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Abstract

Survival data with missing censoring indicators are frequently encountered in biomedical studies. 
In this paper, we consider statistical inference for this type of data under the additive hazard 
model. Reweighting methods based on simple and augmented inverse probability are proposed. 
The asymptotic properties of the proposed estimators are established. Furthermore, we provide a 
numerical technique for checking adequacy of the fitted model with missing censoring indicators. 
Our simulation results show that the proposed estimators outperform the simple and augmented 
inverse probability weighted estimators without reweighting. The proposed methods are illustrated 
by analyzing a dataset from a breast cancer study.
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1. Introduction

The analysis of time-to-event data, i.e., survival analysis, is frequently encountered in 
biomedical studies and clinical trials, where the time-to-event of interest (survival time) is 
subject to right censoring. For some subjects, however, the censoring indicator may be 
missing due to various reasons, for example, the medical records are missing.

Under such situation, the standard statistical inference methods can no longer be applied 
directly. A naive method for analyzing such kind of data is to simply ignore the subjects with 
missing censoring indicator and make inference using data from those with observed 
censoring indicator. However, this so-called complete-case (CC) analysis could cause loss in 
efficiency. Moreover, it may lead to inconsistent estimators when the censoring indicator is 
not missing completely at random. To overcome drawbacks of CC analysis, some methods 
were proposed to analyze the survival data with missing censoring indicator, such as 
regression calibration, multiple imputation, simple and augmented inverse probability 
weighting and so on. For the relevant terminology, especially the simple and augmented 
inverse probability weighting (SW and AW), the readers are referred to Tsiatis (2006).
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Related literature for survival data with missing censoring indicator includes McKeague and 
Subramanian (1998), Lu and Tsiatis (2001), Liu and Wang (2010), Hyun et al. (2012) among 
others. McKeague and Subramanian (1998) proposed a method of estimation when the 
missing mechanism is MCAR, applicable both in the nonparametric setting and under the 
semi-parametric proportional hazard model. Liu and Wang (2010) suggested a regression 
imputation method for the Cox proportional hazard model. Hyun et al. (2012) considered 
competing risk data with missing causes of failure under the proportional hazard model. 
Their methods are based on the simple and augmented inverse probability weighting ideas. 
The simple and augmented inverse probability weighting methods were also applied to the 
quantile regression model by Sun et al. (2012). Lu and Tsiatis (2001) studied the multiple 
imputation methods under the proportional hazard model. Wang and Dinse (2010) and Li 
and Wang (2012) considered several methods under the censored linear regression model, 
such as regression calibration, multiple imputation and so on.

An important and useful alternative to the Cox proportional hazard model is the additive 
hazard model, which assumes that the conditional hazard function of survival time T has the 
form:

(1)

where λ0(t) is the baseline hazard function, Z is a p-dimensional covariate vector and β0 is 
p-vector of regression coefficients. In contrast to the Cox proportional hazard model, the 
additive hazard model specifies conditional hazard function as the sum of, instead of the 
product of, baseline hazard function and regression function of covariates. It has sound 
biological and empirical bases (Breslow and Day, 1980), and the desirable interpretation of 
the regression coefficients as hazard differences. Also, the computations for the additive 
hazard model do not require iteration and do not give rise to numerical problems. Moreover, 
in many practical applications, the additive hazard model is more appropriate than the 
multiplicative, particularly with respect to continuous covariates.

Due to these considerations, many authors have investigated inference methods for survival 
data with missing censoring indicator under the additive hazard model. Zhou and Sun (2003) 
studied this problem by extending the idea of McKeague and Subramanian (1998). To 
overcome the limitation of MCAR assumption, Lu and Liang (2008) considered the similar 
problem under the framework of competing risk data using the SW and AW methods when 
the cause of death is missing at random (MAR). SW method utilizes the inverse of 
probability that censoring indicator is observed to enlarge the representation of an 
individual, while AW method added an augmentation term obtained by considering 
additional information from missing censoring indicators. Noting that in Lu and Liang 
(2008) two auxiliary parametric models were imposed for the observation probability and 
the conditional probability of an uncensored observation respectively, Song et al. (2010) 
proposed the kernel-assisted SW and AW methods to avoid model misspecification.

Tsiatis (2006) noted that if some observation probabilities are small, i.e., heavy weights are 
imposed on these observations, the SW estimators will be unstable and have inflated 
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variances. Sometimes even AW estimators could have poor performances, as can be seen in 
our simulation studies. A simple and efficient method of reducing influence of 
overweighting is to assign another weight function to the complete observation to offset 
overweighting caused by a small observation probability. We refer to this method as 
reweighting. In this paper, based on a weight function suggested in Xu et al. (2009), we 
propose new approaches to analyze survival data with missing censoring indicators under the 
additive hazard model. We consider simple and augmented inverse probability weighting 
with reweighting. We refer to them as the simple and augmented reweighting (SRW and 
ARW) methods subsequently. As was noted by a referee, the proposed reweighting 
procedure can be deemed as a two-stage approach, in which the first weighting is done on 
each complete observation by the inverse of the observation probability, followed by a 
further adjustment by a new weight function on the pseudo-unbiased sample generated from 
previous step. Under the MAR assumption, the asymptotic properties of the proposed 
estimators are established. Our simulation results show that the proposed estimators 
significantly improve the SW and AW estimators respectively. Although we focus on the 
survival data with missing censoring indicators, the methods proposed here can be easily 
generalized to the competing risk data with missing causes of death.

The rest of the article is organized as follows. In Section 2, SRW and ARW methods are 
developed and the asymptotic properties of the proposed estimators are presented. Section 3 
provides a simple procedure to check the adequacy of the additive hazard model with 
missing censoring indicators. We report the simulation results and illustrate the proposed 
procedures by applying them to a dataset from a clinical trial in Sections 4 and 5, 
respectively. A brief discussion is included in Section 6. The regularity conditions and the 
outlines of the proofs of the theorems are given in the Appendix.

2. The reweighting method

Let T denote the survival time, C the censoring time, X = T ∧ C the observed time and δ = 
I(T ≤ C) the failure indicator, where I(A) is the indicator function of the set A. Suppose that 
T is conditionally independent of C given Z. Define ξ = 1 if δ is observed, and ξ = 0 
otherwise. Throughout the paper, we assume that δ is missing at random, thus the 
observation probability is

where R is an auxiliary covariate which is used to predict the observation probability and W 
= (X, Z, R). Furthermore, we assume that π(W) could be modeled by a parametric model 
π(W, α), where α is an unknown vector of finite-dimensional parameters, e.g. the logistic 
regression model. The observed data are independent and identically distributed (i.i.d.) 
random vector (Xi, ξi, ξiδi, Zi, Ri), i = 1, …, n. Define Wi = (Xi, Zi, Ri) for i = 1, …, n.

To facilitate expressions using counting processes, a few more notations are needed. Let 
Ni(t) = I(Xi ≤ t, δi = 1) and Yi(t) = I(Xi ≥ t) be the counting and at risk processes for the ith 

subject, respectively. Define  for 0 ≤ t ≤ τ, where 
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Λ0(t) is the true cumulative hazard function and τ is the maximum follow-up time. Using the 
fact that Mi(t), i = 1, …, n are zero-mean martingales with respect to the σ-filtration σ{Ni(u), 
Yi(u+), Zi : 0 ≤ u ≤ t, i = 1, …, n}, when the censoring indicators are fully observed, Lin and 
Ying (1994) proposed the following estimating function for β,

(2)

where Z̄(t) = S(1)(t)/S(0)(t) with  for k = 0 and 1. Here a⊗0 = 1, 
a⊗1 = a and a⊗2 = aaT for a vector a.

2.1 Simple reweighting method

When some censoring indicators are missing, the estimating function (2) is not applicable. 
Motivated by the inverse probability weighting idea of Horvitz and Thompson (1952), a 
routine choice is to weigh the complete observations with the inverse of their observation 
probabilities to construct an unbiased estimating function (Lu and Liang, 2008; Song et al., 
2010). However, this method will not work well when some of the observation probabilities 
are close to zero as mentioned in Section 1. In this paper, we take the further step of 
reweighting the inverse probability weighted observations by another weight function, 
proposed by Xu et al. (2009), to offset the overweighting caused by the small observation 
probabilities. Specifically, in addition to the observation probability, the reweighting method 
imposes an additional weighting function, i.e., the marginal observation probability given 
the risk set at time t, to the complete observations. Hence the additional weighting function 
is the same for each observation in the same risk set at time t, denoted by π*(t). As in Xu et 
al. (2009), we estimate π*(t) by the empirical estimator, i.e.,

Combining the simple inverse probability weighting idea of Horvitz and Thompson (1952), 
the reweighting idea of Xu et al. (2009) and the estimating function (2), the simple 
reweighting estimating function can be obtained as

(3)

where  with  for 
k = 0, 1 and α̂ is the maximum likelihood estimator (MLE) of α. It is well known that α ̂is 
maximizer of the following likelihood
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or solution of the following score equation

and α ̂consistently estimate α0 when π(W, α0) is correctly specified for π(W). Denote by 
β̂sr the solution of the estimating equation Usr(β, α̂) = 0, which has the closed form

With the estimator βŝr of β0, the cumulative baseline hazard function Λ0(t) can be estimated 
by

(4)

To facilitate the presentation of the asymptotic results, we introduce the following notations. 
Define

We study the asymptotic distribution in the following Theorem 1, proof of which is provided 
in the Appendix.

Theorem 1—Under regularity conditions (C1) to (C4) in the Appendix, if π(W, α0) is 

correctly specified for π(W), β̂sr is a consistent estimator of β0, and  is 

asymptotically normal with mean zero and covariance matrix , where
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with Vα0, Iα0 and Sα0 being given in the Appendix.

The asymptotic covariance matrix can be consistently estimated by , where

with , V̂α0, Îα0 and Ŝα0,i being obtained by their 
empirical counterparts and replacing (α0, β0) by (α̂, β̂sr) accordingly.

2.2 Augmented reweighting method

It is well-known that the AW estimators are more efficient than the SW estimators because 
they incorporate more information from data and enjoy the double robustness property, i.e. 
they are consistent if either the model for the observation probability or the conditional 
probability of missing data given observed data is correctly specified (Robins et al., 1994). 
Here we further consider the augmented reweighting method to improve the simple 
reweighting method.

Define ρ(W) = Pr(δ = 1|W). Under the MAR assumption, it can be shown that

(5)

Furthermore, a parametric model ρ(W, γ) can be posited for ρ(W), in which the true value 
γ0 can be estimated by the complete observations according to (5). Specifically, the 
maximum likelihood estimator γ ̂is maximizer of the following likelihood function

or solution of the following score equation
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Adding the augmentation term to the estimating function (3), we propose the following 
augmented reweighting estimating function

(6)

where  and  with  for k 
= 0, 1, 2. Denote by βâr the solution of the estimating equation Uar(β, α̂, γ̂) = 0, which has 
the following explicit form

Then Λ0(t) can be estimated by

It is well-known that there exist α* and γ* such that  and  under the 
conditions (C4) and (C5) in the Appendix (White, 1982). Furthermore, α* = α0 if π(W, α0) 
is correctly specified, while γ* = γ0 if ρ(W, γ0) is correctly specified. The asymptotic 
results of regression coefficients are presented in the following theorem with the proof being 
postponed to the Appendix.

Theorem 2—Under regularity conditions (C1) to (C5) in the Appendix, if either π(W, α0) 

or ρ(W, γ0) is correctly specified, βâr is a consistent estimator of β0, and  is 

asymptotically normal with mean zero and covariance matrix , where

with M*(t),  and  being given in the Appendix.
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The asymptotic covariance matrix can be consistently estimated by , where

with

and  being obtained by their empirical counterparts and 
replacing (α*, β0, γ*) by (α̂, β̂ar, γ̂) accordingly.

3. Model Checking

As suggested by a referee, it is useful to perform a lack-of-fit test to justify the use of the 
additive hazard model (1). In this section, we propose a model checking procedure based on 
the simple reweighted cumulative sums of martingale-based residuals (Lin et al., 1993). An 
approach based on the augmented reweighted cumulative sums could be derived similarly. 
Specifically, the simple reweighted cumulative sums is defined as

where I(Zi ≤ z) means that each component of Zi is no larger than the corresponding 
component of z. The null hypothesis here is that the additive hazard model (1) is correctly 
specified. Under the null hypothesis, we have shown in the Appendix that distribution of 
ℱ(t, z) can be approximated by the following zero-mean Gaussian process

(7)
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where

and

For i = 1, ⋯, n, define

Then . Apparently, it is difficult to obtain the analytical 
expression for the distribution of ℱ̄(t, z). In the following, we utilize the resampling method 
to obtain its asymptotic null distribution. In particular, we define

(8)

where Gi, i = 1, ⋯, n are i.i.d. standard normal random variables, which are independent of 
the data. It can be shown that the null distribution of ℱ(t, z) can be approximated by the 
conditional distribution of ℱ̂(t, z) given the data. Therefore, the null distribution of ℱ(t, z) 
can be approximated by a large number of realizations of ℱ̂(t, z) by repeatedly generating 
random numbers Gi, i = 1, …, n, from standard normal distribution while fixing the 
observed data. To check the fit of model (1), one can use the supremum test supt,z|ℱ(t, z)| to 
obtain the p-value of the test, which can be obtained by comparing the observed value of 
supt,z|ℱ(t, z)| to a large number of realizations from supt,z|ℱ̂(t, z)|.
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4. Simulation Studies

In this section, we report extensive simulation studies to investigate the performance of the 
proposed methods in Section 2 and compare them with the corresponding methods without 
reweighting. Let Z = (Z1, Z2)T, where Z1 and Z2 are independent and identically distributed 
as the Bernoulli distribution with success probability 0.5. Given Z, the survival times were 
generated from distribution with the hazard function

(9)

where λ0(t) = 1 and (β1, β2) = (1, −1). The censoring time follows the uniform distribution 
on (0, 2.5), which produces approximately 48% censoring. The observation probability for δ 
was specified by the logistic regression model,

(10)

where W = (1, X, Z1, Z2)T. In our simulation, different α’s were chosen to produce the 
desired missing rate. Furthermore, it can be shown that

which is not a logistic regression model. However in our simulation, we still specify a 
logistic regression model ρ(W, γ) for ρ(W), because the true model is always unknown in 
practical problems and the logistic regression is most frequently used instead. The 
parameters in both of π(W, α) and ρ(W, γ) are estimated by maximizing their likelihoods 
respectively. The sample size was set to be n = 300 or 500. All the simulation results were 
based on 5000 replications of independently simulated datasets. The following cases were 
considered:

Case 1: α = (0, −3, 1, 1)T, which produces approximately 65% missing rate;

Case 2: α = (1, −3, 1, 1)T, which produces approximately 50% missing rate;

Case 3: α = (1.6, −3, 1, 1)T, which produces approximately 35% missing rate.

Note that the second component of α, i.e. the coefficient for the observed survival time, is 
relatively large. This means that the missing mechanisms rely on the observed survival time 
heavily. Under these circumstances, the proportion of very small observation probabilities 
are high and some of the very small observation probabilities are very near zeros. The 
simulation results are reported in Tables 1 to 3. In these tables, bias is the sample mean of 
the estimator minus the true value; ESE denotes the average of the estimated standard errors; 
SSE is the sample standard error over the 5000 replications; CP represents the empirical 
coverage probability of 95% Wald-type confidence interval. These summary statistics are 
obtained for various methods including the full data analysis (denoted by Full), the complete 
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case analysis (denoted by CC), the simple inverse probability weighted estimator (denoted 
by SW), the simple inverse probability weighted estimator with reweighting (denoted by 
SRW), the augmented inverse probability weighted estimator (denoted by AW), and the 
augmented inverse probability weighted estimator with reweighting (denoted by ARW).

As expected, from the three tables we can see that full data method produces the best results, 
while CC method obtains the worst including the largest biases and the smallest CP’s. In 
addition, the SRW and ARW estimators improve the SW and AW estimators substantially, 
respectively. Note that the Full data method is only achievable in simulation when there is no 
missing censoring indicator. Full data results are presented here to provide an upper limit for 
the other methods.

For all the three cases, the CC method produces the biased estimates, which cannot be 
improved through increasing sample size. Although the ESEs agree with SSEs well, biases 
lead to the very low CP’s. Tables 1 to 3 also show that when some observation probabilities 
are small, the inverse probability weighted estimators may be inflated and the inverse 
probability weighting methods do not perform well, although they perform better than the 
CC method. In the meanwhile, our proposed ARW estimators perform very well. The 
improvements of reweighting methods over methods without reweighting are substantial, 
especially for the cases with high missing rate. Moreover, it is easily observed that SSEs of 
the proposed ARW estimators are very close to those of full data analysis, implying that 
ARW method is very efficient. We further compared the relative efficiency of ARW relative 
to AW, Full relative to AW and summarized the results in Table 4. From Table 4, we can see 
that with the same sample size, as missing rate increases, the improvement in the efficiency 
increases. This could be due to the fact that when there is more missingness, there is more 
room for improvement. The amount of the efficiency gain can also depend on the value of 
the regression coefficient.

In order to further assess the performance of the proposed methods, we conducted some 
additional simulation studies for the setting with a continuous covariate and another 
distribution for censoring time. Define Z = (Z1, Z2)T, where Z1 follows the Bernoulli 
distribution with success probability 0.5 and Z2, independent of Z1, is a random variable 
following standard uniform distribution. Given Z, the survival times were generated from (9) 
with β1, β2 and λ0 being the same as in the previous cases. The censoring time follows a 
distribution with the hazard function λ(t) = 0.5t, for t > 0, which leads to approximately 33% 
censoring. The observation probability was specified by model (10) with W = (X, Z1, Z2, 
R)T, where R is the auxiliary variable distributed as the Bernoulli distribution with success 
probability 0.5. In this setting, we can obtain that

Here we still specify a logistic regression model ρ(W, γ) for ρ(W) as discussed previously. 
We chose α = (−5, 2, 2, 2)T to produce approximately 56% missing rate. Denote this setting 
by Case 4. The simulation results based on 5000 replications are reported in Table 5, from 
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which we can see that all the methods except ARW method do not perform well. The 
proposed ARW has negligible biases and the coverage rate is close to the nominal level.

From the above simulation studies and results in Tables 1 to 3 and 5, we can see that SW and 
SRW did not perform well. This is because the proportion of subjects with small observation 
probabilities are high and many of them are very close to zero. To further explore this, we 
conducted some additional simulations. In these additional simulations, all the settings are 
the same as those in Cases 1 to 3, except for the values of α in the observation probability 
model (10). Specifically, we consider the following cases:

Case 5: α = (−0.5, −1, 1, 1)T, which produces approximately 54.09% missingness;

Case 6: α = (−0.35, −1.2, 1, 1)T, which produces approximately 54.79% missingness;

Case 7: α = (−0.18, −1.5, 1, 1)T, which produces approximately 54.16% missingness;

Case 8: α = (0, −1.8, 1, 1)T, which produces approximately 54.64% missingness.

Case 9: α = (0.5, −2.5, 1, 1)T, which produces approximately 53.18% missingness.

In these cases, all the overall missing rates are approximately 54%. However the proportion 
of subjects with small observation probabilities become higher and higher from Cases 5 to 9. 
Specifically, the proportions of subjects with observation probabilities smaller than 0.1 are 
around 1.49%, 3.38%, 8.02%, 11.42% and 16.57% for Cases 5 to 9, respectively. The 
simulation results for sample size of 300 based on 5000 replications are listed in Table 6. 
From this table, we can see that the CP’s of SW and SRW are reasonable for Cases 5 to 7. 
As the proportion of small observation probabilities increases, performances of SW, SRW 
and AW become worse. However, the ARW estimator behaves rather well in all the cases.

All the above simulation results demonstrate that the SRW and ARW methods could 
improve upon the SW and AW methods substantially, respectively, and the ARW methods 
perform very well for the survival data with missing censoring indicators under the additive 
hazard model under the cases we consider.

5. Real Data Analysis

In this section, we applied model (1) and the methods in Sections 2 and 3 to a dataset from a 
breast cancer clinical trial. This trial was conducted by the Eastern Cooperative Oncology 
Group (Cummings et al., 1986) with the aim to evaluate tamoxifen as a treatment for stage II 
breast cancer among elderly women. We are interested in the difference of the cause-specific 
hazard functions for death due to breast cancer of the placebo and treatment groups. This 
can be easily modeled by the additive hazard model (1).

There are a total of 169 elderly women participating in this trial, among whom 44 women 
died from breast cancer, 107 died from other known causes (n=17) or censored (n=90), and 
the cause of death was unknown for 18 patients. Let X denote the observed survival time of 
a patient, δ the indicator showing whether death was due to breast cancer, ξ the indicator of 
whether cause of death was known. The observed time for every subject was scaled by year. 
For every patient, we considered the following two variables: the treatment (Z1 = 0, placebo 
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group; Z1 = 1, tamoxifen group) and whether the subject had 4 or more positive 
axillarylymph nodes (Z2 = 0, no; Z2 = 1, yes). Therefore the additive hazard model is

Let W = (1, X, Z1, Z2, XZ1, XZ2, Z1Z2)T. We use the “glm” function in R to fit logistic 
regression for the observation probability with covariates W, then the “step” function to 
select the best model by the Akaike information criterion (AIC). The final chosen model 
only includes a single covariate X. Furthermore, the same W is used to fit logistic regression 
for the conditional probability of missing censoring indicator given the fully observed 
variables. We also fitted these two models by the probit regression, which is another popular 
alternative to model the binary outcome variable. We obtained almost the same modeling 
results. Hence we only used the logistic regression for further analysis. The results are 
presented in the first half of Table 7. The missing indicator rate is 11% in this example. With 
such low missing rate, our proposed reweighting methods could not exhibit their advantages 
over those without reweighting. For illustration purposes, we artificially deleted some 
censoring indicators among the observed ones in addition to the original missing. As 
discussed above, the observation probability is influenced only by one covariate X. Thus to 
introduce some additional missingness, the observation probability for δ was specified by 
π(W) = exp(20.5 − 2.8X)/(1 + exp(20.5 − 2.8X)). This model produces about 40% for 
missing censoring indicator.

The results with 40% missing rate are presented in the second half of Table 7. From the 
results, we can see that both of the reweighting methods and the methods without 
reweighting arrive at similar conclusions, i.e. treatment is not effective while the number of 
positive axillary lymph nodes is positively associated with breast-cancer survival. For the 
number of positive axillary lymph nodes, the reweighting methods produce similar point 
estimates, but smaller standard errors, and consequently smaller P-values than those without 
reweighting. This phenomenon is consistent with the simulation results presented and 
discussed in Section 4.

At last, we apply the approach developed in Section 3 to check the adequacy of the additive 
hazard model (1) for the original data. The supremum test supt,z|ℱ(t, z)| = 0.246 and the P-
value is 0.197 based on 1000 realizations of the supt,z|ℱ̂(t, z)|. Thus there is no evidence 
against the hazard model (1).

6. Discussion

In this paper, we investigated simple and augmented reweighting methods for survival data 
with missing censoring indicator under the additive hazard model. Generally speaking, the 
simple and augmented inverse probability weighted estimators without reweighting could 
become unstable when the probabilities of missingness for some subjects are very high, or, 
in other words, when the observation probabilities of some subjects are very small. The 
“reweighting” is motivated by the suggestion that it may enhance stability and ameliorate the 
variance inflation under such situation. Based on our experiences, the overall missing 
proportion in the entire cohort is not the key factor that affects the extent of improvement of 
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reweighting methods over those without reweighting. The simple and augmented inverse 
probability weighted estimators without reweighting could behave comparably to the 
reweighting methods under the circumstances of high overall missing proportion. The most 
important factors are the proportion of subjects with very small observation probabilities and 
how small some of the observation probabilities are. When the observation probabilities for 
some subjects are very close to zero and the proportion of subjects with small observation 
probabilities is high, simple and augmented inverse probability weighted estimators without 
reweighting are very unstable. This point has been illustrated by Cases 5 to 9 in our 
simulation studies. From these simulation results, we can see that SW and AW estimators 
are rather unstable when the proportion of subjects with observation probabilities smaller 
than 0.1 is larger than 10%, i.e. Cases 8 and 9. In addition, we note that some of the 
observation probabilities are smaller than 0.012, and 0.004 under Cases 8 and 9, 
respectively. Under these circumstances, SW and AW have inflated variances and low 
coverage probabilities, while the proposed reweighting estimators can improve the 
estimators without reweighting significantly.

The proposed reweighting function is motivated from Xu et al. (2009), which considered the 
reweighting estimators for the Cox model with missing covariates. The proposed 
reweighting procedure could be extended to allow a general weighting function π̂*(t). It is 
easy to see that the simple and augmented inverse probability weighted estimators without 
reweighting are special cases of the proposed reweighting estimators when the weight 
function π*̂ = 1. As stated above, our reweighting estimator improves the estimator without 
reweighting when some of the observation probabilities are very close to zero and the 
proportion of very small observation probabilities are high. The improvement of the 
proposed reweighting methods over those without reweighting has been demonstrated in our 
simulation studies. There could be other choices for the reweighting function and it will be 
worthwhile to explore to find an optimal weight function, if it exists, in future studies.
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Appendix

Regularity conditions and sketch proofs of the main results

For proofs of the theorems, we list the following regularity conditions.

(C1) Λ0(τ) < ∞ and Pr{Y (τ) = 1} > 0;

(C2) Z is bounded with probability 1 and time-independent;

(C3) The matrix A is positive definite.

(C4) The observation probability π(W, α) is bounded away from 0; π(W, α) is twice 
continuously differential in α; There exists a compact neighborhood  of α0 

such that E[supα∈ {‖π̇(W, α)‖2 + ‖π̈(W, α)‖}] < ∞, where π̇(W, α) = ∂π(W, 
α)/∂α and π̈(W, α) = ∂2π(W, α)/∂α∂αT; There exists α* satisfying the 
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equations , where 

.

(C5) ρ(W, γ) is twice continuously differentiable in γ; There exists γ* satisfying the 

equations , where 

.

All these conditions are standard for the derivation of asymptotic results in the survival 
analysis and parametric inference.

Proof of Theorem 1

By some simple algebraic calculations, it can be seen that

Under conditions (C1), (C2) and (C4), it can be shown that

(A.1)

(A.2)

(A.3)

By (A.1), (A.3) and the fact that , we have

It is easy to see that

So we can conclude that
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(A.4)

By the Taylor expansion of  at α0,

(A.5)

where

By (A.1) to (A.3) and the law of large numbers, it can be proven that

(A.6)

where

and
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By (A.1), (A.3) and Lemma A.1 of Qi et al. (2005), we can obtain that

(A.7)

Define

and

which are score and information matrices of π(W, α) respectively. Then under condition 
(C4), it can be shown that

(A.8)

where Sα,i is obtained through replacing ξ and W by ξi and Wi in Sα respectively.

By (A.4) to (A.8), we finally arrive at

By the central limit theorem, the desired result is proved.

Proof of Theorem 2

It is easily verified that
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(A.9)

where

By the fact that

(A.10)

and (A.1), we can conclude that

(A.11)

By (A.11), we have

(A.12)

By the Taylor expansion of  at α* and γ*,
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(A.13)

where

and

By (A.1),  and , we have

(A.14)

and

(A.15)

where

and

Similar to (A.7), we have
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(A.16)

where

Define

and

Then under Condition (C4) and (C5), we have

(A.17)

and

(A.18)

where  and  is obtained through replacing ξ, δ and W by ξi, δi and Wi in  and 

. By (A.9) to (A.18), we can finally conclude that
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By the central limit theorem, the desired result is proved.

Proof of (7)

It is easy to see that

(A.19)

By (A.1) and Taylor expansion of I at α0, we obtain

(A.20)

where f4(t, z, α0) is the limit of f4̂(t, z, α̂).

Similar to the proof of Theorem 2.4 in Lin (2011), by (4), it can be proven that

(A.21)

By (A.21) and Taylor expansion, we have
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(A.22)

where f1(t, z, α0) and f3(t, z, α0) are the limits of f1̂(t, z, α̂) and f3̂(t, z, α̂) respectively.It is 
easy to see that

(A.23)

From (A.19) to (A.23), we finally arrive at

(A.24)

where f2(t, z, α0) is the limit of f2̂(t, z, α̂). The finite dimensional convergence of ℱ(t, z) can 
be proven by the multivariate cental limit theorem. By the techniques in Lin (2001), it can be 
proven that ℱ(t, z) is tight. So ℱ(t, z) converges weakly to a zero-mean Gaussian process 
which can be approximately by (7).
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