification SPMs (equivalent
to a paired t test).

For both univariate and searchlight results, linear contrasts of univar-
iate SPMs were taken to a group-level (random-effects) analysis. We
report results corrected for family-wise error (FWE) due to multiple
comparisons (Friston et al., 1994). We conduct this correction at the peak
level within small volume ROIs for which we had an a priori hypothesis or
at the whole-brain cluster level (in each case using a cluster-forming
threshold of p � 0.005 uncorrected). The striatum and MTL (including
hippocampus and parahippocampal cortex) ROIs were adapted from the
AAL atlas (Tzourio-Mazoyer et al., 2002). The striatal mask included the
caudate and putamen, as well as the addition of a hand-drawn nucleus
accumbens mask (Wimmer et al., 2012). All voxel locations are reported
in MNI coordinates and results are displayed overlaid on the average of
all participants’ normalized high-resolution structural images using
xjview and AFNI (Cox, 1996).

Data availability. Complete behavioral data are publicly available on
the Open Science Framework (www.osf.io/z2gwf/). Unthresholded whole-
brain fMRI results are available on NeuroVault (https://neurovault.org/
collections/3340/) and the full fMRI dataset is publicly available on Open-
Neuro (https://openneuro.org/datasets/ds001393/versions/00001).

Results
Across two studies, we measured learning and maintenance of
conditioned stimulus–value associations over time. In the first
in-lab session, participants learned stimulus–value associations
for a set of “spaced-trained” stimuli (the spaced initial learning
session). Over the course of the next 2 weeks, participants
engaged in three short “massed” training sessions online (the
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spaced online training sessions). Participants then returned to
complete a second in-lab session, where they learned stimulus–
value associations for a new set of “massed-trained” stimuli (the
massed initial learning session and continued training). All learn-
ing for the massed-trained stimuli occurred consecutively in the
same session. By the end of training on the massed-trained stim-
uli, experience was equated between the spaced- and massed-
trained stimuli. Although the timing of trials was equivalent
across the spaced-trained and massed-trained stimuli, the critical
difference was that multiple days were inserted between the
short training sessions for spaced-trained stimuli. Three weeks
after the second in-lab session, participants completed a long-
term follow-up reward rating measure.

Study 1
Learning of value associations
Participants rapidly acquired the best “Yes” or “No” response for
the reward- or loss-associated stimuli during the initial spaced
(lab session 1) and massed (lab session 2) learning sessions. By the
second repetition of each stimulus, accuracy quickly increased to

89.1% with a 95% confidence interval (CI) of [87.4 95.2] for

spaced-trained stimuli and to 91.3% with a 95% CI of [84.7 93.5]

for massed-trained stimuli (p � 0.001). Participants exhibited a

noted bias (77.7%) toward “Yes” responses for the first trial of a

given stimulus when no previous information could be used to

guide their response. By the end of the initial learning sessions

(repetition 10), performance increased to 83.3% (95% CI [76.8

89.8]) for the spaced-trained stimuli and 93.6% (95% CI [90.4

96.7]) for the massed-trained stimuli (Fig. 2A). Performance was

higher by the end of the initial learning session for the massed-

trained stimuli (t(32) � 3.13, 05% CI [3.6 17.0]; p � 0.0037). Note

that the only difference between the spaced and massed learning

sessions is that there is greater task exposure at the time of the

massed learning session; both sessions have the same within-

session trial timing and spacing. After the completion of the

online learning sessions for spaced-trained stimuli and further

in-lab learning for massed-trained stimuli, as expected, we found

that participants showed no significant difference in perfor-

mance across conditions (repetitions 27–31; spaced-trained �

92.1%, 95% CI [88.3 96.0]; massed-trained � 94.7%, 95% CI

[91.9 97.6]; t(32) � 1.59, 95% CI [�1.0 5.9]; p � 0.123; Fig. 2A).

However, this effect was not statistically equivalent to a null ef-

fect, as indicated by an equivalence test using the TOST proce-

dure (Lakens, 2017): the effect was not significantly within the

bounds of a medium effect of interest (Cohen’s d � � 0.51,

Figure 2. Study 1 learning results. A, Performance in the initial learning sessions for the spaced- and massed-trained stimuli across the first 10 repetitions of each stimulus. Massed stimuli are

shown in gray; spaced in blue; reward-associated stimuli in solid lines; loss-associated stimuli in dotted lines. B, Incentivized two-alternative forced-choice performance between reward- and

loss-associated stimuli following the initial spaced and massed learning sessions. C, Spaced performance across online learning sessions and terminal performance for spaced and massed stimuli.

Performance is depicted for the last in-lab repetition and the first and last (fifth) repetition of each stimulus per online session, followed by the average of the final 27–31 repetitions in the second

in-lab session including fMRI. D, Positive correlation between early massed-trained stimulus learning phase performance and working memory capacity (O-SPAN). (*p � 0.05). Rep., Repetition.

Error bars indicate 1 SEM.
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providing 80% power with 33 participants; t(32) � 1.34, p �

0.094), so we cannot reject the presence of a medium-size effect.

Performance in the initial session illustrated that participants
learned the reward value of the stimuli during learning. First,
participants showed higher learning accuracy for high reward
(mean $0.45 feedback) versus medium reward (mean $0.25)
spaced-trained stimuli in the second half of learning (high re-
ward � 90.0%, 95% CI [83.2 96.8]; medium reward � 78.0%,
95% CI [70.7 85.4]; t(32) � 2.98, 95% CI [3.8 20.1]; p � 0.0054).
After extensive training in the task, however, we did not observe a
similar effect for initial learning of the massed-trained stimuli
(high reward � 91.9%, 95% CI [85.8 97.9]; medium reward �

93.2%, 95% CI [88.5 98.0]; t(32) � �0.38, 95% CI [�8.6 5.9]; p �

0.70; TOST � t(32) � 2.54, p � 0.008). Second, after the initial
learning phase, participants completed an incentivized two-
alternative forced choice test phase. Here, no trial-by-trial feed-
back was given, but additional rewards were paid based on
performance. Participants exhibited a strong preference for the
reward- versus loss-associated stimuli in choices between both
spaced- and massed-trained stimuli (spaced accuracy � 96.5%,
95% CI [82.6 93.6]; massed accuracy � 88.1%, 95% CI [94.4
98.8]; p-values � 0.00001; Fig. 2B).

After the first in-lab session, participants continued learning
about the set of spaced-trained stimuli across three short
“massed” online sessions. We found that, across the 3 online
sessions, mean performance increased for loss-associated stimuli
(one-way ANOVA; F(2,72) � 9.26, p � 0.003; Fig. 2B), but not for
reward-associated stimuli (F(2,72) � 0.53, p � 0.59). This increase
in performance for loss-associated stimuli was accompanied by a
significant decrease in performance between sessions (mean
change from end of session to beginning of next session: t(24) �

4.71, 95% CI [14.5 37.1]; p � 0.001), but not for reward-
associated stimuli (t(24) � 0.38, 95% CI [�3.4 5.0]; p � 0.704).
Performance at the beginning of the online sessions may have
been influenced by a response bias toward “Yes,” as also shown in
first responses to stimuli in initial learning (Fig. 2A). Forgetting
that leads to a bias under uncertainty would decrease memory
performance for loss-associated stimuli. However, a bias would
mask any forgetting for reward-associated stimuli because it
would lead to higher performance. Therefore, we cannot rule out
the forgetting of reward-associated stimuli in the current design.

During the second in-lab (fMRI) session, learning perfor-
mance was �90% for both conditions, but massed-trained stim-
uli showed higher performance than spaced-trained stimuli
(spaced choice performance, scan repetitions 2 to 6 � 92.1%,
95% CI [88.3 96.0]; massed � 94.7%, 95% CI [91.9 97.5]; p �

0.01; 95% CI [3.0 20.6]; t(32) � 2.74; Fig. 2C).
After sufficient general experience in the task, we expected to

find a positive relationship between learning performance for
new stimuli and working memory. We thus estimated the corre-
lation between learning during the initial acquisition of massed-
trained stimulus–value associations during the second in-lab
session with the operations span measure of working memory.
We found that learning performance on the massed-trained
stimuli positively related to working memory capacity (r � 0.369,
p � 0.049; Fig. 2C). Initial performance for spaced-trained stim-
uli did not correlate with working memory (r � �0.097, p �

0.617; TOST equivalence test providing 80% power in range r �

0.34, p � 0.080, so we cannot reject the presence of a medium-
size effect). The correlation between working memory and
massed performance was significantly greater than the correla-
tion with spaced performance (z � 2.16, p � 0.031). In contrast

to the predicted effect for massed performance in the second
session, we did not predict a relationship between first session
spaced condition performance and working memory. Although
working memory clearly contributed to spaced learning perfor-
mance, given the rapid shift in responding to loss-associated
stimuli after the first trial (Fig. 2A), absent a prolonged practice
session, working memory is also likely to be used to maintain
task instructions (Cole et al., 2013). Initial task performance is
also likely to be affected by numerous other noise-introducing
factors such as the acquisition of general task rules (“task set”)
and adaptation to the testing environment. However, the lack
of a correlation with working memory in the spaced may also
indicate that the working memory correlations in general are
weak and hard to detect if present, even with �30 participants.
Future studies are needed to further investigate the effects of
working memory on initial learning and task acquisition.
When interpreting these working memory correlations with
respect to previous studies on the contribution of working
memory to feedback-based learning (Collins and Frank,
2012), it is important to note that the eight stimuli in the
spaced and massed condition were introduced in two sequen-
tial sets of four stimuli. Therefore, participants would only
need to maintain four instead of eight stimulus–reward or
stimulus–response in short-term memory, well within the
range reported in previous studies.

Long-term maintenance
Next, we turned to the critical question of whether spaced train-
ing over weeks led to differences in long-term memory for
conditioned reward associations. Baseline reward ratings were
collected before the fMRI scanning in the second in-lab session.
Higher ratings indicate strong confidence in a reward associ-
ation, whereas lower ratings indicate higher confidence in a
neutral/loss association; ratings more toward the middle of the
scale indicated less confidence (Fig. 1C). After training but
before fMRI scanning, when experience was matched across
the spaced and massed conditions, we found that ratings
across condition clearly discriminated between reward- and
loss-associated stimuli (spaced rating difference � 47.5%,
95% CI [39.2 55.7]; massed rating difference � 62.5%, 95% CI
[56.5 68.4]; p-values � 0.00001; condition difference, t(32) �

2.73, 95% CI [3.0 20.6]; p � 0.01; Fig. 3A, left).
At the long-term follow-up, only rating data were collected.

Importantly, to validate the use of the reward rating scale in the
follow-up measures, we tested how strongly choices and ratings
were related. We found that within-participants, massed-trained
ratings were strongly correlated with preferences for stimuli in
the separate choice test phase (mean r � 0.92, 95% CI [0.88 0.95];
range 0.68 –1.00; t test on z-transformed r values, t(32) � 11.10,
95% CI [1.79 2.59]; p � 0.0001). This strong correlation indicates
that the reward ratings capture the same underlying values
learned via feedback learning as the forced-choice test measure
commonly used as an assessment of learning.

To measure long-term maintenance of conditioning, after �3
weeks, participants completed an online questionnaire on reward
association strength using a 10-point scale. The instructions for
ratings were the same as the in-lab ratings phase. Critically, we
found that, although the reward value discrimination was signif-
icant in both conditions (spaced difference � 4.55, 95% CI [3.75
5.34]; t(32) � 11.61, p � 0.001; massed difference � 2.24, 95% CI
[1.59 3.01]; t(32) � 6.60, p � 0.001), reward value discrimination
was significantly stronger in the spaced than in the massed con-
dition (t(32) � 4.55, 95% CI [1.23 3.25]; p � 0.001; Fig. 3B). This
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effect was driven by greater maintenance of the values of reward-
associated stimuli (spaced vs massed, t(32) � 4.73, 95% CI [1.04
2.58]; p � 0.001; loss spaced vs massed, t(32) � �1.37, 95% CI
[�1.08 0.21]; p � 0.18; TOST equivalence test, t(32) � 1.56, p �

0.064, n.s.). Note that the benefit of spacing at the long-term
follow-up also differs from the baseline at the end of learning,
where performance was marginally higher for massed-trained
stimuli.

Next, we analyzed the consistency of ratings from the end of
learning to the long-term follow-up. The post-learning ratings
were collected on a graded scale and the 3-week follow-up ratings
were collected on a 10-point scale; this prevents a direct numeric
comparison but allows for a correlation analysis. Such an analysis
can test whether ratings in the massed case were simply scaled
down (preserving ordering) or if actual forgetting introduced
noise (disrupting an across-time correlation). We predicted that
the value association memory for massed-trained stimuli actually
decayed, leading to a higher correlation across time for spaced-
trained stimuli. We indeed found that ratings were significantly
more correlated across time in the spaced-trained condition
(spaced r � 0.74, 95% CI [0.63 0.85]; massed r � 0.47, 95% CI
[0.35 0.59]; t test on z-transformed values, t(32) � 4.13, 95% CI
[1.28 0.44]; p � 0.001). Although the correlation for the spaced-
trained stimuli was high (median r � 0.85), there was still vari-
ability in the group, with individual participant r values ranging
from �0.36 to 1.0. Overall, these results indicate that spaced-
trained stimuli exhibited significantly stronger long-term mem-
ory for conditioned associations and more stable memory than
massed-trained stimuli.

One limitation to these results is that, in the current design,
cues in the learning environment may bias performance in favor
of the spaced-trained stimuli: online training for spaced stimuli
was conducted outside of the laboratory, likely on the partici-
pant’s own computer, which was likely the same environment for
the 3-week follow-up measure. Although it seems unlikely that a
testing environment effect would fully account for the large dif-
ference in long-term maintenance that we observed, we con-
ducted a second study to replicate these results in a design where
the testing conditions would if anything bias performance in fa-
vor of the massed-trained stimuli.

Study 2
Learning of value associations
In Study 2, our aim was to replicate the findings of Study 1 and to
extend them by conducting the 3-week follow-up session in the

lab, allowing for a direct comparison with post-learning perfor-
mance. Learning sessions for spaced- and massed-trained stimuli
were the same as in Study 1, with the exception that massed
learning in Study 2 omitted the mid-learning assessment with
ratings and choices. During the initial spaced and massed learn-
ing sessions, by the second trial, accuracy had increased to 89.9%
(95% CI [85.3 94.6]) for spaced-trained stimuli and to 87.2%
(95% CI [84.1 93.3]) for massed-trained stimuli (p � 0.001). As
before, participants exhibited a noted bias (67.2%) toward “Yes”
responses for the first trial of a given stimulus when no previous
information could be used to guide their response. By the end of
the initial learning sessions, performance was at a level of 84.3%
(95% CI [79.3 89.3]) for the spaced-trained stimuli and 86.2%
(95% CI [81.2 91.1]) for the massed-trained stimuli (Fig. 4A),
which was matched across conditions (10 th repetition; t(30) �

0.59, 95% CI [�4.72 8.52]; p � 0.56; TOST equivalence test
within a range of Cohen’s d � � 0.53, providing 80% power with
31 participants; t(30) � 2.37, p � 0.012). By the end of training,
after the online sessions for spaced-trained stimuli and the
completion of the in-lab learning for massed-trained stimuli, we
found that performance was equivalent across conditions
(spaced-trained � 86.4%, 95% CI [82.2 90.6]; massed-trained �

87.1%, 95% CI [81.4 92.8]; t(30) � 0.248, 95% CI [�4.76 6.08];
p � 0.806; TOST equivalence test, t(30) � 2.70, p � 0.006;
Fig. 4C).

As in Study 1, performance in the initial learning sessions
illustrated that participants learned the reward value of the stim-
uli during learning. First, participants tended to prefer the high
reward versus medium reward spaced-trained stimuli during the
second half of learning (high reward � 90.3%, 95% CI [84.7
96.0]; medium reward � 79.9%, 95% CI [71.0 88.7]; t(30) � 2.03,
95% CI [0.0 20.9]; p � 0.051). Later, however, after extensive
training in the task, we did not observe a similar effect for initial
learning of the massed-trained stimuli (high reward � 84.8%,
95% CI [75.5 94.2]; medium reward � 85.5%, 95% CI [77.7
93.3]; t(30) � �0.11, 95% CI [�12.5 11.2]; p � 0.91; TOST �

t(30) � 2.84, p � 0.004). Second, performance in the incentivized
forced-choice test phase after the completion of learning showed
strong preference for the reward- versus loss-associated stimuli in
choices between both spaced- and massed-trained stimuli
(spaced-trained � 94.6%, 95% CI [87.2 96.3]; massed-trained �

91.7%, 95% CI [90.8 98.3]; difference between conditions, p �

0.26; TOST equivalence test, t(30) � 1.83, p � 0.04; Fig. 4B).
Equivalent choice performance after learning for spaced- and

Figure 3. Study 1 post-learning value association strength and long-term maintenance of value associations. A, Post-learning reward association ratings for the massed- and spaced-trained

stimuli (left); 3-week-later reward association ratings (right). Reward-associated stimuli in darker colors; loss-associated stimuli in lighter colors. B, Average of the correlation (r) within-participant

of massed-trained stimulus reward ratings and spaced-trained stimulus reward-ratings (statistics were computed on z-transformed ratings). ***p � 0.001. Error bars indicate SEM.
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massed-trained stimuli is important for the long-term follow-up
measure.

After the initial spaced learning session in the first in-lab visit,
participants continued learning about the set of spaced-trained
stimuli across three short “massed” online sessions. As in Study 1,
we found that across the 3 online sessions, mean performance did
not change for reward-associated stimuli (one-way ANOVA;
F(2,69) � 0.06, p � 0.94; Fig. 4B). In contrast to the previous study,
we did not find an increase in performance across sessions for
loss-associated stimuli (F(2,69) � 1.09, p � 0.34), although a post
hoc comparison of the first to the third session showed an increase
(t(23) � 2.43, 95% CI [1.1 3.4]; p � 0.024). However, we did
replicate the finding that loss-associated stimuli showed a sig-
nificant decrease in performance between sessions (mean
change from end of session to beginning of next session: t(23)

� 2.69, 95% CI [2.4 18.2]; p � 0.013; reward-associated stim-
uli: t(23) � 1.40, 95% CI [�1.6 8.3]; p � 0.18). As discussed
above, this decrease in performance evident for loss-associated stim-
uli could indicate forgetting of values and a return toward a default
“Yes” response bias (as seen in first exposure responses; Fig. 4A).
Such a bias would make it difficult in the current design to determine
whether memories for the value of reward-associated stimuli also
decayed.

As in Study 1, after sufficient general experience in the reward
association learning task, we expected to find a positive relation-
ship between performance on the reward association learning
task and working memory. Indeed, we found a significant corre-
lation between massed-stimulus performance and working
memory capacity (r � 0.484, p � 0.0058; Fig. 4C). Initial learning
performance was relatively lower in Study 2 than in Study 1,
which may have helped reveal a numerically stronger correlation
between massed-trained stimulus performance and working mem-
ory. Meanwhile, the relationship between working memory and
initial performance for spaced-trained stimuli was weak (r �

0.040, p � 0.83; TOST equivalence test, p � 0.043, providing 80%
power in range r � 0.35; difference between massed and spaced
correlation, z � 1.40 p � 0.16), as expected, given the other
noise-introducing factors in initial learning performance discussed
above. As in Study 1, however, working memory clearly also contrib-
uted to spaced learning performance, as demonstrated by the imme-
diate shift in mean response to loss-associated stimuli from “Yes” to
“No” after initial negative feedback (Fig. 4A).

Long-term maintenance
Next, we turned to the critical question of whether spaced train-
ing over weeks led to differences in long-term memory for con-

Figure 4. Study 2 learning results. A, Performance in the initial spaced and massed learning sessions across the first 10 repetitions of each stimulus. Massed stimuli are shown in gray;

spaced in blue; reward-associated stimuli in solid lines; loss-associated stimuli in dotted lines. B, Incentivized two-alternative forced-choice performance between reward- and

loss-associated stimuli following the completion of all learning repetitions. C, Spaced performance across training and terminal performance for spaced and massed stimuli. Performance

is shown for the last in-lab repetition and the first and last (fifth) repetition of each stimulus per online session. Terminal performance is represented as the average of the final two

repetitions of each stimulus in the last learning session. D, Positive correlation between early massed-trained stimulus learning performance and working memory capacity (OSPAN).

**p � 0.01. Error bars indicate SEM.
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ditioned reward associations. For the baseline post-learning
measurement for spaced- and massed-trained stimuli, ratings
were collected at the end of the complete massed-stimulus train-
ing session (Fig. 5A, left). Reward ratings showed strong discrim-
ination of value (spaced-trained reward minus loss rating
difference � 47.1%, 95% CI [40.9 53.2]; massed-trained rating
difference � 52.5%, 95% CI [46.7 58.3]; condition difference, t(30)

� �1.86, 95% CI [�0.5 11.4]; p � 0.073; Fig. 5A, left). Note that,
as in the previous study, we collected ratings data but no choice
test data in the long-term follow-up. To again validate the use of
the reward rating scale in the follow-up measures, we tested
whether within-participant reward ratings were related to choice
test preferences. Again, we found that ratings positively corre-
lated with choice preference across all stimuli (mean r � 0.87,
95% CI [0.82 0.91]; range 0.56 –1.00; t test on z-transformed r
values, t(30) � 14.08, 95% CI [1.33 1.78]; p � 0.0001). By repli-
cating the strong correlation found in Study 1, these results indi-
cate that reward ratings capture the essential underlying values
revealed through forced-choice preferences.

To measure long-term maintenance of conditioning, after �3
weeks, participants returned for a third in-lab session for a brief
session where they gave reward ratings for all stimuli. Rating

discrimination between reward- and loss-associated stimuli was
significant in both conditions (spaced difference � 39.1%, 95%
CI [32.4 45.8]; t(29) � 11.96, p � 0.001; massed difference �

16.7%, 95% CI [9.4 24.1]; t(29) � 4.65, p � 0.001). Importantly,
reward value discrimination was significantly stronger in the
spaced than in the massed condition (t(29) � 4.98, 95% CI [13.2
31.5]; p � 0.001; Fig. 5A, right). At follow-up, this stronger main-
tenance of learned value associations in the spaced condition was
significant for both reward and loss stimuli (reward, t(29) � 3.43,
95% CI [5.0 20.0]; p � 0.0018; loss, t(29) � �4.11, 95% CI [�14.7
�5.0]; p � 0.001). The design of Study 2 allowed us to directly
compare post-learning ratings and 3-week-later ratings to calcu-
late the degree of maintenance of conditioning. As expected, the
difference in maintenance for reward associations was signifi-
cantly greater for spaced- than massed-trained stimuli (spaced �

87.3%, 95% CI [73.2 101.5]; massed � 30.0%, 95% CI [16.2
43.9]; t(29) � 5.49, 95% CI [36.0 78.6]; Fig. 5B). Moreover, we
found that ratings significantly decayed toward neutral for both
reward- and loss-associated massed-trained stimuli (massed re-
ward, t(29) � �6.09, 95% CI [�21.7 �10.8]; p � 0.001; loss,
t(29) � 9.95, 95% CI [15.3 23.3]; p � 0.001). For spaced-trained
stimuli, we found no decay for reward-associated stimuli but

Figure 5. Study 2 post-learning reward association strength and maintenance of value associations. A, Reward association ratings for the massed- and spaced-trained stimuli after the second

in-lab session (left) and after the 3-week-later in-lab final reward association rating session (right). Reward-associated stimuli are shown in darker colors; loss-associated stimuli in lighter colors. B,

Percentage of initial reward association difference (reward minus loss associated rating) after the second in-lab session maintained across the 3-week delay to the third in-lab session shown

separately for massed- and spaced-trained stimuli. C, Post-learning and 3-week follow-up ratings replotted within condition for reward-associated (solid line) and loss-associated stimuli (dotted

line). D, Average of the correlation (r) within-participant of massed-trained stimulus reward ratings and spaced-trained stimulus reward ratings (statistics were computed on z-transformed ratings).

**p � 0.01, ***p � 0.001. Error bars indicate SEM (A, B, D) or within-participants SEM (C).
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some decay for loss-associated stimuli
(spaced reward, t(29) � �1.21, 95% CI
[�4.0 1.0]; p � 0.23; TOST equivalence
test, t(29) � 1.74, p � 0.045; loss, t(29) �

3.00, 95% CI [2.1 11.4]; p � 0.0055). In-
terestingly, we found that the ratings for
loss-associated stimuli decayed signifi-
cantly more than those for reward-
associated stimuli (t(29) � �2.18, 95% CI
[�10.20 �0.33]; p � 0.037), an effect
consistent with the between-sessions drop
in performance for loss-associated stim-
uli. We did not find a difference in ratings
decay for the massed-trained stimuli
(t(29) � �1.05, 95% CI [�9.01 2.89]; p �

0.302); however, this null finding could
be due to floor effects because ratings
are near 50%.

Finally, as in Study 1, we predicted that
the value association memory for massed-
trained stimuli was not decreased by scal-
ing but actually decayed, which would
lead to a lower across-time correlation
in ratings. To test this, we correlated ratings in the second
in-lab session with ratings in the third in-lab session separately
for massed- and spaced-trained stimuli. We replicated the
finding that ratings were significantly more correlated across
time in the spaced-trained condition (spaced r � 0.82, 95% CI
[0.74 0.90]; massed r � 0.50, 95% CI [0.37 0.63]; t test on
z-transformed values, t(29) � 5.22, 95% CI [0.45 1.03]; p �

0.001).
By collecting the long-term follow-up ratings in the same lab-

oratory environment as the massed training sessions, our design
would, if anything, be biased to find stronger maintenance for
massed-trained stimuli because the training and testing environ-
ments overlap. However, we found similar differences in long-
term conditioning across Study 1 and Study 2, suggesting that
testing environment was not a significant factor in our measure of
conditioning maintenance. Although it will be important in the
future to also replicate these results in a choice situation such as a
stable bandit task, the replication and extension of the findings of
Study 1 provide strong evidence that spaced training leads to
more robust maintenance of conditioned value associations at a
delay, whereas performance in short-term learning is partly ex-
plained by working memory.

fMRI results
In Study 1, after the completion of matched training for the
massed-trained associations in the second in-lab session, we col-
lected fMRI data during an additional learning phase, where
massed- and spaced-trained stimuli were intermixed. As noted
above, during fMRI scanning, we found overall performance
�90%, but a slight benefit for massed-trained stimuli (Fig. 2C).

Initial univariate analyses we did not reveal any value or
reward-related differences in striatal or MTL responses due to
spaced training (Tab. 1-1, available at https://doi.org/10.1523/
JNEUROSCI.0075-18.2018.t1-1). At stimulus onset, across con-
ditions, a contrast of reward versus loss-associated stimuli
revealed activation in the bilateral occipital cortex and right so-
matomotor cortex (whole-brain FWE-corrected p � 0.05; Tab.
1-1, available at https://doi.org/10.1523/JNEUROSCI.0075-18.
2018.t1-1; unthresholded map available at https://neurovault.
org/images/63125/), with no differences due to spaced- versus

massed-trained stimuli. At feedback, we found expected effects of
reward (hit) versus nonreward (miss) feedback for reward-
associated stimuli in the ventral striatum (x, y, z: �10, 9, �8; z �

4.48, p � 0.019 whole-brain FWE-corrected) and ventromedial
prefrontal cortex (VMPFC) (�15, 51, �1; z � 4.93, p � 0.001 FWE;
Fig. 6-1, available at https://doi.org/10.1523/JNEUROSCI.0075-
18.2018.f6-1 and https://neurovault.org/images/59042/, Tab. 1-1,
available at https://doi.org/10.1523/JNEUROSCI.0075-18.2018.
t1-1). Across conditions, loss (miss) versus neutral (hit) feedback
activated the bilateral anterior insula and anterior cingulate
(Tab. 1-1, available at https://doi.org/10.1523/JNEUROSCI.0075-
18.2018.t1-1; https://neurovault.org/images/63127/). However,
we found that miss versus hit feedback elicited greater responses
in the anterior insula and anterior cingulate cortex for loss-
associated stimuli than for reward-associated stimuli (Fig. 6-1,
available at https://doi.org/10.1523/JNEUROSCI.0075-18.2018.
f6-1 and https://neurovault.org/images/63126/, Tab. 1-1, avail-
able at https://doi.org/10.1523/JNEUROSCI.0075-18.2018.t1-1).
Loss feedback led to greater activity for massed- versus spaced-
trained stimuli in the bilateral dorsolateral PFC (DLPFC), pari-
etal cortex, and ventral occipital cortex (Tab. 1-1, available at
https://doi.org/10.1523/JNEUROSCI.0075-18.2018.t1-1). A sec-
ond model contrasting spaced- vs massed-trained stimuli across
value revealed no significant differences in subcortical regions of
interest or in the whole brain. In a subsequent no-feedback scan-
ning block, we examined the effect of cross-stimulus repetition
suppression (XSS) for reward- vs loss-associated stimuli. We
found no differences due to condition, but several clusters that
showed overall repetition enhancement by value, including the
right DLPFC and anterior insula (Tab. 1-1, available at https://
doi.org/10.1523/JNEUROSCI.0075-18.2018.t1-1). Although our
univariate results exhibited no clear differences based on spacing
condition, they do align well with previous results on reward-
based learning in human fMRI studies (Bartra et al., 2013).

To gain greater insight into the neural response to massed-
and spaced-trained stimuli, we leveraged multivariate analysis
methods. Specifically, we tested whether distributed patterns of
brain activity within regions of interest or in a whole-brain search-
light analysis were able to discriminate between reward value, spaced
vs massed training condition, or their interaction. Our primary

Figure 6. Searchlight pattern classification of reward- versus loss-associated stimuli across the massed and spaced conditions

(images whole-brain p � 0.05, FWE corrected; unthresholded map available at https://neurovault.org/images/59040/) For uni-

variate results of the response to reward and loss feedback, see Figure 6-1, available at https://doi.org/10.1523/JNEUROSCI.

0075-18.2018.f6-1.
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Table 1. Summary of multivariate whole-brain searchlight analysis results

Contrast Regions
Cluster
size x y z

Peak z
statistic

Reward vs loss Bilateral middle occipital

gyrus
Bilateral inferior occipital

gyrus

4022 �28 �79 �14 5.77

Bilateral fusiform gyrus
L postcentral gyrus
L precentral gyrus 1013 �48 �20 47 4.24
L parietal cortex

Massed reward

vs loss

—

Spaced reward

vs loss

R middle frontal gyrus
R inferior frontal gyrus
R superior frontal gyrus
R superior temporal gyrus 4254 49 26 34 6.64
R precentral gyrus
R middle temporal gyrus
R medial frontal gyrus
L middle occipital gyrus 4032 �43 �86 6 6.37
L lingual gyrus
L inferior occipital gyrus
L cuneus
L fusiform gyrus
L cerebellum posterior lobe
L precuneus
L superior occipital gyrus
L middle temporal gyrus
L inferior temporal gyrus
L inferior parietal lobule 1004 �54 �40 41 5.11
L postcentral gyrus
L supramarginal gyrus
L superior temporal gyrus
L precentral gyrus
L angular gyrus
L precentral gyrus 582 �19 �29 74 4.74
L postcentral gyrus
L superior parietal lobule
L inferior parietal lobule
R postcentral gyrus
R inferior parietal lobule 401 56 �26 52 4.84
R precentral gyrus
R superior frontal gyrus 311 23 57 �8 5.04
R middle frontal gyrus
Bilateral medial frontal gyrus
Bilateral paracentral lobule 193 �10 �22 52 4.51
Bilateral cingulate gyrus
L superior frontal gyrus
L middle frontal gyrus 189 �17 35 50 4.26
L medial frontal gyrus
R inferior temporal gyrus 145 62 �29 �19 4.34
R middle temporal gyrus
L thalamus 130 �6 2 3 4.34
L caudate
Bilateral medial frontal gyrus

129 �8 55 8 4.2Bilateral anterior cingulate
R angular gyrus
R middle temporal gyrus 122 32 �59 36 4.01
R inferior parietal lobule
Bilateral medial frontal gyrus

(vmpfc)

108 �1 42 �25 4.05

Bilateral orbital gyrus
Spaced reward

vs loss �

massed

reward vs

loss

Bilateral inferior frontal

gyrus

4063 �34 44 �5 5.47

(Table continues.)

Table 1. Continued

Contrast Regions
Cluster
size x y z

Peak z
statistic

L middle temporal gyrus
L superior temporal gyrus
L middle frontal gyrus
Bilateral medial frontal gyrus
Bilateral anterior cingulate
L superior frontal gyrus
L inferior temporal gyrus
Bilateral orbital gyrus
Bilateral anterior insula
R middle frontal gyrus 3465 18 �4 61 5.09
R inferior frontal gyrus
R superior temporal gyrus
R middle temporal gyrus
Midbrain
R superior frontal gyrus
R insula
R parahippocampal gyrus
R hippocampus
R medial frontal gyrus
L inferior parietal lobule 1309 �54 �37 41 5.71
L precuneus
L occipital lobe
L cuneus
L superior occipital gyrus
L superior parietal lobule
R superior frontal gyrus
R middle frontal gyrus 871 18 46 39 4.54
R medial frontal gyrus
Bilateral medial frontal gyrus
L parietal lobe 634 �21 �33 54 4.87
L postcentral gyrus
L superior frontal gyrus
L medial frontal gyrus 617 �19 37 52 5
L middle frontal gyrus
R inferior parietal lobule
R middle temporal gyrus
R supramarginal gyrus 533 51 �55 23 4.52
R superior temporal gyrus
R angular gyrus
L middle frontal gyrus

169 �32 15 63 4.13L superior frontal gyrus
R middle occipital gyrus 131 36 �86 3 3.99
L medial frontal gyrus
L superior frontal gyrus 119 �17 9 54 4.23
L middle frontal gyrus
L middle frontal gyrus 108 �28 55 10 3.97
L superior frontal gyrus
L cerebellum

106 �10 �40 �30 4.43L brainstem
R postcentral gyrus

102 51 �13 19 4.23R precentral gyrus
Cerebellum 102 5 �73 �21 3.83

Spaced vs

massed

R precentral gyrus 1034 58 �13 32 5.05
R postcentral gyrus
R inferior parietal lobule
R supramarginal gyrus
L medial frontal gyrus
L cingulate gyrus 558 3 �9 61 3.93
L superior frontal gyrus

L superior temporal gyrus 296 �45 �35 10 4

L parahippocampal gyrus

Shown are clusters of activity exceeding whole-brain p � 0.05, FWE-corrected. Within each cluster, the first 10
regions are listed that include �10 voxels of a cluster. For the spaced value and spaced versus massed value results,
the cluster-forming threshold was increased to p � 0.005 to produce more interpretable clusters. For univariate
results, see Table 1-1 (available at https://doi.org/10.1523/JNEUROSCI.0075-18.2018.t1-1).
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question was whether patterns of activity differentially discriminated
the value of spaced- vs massed-trained stimuli.

Our first analysis tested for patterns that discriminated between
reward- vs loss-associated stimuli. In the striatal region of interest,
classification was not significantly different from zero (49.5% CI
[47.5 51.6]; t(30) � �0.48, p � 0.63), and a similar null result was
found in the hippocampus and parahippocampus MTL ROI (49.1%
CI [47.1 51.2]; t(30) � �0.89, p � 0.38). Using a whole-brain search-
light analysis, thresholding at the standard cluster-forming thresh-
old of p � 0.005 resulted in a large single cluster spanning much of
the brain; for this reason, we used a more stringent cluster-forming
threshold of p � 0.0005 to obtain more interpretable clusters. We
identified several regions that showed significant value discrimina-
tion, including the left precentral and postcentral gyrus and a large
bilateral cluster in the posterior and ventral occipital cortex (p �

0.05 whole-brain FWE-corrected; Fig. 6, Table 1).
To directly compare value-discriminating regions across condition,

weexaminedtheinteractionofvaluebyspacingcondition.Thisanalysis
involved the contrast of two separate classifiers, one trained to discrim-
inate reward- vs loss-associated stimuli for massed-trained stimuli and
the other for spaced-trained stimuli. In our ROI classification analysis,
wefoundthatpatternsofactivityintheMTLshowedsignificantlystron-
ger discrimination for spaced vs massed values (difference, 8.2% CI [3.8
12.5]; t(30) � 3.81, p � 0.001; Fig. 7A). Importantly, the effect in the
spaced condition alone was significant (55.5% CI [53.1 57.9]; t(30) �

4.58, p � 0.001; massed, 47.3% CI [44.0 50.7]; t(30) ��1.60, p � 0.12).
In the striatum, we found a similar effect (difference, 7.2% CI
[3.1 11.2]; t(30) � 3.63, p � 0.001), but the difference is diffi-
cult to interpret given the below-chance performance in the
massed condition (53.5% CI [50.2 56.7]; t(30) � 2.20, p �

0.036; massed, 46.3% CI [43.8 48.8]; t(30) � �3.01, p � 0.005).
Next, we examined whether more local patterns of activity

showed significant discrimination of spaced- versus massed-
trained values. Thresholding at the standard cluster-forming
threshold of p � 0.005 resulted in a large single cluster spanning
much of the brain; as above, for this reason, we used a more
stringent cluster-forming threshold of p � 0.0005 to obtain more
interpretable clusters. We found multiple clusters exhibiting
greater value discrimination in the spaced versus massed condi-
tion, including the bilateral DLPFC, the VMPFC, and OFC (Fig.
7B, Table 1). The searchlight analysis also demonstrated that the
stronger classification of value observed in the spaced versus
massed conditions in the MTL ROI analysis were also found in
the local searchlight analysis in the right hippocampus and para-
hippocampus (Fig. 7C, Table 1). No regions showed greater dis-
crimination of massed-trained values over spaced-trained values.

Finally, we examined the effect of spaced training by investi-
gating which brain regions could successfully discriminate be-
tween spaced- versus massed-trained stimuli. We found that the
striatum showed significant discrimination of spacing condition

Figure 7. Pattern classification of spaced-trained values versus massed-trained values. A, MTL (hippocampus and parahippocampus) ROI showing significant classification of spaced versus

massed values. B, Whole-brain searchlight analysis identified a cluster including the right medial temporal lobe (left) and a separate cluster including the VMPFC (right). ***p � 0.001; images

whole-brain p � 0.05 FWE corrected (unthresholded map available at https://neurovault.org/images/59031/).

Figure 8. Pattern classification of spaced- versus massed-trained stimuli. A, Striatal ROI shows significant classification. B, Searchlight analysis identified additional clusters including the left

cingulate and right precentral and postcentral gyrus. *p � 0.05; images whole-brain p � 0.05, FWE corrected (unthresholded map available at https://neurovault.org/images/59041/).
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(52.1%, 95% CI [50.4 53.8]; t(30) � 2.57, p � 0.016; Fig. 8A),
whereas the effect in the MTL was not significant (51.1%, 95% CI
[49.5 52.6]; t(30) � 1.40, p � 0.17). In the whole-brain searchlight
analysis, we found several regions that discriminated the effect of
time of training, including the left cingulate/supplementary mo-
tor area (3 �9 61; z � 3.93, p � 0.001 FWE; Table 1) and right
precentral and postcentral gyrus (58 �13 32; z � 5.05, p � 0.0001
FWE; Fig. 8B).

Discussion
When reward-based learning is distributed over time instead of
massed in a single session, we found significant gains in the long-
term maintenance of learned value associations. Controlling for the
amount of training as well as post-training performance, across two
experiments we found that stimuli trained across weeks exhibited
significantly stronger maintenance of value associations 3 weeks
later. Conversely, single-session massed training, as commonly
used in human reward-based learning research, resulted in
weaker maintenance of value associations. Decaying memory for
massed-trained stimuli may be related to reliance on short-term
memory to support massed learning, and supporting this view,
we found that initial learning performance was significantly cor-
related with individual differences in working memory capacity.

Neurally, we found that distributed patterns of activity in the
MTL and cortex discriminated between well-learned versus newly-
learned value associations. Moreover, patterns of activity in the
striatum discriminated well-learned versus newly-learned stimuli
independent of value. These results were found in a task where par-
ticipants learned the best of two responses for single reward- or loss-
associated stimuli (similar to Pavlovian designs in non-human
primates; e.g., Schultz et al., 1997; Kim and Hikosaka, 2013). It will
be important for future research to verify that they extend to learning
and maintenance of learned values in stable choice situations, such as
a probabilistic selection task (Grogan et al., 2017). Together, these
results indicate that reward associations acquired from weeks of
training, in contrast to a single condensed session of learning, elicit
stronger neural differentiation of value and may be more effective at
guiding choices toward reward-associated options in the future.

Previous research has shown powerful effects of spacing in hu-
mans in memory and educational settings, following the initial work
of Ebbinghaus (reported in Ebbinghaus, 1913; Cepeda et al., 2006).
For reward-based learning, a beneficial effect of spacing has been
well established in other species (Teichner, 1952; Carew et al., 1972;
Terrace et al., 1975). In humans, however, spacing has only been
investigated in aversive eyeblink conditioning, which relies on a spe-
cialized cerebellar circuit (Humphreys, 1940; Spence and Norris,
1950; Kim and Thompson, 1997). Separately, effects of spacing have
been investigated in category learning, which shares some structural
similarities to the two-response instrumental task used in our exper-
iments (Seger and Peterson, 2013; Carvalho and Goldstone, 2014).
However, in contrast to the well documented positive effects of spac-
ing on feedback-based learning, in which perceptual features do not
allow generalization, category learning research indicates that the
effect of alternating different examples benefits learning more than
temporal spacing (Kang and Pashler, 2012).

From animal studies, reward-based learning is known to depend
on the striatum and its midbrain dopaminergic projections (Schultz
et al., 1997; Rangel et al., 2008; Steinberg et al., 2013). It is possible
that condensed single-session learning in humans is primarily sup-
ported by the same neural mechanisms that support long-term
learning. However, both our results and other recent findings
strongly suggest that learning performance in tasks with condensed
repetitions of stimuli additionally benefit from short-term cognitive

mechanisms such as working memory (Collins and Frank, 2012;
Collins et al., 2014). In human work on rapidly paced paradigms,
dopaminergic manipulations have been shown to affect perfor-
mance (Frank et al., 2004; Pessiglione et al., 2006). Although a full
discussion of this research is beyond the scope of the present study,
we support the interpretation that some part of this shift is
likely due to actions on a mechanism involving dopamine-
induced synaptic plasticity in the striatum (but see Grogan et
al., 2017). However, unlike work in animals, in which region-
and cell-type-specific manipulations of dopaminergic and
striatal neurons are possible (Steinberg et al., 2013; Ferenczi et
al., 2016), pharmacological manipulations in humans have
whole-brain effects. Because dopamine also plays a significant
role in higher cognitive functions including working memory, it
is thus difficult to disentangle the effects of dopaminergic drugs
on striatal plasticity and working memory processes (Cools,
2011; Matsumoto and Takada, 2013). A potential limitation of
our experiments, as noted above, is that whereas our paradigm
involves learning the value of single stimuli, similar to animal
work on feedback-based learning (Schultz et al., 1997; Kim and
Hikosaka, 2013; Ghazizadeh et al., 2018), it is not yet clear
whether these learning and maintenance results directly translate
to a stable two-alternative bandit task.

Our results extend previous findings on the role of working
memory in feedback learning by demonstrating that, in addition to a
relationship with principal components of learning model fits (Col-
lins et al., 2014), individual differences in working memory capacity
are positively related to a simple measure of learning performance.
The current experimental paradigm also includes both reward- and
loss-associated stimuli, going beyond the conditional associative
learning paradigm used previously (Petrides, 1985; Collins and
Frank, 2012) and allowing for both forced-choice preference tests of
learned values and an investigation into neural patterns that differ-
entiate between learned values. Finally, our results indicate that
more flexible models with multiple timescales of forgetting (and
learning) such as those of Eldar et al. (2018) may better account for
the data than current models using a single short-term working
memory module (Collins and Frank, 2012).

What neural mechanisms support the improvement in long-
term maintenance of values with spaced training? Our finding of
significant classification of reward versus loss associations for
spaced-trained but not massed-trained associations in the MTL, in-
cluding the hippocampus, indicates a potentially novel role for the
hippocampus in representing well-learned values. Although the hip-
pocampus is known to respond to reward and value (Lebreton et al.,
2009; Wirth et al., 2009; Lee et al., 2012), hippocampal dysfunction
does not eliminate the capacity of animals or humans to gradually
learn the value of stimuli (Packard et al., 1989; Knowlton et al., 1996;
Bayley et al., 2005). However, without the support of the hippocam-
pus, feedback-based learning in humans is extraordinarily slow and
inflexible (Bayley et al., 2005).

Although often viewed as opposing systems, recent evidence sug-
gests that striatal and hippocampal systems may cooperate during
reward-based learning (Lansink et al., 2009; van der Meer et al., 2010;
Foerde and Shohamy, 2011). Specifically, the MTL may support
learning and decision making by acquiring statistical structure of
stimulus-feedback associations (Schapiro et al., 2012) or by provid-
ing information about previous episodes (Shadlen and Shohamy,
2016), a proposal supported by recent research (Murty et al., 2016;
Wimmer and Büchel, 2016; Bornstein et al., 2017). The MTL may
play a larger role in supporting learning over longer timescales, al-
lowing for learning across contexts as well as the consolidation of
synaptic plasticity (Kramár et al., 2012; Aziz et al., 2014; Smolen et al.,
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2016), which could explain selective value discrimination in the hip-
pocampus for spaced- but not massed-trained associations. Compu-
tationally, spaced training may allow for the benefits of offline replay
as used in models such as DYNA, where model-free values are
trained by post-event replay of experience (Sutton, 1990; Johnson
and Redish, 2005; Gershman et al., 2014; Russek et al., 2017).

Additionally, we found that patterns of activity in the striatum
discriminated spaced-trained versus massed-trained stimuli overall.
Decades of animal research have shown that different regions of the
striatum are important for different types of reward associations,
with the dorsomedial striatum critical for flexible (and newly-
acquired) goal-directed learning and the dorsolateral striatum
critical for inflexible model-free and habit learning (Balleine
and Dickinson, 1998; Yin and Knowlton, 2006; Kim and Hiko-
saka, 2013; Foerde, 2018). In contrast to previous fMRI studies
that used a multi-day design (Tricomi et al., 2009; Wunderlich et
al., 2012), our experimental design allows for a direct comparison
between equivalent amounts of spaced and massed training. We
did not find any effect of spacing on univariate measures of value
in the striatum, in contrast to previous studies (Tricomi et al.,
2009; Wunderlich et al., 2012), although null results should be
treated with caution. Recent findings in non-human primates
indicate that a novel population of striatum-projecting dopa-
mine neurons responds to well-learned value associations, even
after stimulus–reward associations are extinguished (Kim et al.,
2015). Such a neural mechanism may support a “habit” of atten-
tional orientation to rewarded stimuli that is resistant to extinc-
tion (Kim et al., 2015; Anderson, 2016). We did not collect a
measure of devaluation sensitivity, the classic test of habitual
behavior, albeit one difficult to administer in humans (Dickin-
son, 1985; Graybiel, 2008; Tricomi et al., 2009; de Wit et al.,
2018). Regardless of whether the learned stimulus–action associ-
ations remained sensitive to outcomes, our results indicate that
the brain may retain the ability to remember and recall the value
associated with stimuli using other representations in memory,
such as those supported by the MTL.

Our results have implications for understanding reward-based
learning in the healthy brain and for translating this research to
patient populations (Huys et al., 2016) and more ecologically valid
experimental designs (Moutoussis et al., 2017). The interpretation of
parameters derived from massed feedback learning paradigms is dif-
ficult for various reasons, including, as we demonstrate, the contri-
bution of working memory to performance (see also Collins and
Frank, 2012). Additionally, the decaying nature of value associations
learned in massed-training tasks suggests that parameters derived
from massed paradigms may not translate to how people acquire
lasting value associations and habits over time outside of the labora-
tory. Our experiments suggest that the long-term maintenance of
value associations may be a promising individual difference measure
to explore in future studies. Finally, our experimental design pro-
vides a starting point for testing how over-learned value associations
may be unlearned, with implications for research on behavioral
change.

In summary, across two studies, we found that spacing of
condensed sessions of reward-based learning across weeks re-
sulted in significantly greater maintenance of conditioned value
associations than training across minutes. Our experiments rep-
resent the first demonstration of spacing effects on reward-based
learning in humans and identify neural signatures specific to
well-learned versus transient value associations in the human
brain. Overall, our results indicate that spaced reward-based
learning and long-term maintenance of conditioning may pro-
vide cleaner measures of feedback-based learning than current

measures. This possibility has implications for the interpretation
and direction of reward-based learning research because feed-
back learning paradigms are becoming widely used in studies of
mood and psychiatric disorders as well as addiction (Herbener,
2009; Maia and Frank, 2011; Montague et al., 2012; Whitton et
al., 2015).
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