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Abstract

A new class of robust regression estimators is proposed that forms an alter-

native to traditional robust one-step estimators and that achieves the
√
n rate

of convergence irrespective of the initial estimator under a wide range of distri-

butional assumptions. The proposed reweighted least trimmed squares (RLTS)

estimator employs data-dependent weights determined from an initial robust fit.

Just like many existing one- and two-step robust methods, the RLTS estimator

preserves robust properties of the initial robust estimate. However contrary to

existing methods, the first-order asymptotic behavior of RLTS is independent of

the initial estimate even if errors exhibit heteroscedasticity, asymmetry, or serial

correlation. Moreover, we derive the asymptotic distribution of RLTS and show

that it is asymptotically efficient for normally distributed errors. A simulation

study documents benefits of these theoretical properties in finite samples.
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1. Introduction

In statistics, techniques robust to atypical observations have recently been studied

since such observations can arise for many reasons: heavy-tailed data distributions,

miscoding, or heterogeneity not captured or presumed in a model. This is of high

importance especially in (non)linear regression models and time series as the least

squares (LS) and maximum likelihood (MLE) estimators are heavily influenced by

data contamination. For example, Balke and Fomby (1994) document presence of

outliers in macroeconomic time series and Sakata and White (1998) evidence data

contamination in financial time series and its adverse effects on estimators and tests.

The need for estimation procedures insensitive to data contamination and large errors

have been recognized by many authors, for example, Hampel et al. (1986), Simpson et

al. (1992), Stromberg et al. (2000), and Gervini and Yohai (2002). On the other hand,

the use of methods robust to atypical observations is infrequent in many fields and

often limited to detection of outliers (e.g., Temple, 1998; Woo, 2003), although excep-

tions exist (e.g., Preminger and Franck, 2007). The reasons could range from missing

some (easily applicable) results regarding robust inference, low relative efficiency of

many robust methods, or the necessity to choose auxiliary tuning parameters. In

addition, the detection of outliers by a robust method or eye-balling and, after re-

moving outliers, the subsequent application of a standard method such as LS is not

a theoretically justified inference method as the usual standard errors (and statistics

based on them) will be biased (Welsh and Ronchetti, 2002).

To address these issues, a new class of robust estimation methods is proposed, the

reweighted least trimmed squares (RLTS). While the method and its robust properties

rely on an initial robust estimator, RLTS possesses an asymptotic distribution inde-

pendent of the initial estimator, has a known variance for example under heteroscedas-
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ticity or asymmetrically distributed errors, and achieves asymptotic efficiency under

normality. This facilitates easy and precise robust estimation and inference. At the

same time, RLTS inherits the robust properties of the initial robust fit; for example,

the breakdown point, which measures the smallest contaminated fraction of a sample

that can arbitrarily change the estimates (see Section 4 for a definition and Genton

and Lucas, 2003, and Davies and Gather, 2005, for details). We concentrate here on

the equivariant estimators that achieve the maximal asymptotic breakdown point 1/2

(in contrast, this measure equals zero for LS in usual regression settings).

There is of course a number of high breakdown-point methods, which are insen-

sitive to deviations from the regression model. Many of traditional robust methods

however pay for their robustness by a low relative efficiency with non-contaminated

data, especially with normally distributed data. For example, the least median of

squares (LMS; Rousseeuw, 1984) converges only at rate n−1/3 and the least trimmed

squares (LTS; Rousseeuw, 1985) and S-estimators (Rousseeuw and Yohai, 1984), while

achieving the usual
√
n consistency, exhibit under normality the asymptotic rela-

tive efficiency of 8% and 28%, respectively. To improve the quality of estimation

of high breakdown-point methods, Rousseeuw and Leroy (1987) initially suggested

using weighted least squares (WLS), where observations with (robustly-estimated)

standardized residuals beyond some fixed cut-off point are assigned zero weight. Even

though this reduces the variability of estimates, this method converges at the same

rate as the initial robust estimator (He and Portnoy, 1992) and has the asymptotic

distribution dependent on the initial robust fit (Welsh and Ronchetti, 2002). A more

general class of such iterated estimators are the one-step M-estimators (e.g., Simpson

et al., 1992), which start from an initial robust fit and perform one Newton-Raphson

iteration of an M-estimation algorithm, for instance. In general, the convergence rate

and asymptotic distribution of the one-step M-estimators also depend on the initial
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robust estimate: while they can be often asymptotically equivalent to the non-iterated

M-estimators under symmetrically distributed and homoscedastic errors (Welsh and

Ronchetti, 2002), this does not hold when errors become heteroscedastic or asym-

metrically distributed (Simpson et al., 1992). Further, to combine efficiency under

normality and a high breakdown point, Gervini and Yohai (2002) proposed to use

the WLS strategy with a data-dependent cut-off point by means of the robust and

efficient weighted least squares (REWLS). Apart from the optimal case of Gaussian

data, the convergence rate and asymptotic distribution of REWLS again depend on

the initial estimator even for homoscedastic symmetrically distributed errors.

While one-step estimators and REWLS represent (efficient) robust estimators

suitable for the standard linear regression model with independent and identically

distributed errors and continuously-distributed explanatory variables, they are less

practical in areas, where regression variables or errors often exhibit dependence, het-

eroscedasticity, and non-normality (e.g., all these issues can be present in microeco-

nomic and other panel data; see e.g. Baltagi et al., 2010). In such models, statistical

inference requires the knowledge of the (asymptotic) distributions of REWLS and an

initial robust estimator, for instance. Therefore, even if REWLS were studied in a

more general setting than by Gervini and Yohai (2002), inference would be difficult

since the asymptotic distributions of many high breakdown-point regression estima-

tors is known only for independent and identically distributed (iid) data.

In this paper, we propose a new efficient high breakdown-point regression esti-

mator, RLTS. Similarly to Gervini and Yohai (2002), we construct data-dependent

weights using the empirical distribution of regression residuals. Instead of using WLS,

we however employ the weights for the LTS estimator. This approach eliminates the

asymptotic first-order dependence of the RLTS estimates on the initial estimator

under various distributional assumptions: the asymptotic distribution is derived for
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heteroscedastic, asymmetric, and serially correlated errors. This results in the asymp-

totic efficiency of RLTS in the models with Gaussian errors, extends currently known

results for LTS (cf. Čížek, 2006), and facilitates new applications of robust methods

(e.g., Aquaro and Čížek, 2010). Altogether, precise and correct inference using RLTS

is possible irrespective of the initial estimator. This is important especially for data

exhibiting heteroscedasticity, asymmetry, and other departures from the assumption

of iid symmetric errors since many highly robust estimators have not been (asymptot-

ically) studied for such data yet. In the case of the standard linear regression with iid

data, the independence of the initial estimator leads at least to a better performance

of RLTS compared to REWLS in small samples. Finally, even though we concen-

trate here on linear regression, the principle of RLTS is straightforward to generalize

to (robust) nonlinear regression and the maximum (trimmed) likelihood estimation

(e.g., using Čížek, 2008).

The paper is organized as follows. The existing LTS and REWLS estimators are

introduced in Section 2. Next, RLTS is proposed in Section 3 and its robust and

asymptotic properties are studied in Sections 4 and 5, respectively. The finite-sample

properties of the proposed and existing methods are evaluated and compared using

Monte Carlo experiments in Section 6. Proofs are given in the appendices.

2. Least trimmed squares and efficient robust esti-

mation

Let us now introduce the LTS and REWLS estimators of the linear regression model

yi = x⊤
i β

0 + εi, i = 1, . . ., n, (1)
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where yi ∈ R and xi ∈ Rp denote the response and explanatory variables and β0 ∈ Rp

is the true value of the p unknown regression parameters; xi is assumed to contain

the intercept. Rousseeuw (1985) proposed to robustly estimate this model by LTS,

β̂(LTS)
n = argmin

β∈Rp

hn∑
i=1

r2[i](β), (2)

where r2[i](β) represents the ith smallest order statistics of squared regression residuals

r21(β), . . . , r
2
n(β) and ri(β) = yi − x⊤

i β. The trimming constant hn, n
2
< hn ≤ n, is

usually defined in such a way that hn/n → λ ∈ ⟨1/2, 1⟩. It determines the breakdown

point of LTS since definition (2) implies that n − hn observations with the largest

residuals do not directly affect the estimator. The maximal breakdown point equals

asymptotically 1/2 for hn = [n/2]+ [(p+1)/2] (Rousseeuw and Leroy, 1987), whereas

it asymptotically equals 0 for hn = n, which corresponds to LS. Note that, using

weights wi = w(i/n) and w(z) = I(z ≤ λ), LTS can be alternatively defined by

β̂(LTS)
n = argmin

β∈Rp

n∑
i=1

wir
2
[i](β) = argmin

β∈Rp

n∑
i=1

w
[
Gn

{
r2i (β)

}]
r2i (β). (3)

This facilitates the introduction of general weights in LTS (Víšek, 2002).

For Gaussian data, the relative asymptotic efficiency of LTS with the maximal

breakdown point is only 8%. Therefore, Rousseeuw and Leroy (1987) proposed to

combine robust estimators with WLS. Given initial robust estimates β̂0
n and σ̂0

n of

regression parameters and residual standard deviation, one can define in the simplest

case the hard-rejection weights wi(β̂
0
n, σ̂

0
n) = I{|ri(β̂0

n)/σ̂
0
n| < c} for some c > 0

and i = 1, . . . , n and then estimate using WLS. The constant c, representing a high

quantile of the normal distribution, equals frequently c = 2.5 in the literature. While

this method decreases the variability of the estimates, it converges to β0 at the same
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rate as the initial estimator and its asymptotic distribution depends on the initial

estimator as well (Welsh and Ronchetti, 2002).

As a further improvement, Gervini and Yohai (2002) proposed REWLS, a method

to adaptively determine the observations that needs to be trimmed and to apply LS

to the rest of data. Specifically, the weights for sample observations are defined by

wi(β̂
0
n, σ̂

0
n) = I{|ri(β̂0

n)/σ̂
0
n| < tn} (4)

for some data-dependent tn > 0 and the estimation is done using WLS. To find tn,

one measures the largest discrepancy between the distribution functions F+ and F+
0

of absolute standardized residuals underlying data and assumed in the model (1),

respectively, in the tail of F+
0 . It is theoretically defined for c > 0 (e.g., c = 2.5) by

d0 = sup
t≥c

max{0, F+
0 (t)− F+(t)} (5)

and it is estimated using the empirical distribution function F+
n of |ri(β̂0

n)/σ̂
0
n|:

dn = sup
t≥c

max{0, F+
0 (t)− F+

n (t)}. (6)

As dn measures the fraction of observations too large for model (1) with εi ∼ F+
0 , the

cut-off point tn is set to the (1− dn)th quantile of F+
n : tn = min{t : F+

n (t) ≥ 1− dn}.

Typically, F+
0 is constructed under the assumption εi ∼ N(0, σ), which guarantees the

efficiency of LS and a low probability of outliers. The REWLS estimator preserves the

breakdown-point properties of the initial estimator and achieves asymptotic efficiency

under the normal model. In general, the convergence rate and asymptotic distribution

of REWLS nevertheless depend on the initial robust estimator.
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3. Reweighted least trimmed squares

We now propose using data-dependent weights within the LTS estimator so that the

reweighted LTS estimator can employ information about the distribution function of

errors εi by means of its nonparametric estimate. Similarly to REWLS, this proce-

dure should combine the robustness of the initial estimator and a high precision of

estimates. Contrary to REWLS, using data-dependent weights within LTS rather

than LS will asymptotically eliminate the dependence of the resulting estimates on

the initial estimates (see Section 5), simplifying thus further inference.

Let β̂0
n and σ̂0

n be again the initial estimates of regression parameters and resid-

ual standard deviation. Similarly to (4), the aim is to construct hard-rejection

weights wi(β̂
0
n, σ̂

0
n) determining which observations should be trimmed. Since LTS

requires only the total number hn of observations to be included in the objective

function, the total number of observations with non-zero weights has to be found:

ĥn =
∑n

i=1 wi(β̂
0
n, σ̂

0
n) =

∑n
i=1 I{|ri(β̂0

n)/σ̂
0
n| < tn} for some tn > 0. The (second-

step) reweighted LTS estimator is then simply defined as LTS using the estimated

data-dependent trimming constant ĥn.

In particular, the implementation for the hard-rejection weights (4) proposed by

Gervini and Yohai (2002) works as follows. Using β̂0
n and σ̂0

n, construct absolute

standardized residuals |ri(β̂0
n)/σ̂

0
n| and their empirical distribution function F+

n and

compare it with the distribution F+
0 of absolute standardized residuals assumed in

the model (1), where εi ∼ N(0, σ2), for instance. Analogously to (6), set

λ̂n = max

{
1− sup

t≥c
max{0, F+

0 (t)− F+
n (t)}, 1/2

}
, (7)

that is, λ̂n = max{1−dn, 1/2} for dn defined in (6), and set the corresponding amount

of trimming to ĥn = [λ̂nn] =
∑n

i=1 I(|ri(β̂0
n)/σ̂

0
n| < tn) for tn = min{t : F+

n (t) ≥ λ̂n}
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([z] represents here the integer part of z). The reweighted least trimmed squares

(RLTS) estimator is then defined by

β̂(RLTS)
n = argmin

β∈Rp

ĥn∑
i=1

r2[i](β) = argmin
β∈Rp

[λ̂nn]∑
i=1

r2[i](β). (8)

(Alternatively, one can use weights ŵn(z) = I(t ≤ λ̂n) in (3) instead of w(z). This

indicates it is possible to define other than 0-1 weights by estimating a general weight

function ŵn and using it in the LTS definition (3); see Čížek (2010) for examples.)

The crucial distinction between LTS and RLTS lies in the fact that the trimming

sequence λ̂n of RLTS can converge to an unknown constant λ̂ ∈ ⟨1/2, 1⟩ (e.g., depend-

ing on the distribution function of εi), whereas LTS can be applied only if λ ∈ ⟨1/2, 1⟩

and hn = [λn] are known. Specifically to achieve asymptotically the breakdown point

1/2, we have to use λ = 1/2 in LTS. On the other hand, we will show in Section

4 that RLTS with the adaptive trimming λ̂n can achieve the same breakdown point

despite the fact that λ̂n ∈ ⟨1/2, 1⟩ and even that λ̂n → 1 if εi ∼ F+ = F+
0 in (1).

Finally, let us note that the choice of trimming sequences λ̂n and ĥn = [λ̂nn]

are not limited to those defined by (7). The number ĥn of observations included in

the RLTS objective function can be determined in practically any way as long as

limn→∞ ĥn/n exists. In this context, it is beneficial to consider a specific example of

discretized trimming constants. Suppose that some initial estimates β̂0
n and σ̂0

n and

trimming sequences λ̂n and ĥn are given. Additionally, let Λ = {λj}D+1
j=0 , D ∈ N, be

a discrete set of λ-values such that 1/2 = λ0 < λ1 < . . . < λD < λD+1 = 1; for

example, one could impose that trimming constants λ are to be estimated only up

to one (Λ = {0.5, 0.6, . . . , 1.0}) or two digits (Λ = {0.50, 0.51, . . . , 1.00}). To map

the estimated λ̂n to the set Λ, we further need a decreasing sequence {ηn}n∈N that

satisfies 0 < ηn < minj=0,...,D(λj+1 − λj)/4 and slowly converges to zero, ηn ↓ 0 as
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n → ∞. The discretized trimming sequence can be defined for n ∈ N as

λ̂d
n = max

k=0,...,D
{λ0} ∪ {λk : λk ≤ λ̂n − ηn}, (9)

and subsequently, ĥd
n = [λ̂d

nn]. While RLTS with the discretized trimming ĥd
n trims

more observations than necessary, λ̂d
n ≤ λ̂n, we will see that λ̂d

n converges to its limit

faster than the original sequence λ̂n and that RLTS based on λ̂d
n and ĥd

n will be

asymptotically normal even if errors in (1) do not possess finite second moments.

4. Fundamental properties

In this section, we will study the asymptotic behavior of trimming sequences ĥn and

λ̂n and the robust properties of RLTS under the data-dependent trimming.

One of the reasons motivating REWLS and RLTS was low relative efficiency of

many high breakdown-point estimators. To explain how RLTS improves upon this,

we show for example that λ̂n → 1 as n → ∞ if εi ∼ F+ = N(0, σ2) ≡ F+
0 in

(1). Hence for normal data, the objective function of RLTS becomes asymptotically

identical to the LS criterion. (Note that the following theorem also holds under more

general Assumption A introduced later in Section 5; one would have to rely on the

results of Engler and Nielsen (2009) instead of Gervini and Yohai (2002).)

Theorem 1. Assume that {(yi, xi)}i∈N is a random sample from model (1), that

{εi}i∈N, εi ∼ F, are independent and identically distributed random variables with

finite second moments and stochastically independent of xi, and that the initial esti-

mators β̂0
n and σ̂0

n are consistent, β̂0
n → β0 and σ̂0

n → σ2 in probability as n → ∞.

Then it holds that

1. if F is continuous, λ̂n → λ̂ = max
{
1− supt≥c max{0, F+

0 (t)− F+(t)}, 1/2
}

in
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probability as n → ∞. If additionally F+ = F+
0 , then λ̂ = 1.

2. if F is continuous and ηn = o(1) such that |λ̂n − λ̂| = op(ηn), then λ̂d
n → λ̂d =

maxk=0,...,D{λ0} ∪ {λk : λk < λ̂} in probability as n → ∞.

3. if β̂0
n and σ̂0

n are nτ -consistent, τ ≥ 1/4, F is symmetric and absolutely con-

tinuous with a differentiable density f such that f ′(z) and z2f ′(z) are bounded,

and xi possesses finite second moments, then |λ̂n − λ̂| = Op(n
− 1

2 ) as n → ∞.

4. if β̂0
n and σ̂0

n are nτ -consistent, τ > 0, ηn = o(1) such that n−τ = o(ηn), F is

absolutely continuous with a density f such that max{1, z}f(z) is bounded, and

xi is integrable, then |λ̂n − λ̂| = Op(n
−τ ) and |λ̂d

n − λ̂d| = Op(n
− 1

2 ) as n → ∞.

Theorem 1 shows that λ̂n and λ̂d
n have well defined limits, and if F+ = F+

0 ,

these limits are 1 and maxλk<1 λk, respectively. The convergence rates of both λ̂n

and λ̂d
n equal to n− 1

2 if the initial estimators are
√
n consistent. If β̂0

n and σ̂0
n are

just nτ -consistent, τ ∈ (1/4, 1/2), λ̂n can converge at the faster rate n− 1
2 only for

symmetrically distributed errors εi, whereas discretized λ̂d
n converges at the rate n− 1

2

irrespective of the error distribution as long as ηn converges to zero slower than n−τ

(this is not a limitation because ηn can be chosen arbitrarily).

Next, another feature of the RLTS estimator is that, similarly to REWLS, it trims

only a (small) adaptively chosen proportion of observations. To show that this feature

does not reduce the breakdown properties of RLTS compared to the initial estimator,

we first have to define the breakdown point. Given a random sample Z = (yi, xi)
n
i=1,

the finite-sample breakdown point of a linear-regression estimator β̂n = T{(yi, xi)
n
i=1}

can be defined as (Rousseeuw and Leroy, 1987)

ε∗n(T, Z) = max
m≥0

{
m

n
: max
Im={i1,...,im}

sup
(ỹi,x̃i):i∈Im

∥∥∥T {
(yi, xi)i∈{1,...,n}\Im ∪ (ỹi, x̃i)i∈Im

}∥∥∥ < ∞

}
.
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In other words, it is the maximal number m of observations that can be replaced by

arbitrary values (ỹi, x̃i), i ∈ Im, without making the estimate infinite and completely

uninformative. The asymptotic breakdown point of the estimator T is then the limit

ε∗(T ) = limn→∞ ε∗n(T, Z), providing it exists.

Now, we show that the breakdown point of RLTS preserves the breakdown point

of the initial estimator β̂0
n if σ̂0

n is the standardized median absolute deviation (MAD)

estimator, σ̂0
n = MADi=1,...,nri(β̂

0
n)/Φ

−1(3/4), which has the breakdown point 1/2 for

continuously distributed εi (Davies and Gather, 2005). The claim however holds also

for other high breakdown-point M-estimators of scale (Gervini and Yohai, 2002).

Theorem 2. Let Z = (yi, xi)
n
i=1 be a random sample from model in (1), which is

almost surely in a general position for n > p, that is, any p + 1 points do not lie on

a hyperplane almost surely. Further, let ε0∗n (Z) be the finite-sample breakdown point

of an initial estimator β̂0
n of regression parameters with limit ε0∗ = limn→∞ ε0∗n (Z).

If σ̂0
n = MADi=1,...,nri(β̂

0
n)/Φ

−1(3/4) and F0 has a finite variance, the finite-sample

breakdown point ε1∗n (Z) of the RLTS estimator using trimming ĥn or ĥd
n is larger than

ε0∗n (Z), ε1∗n (Z) ≥ min{ε0∗n (Z), {[n/2]− (p+ 1)} /n}, and tends to ε0∗ as n → ∞.

In Theorem 2, we limit ourselves only to independent observations so that the tra-

ditional definition of the breakdown point holds. Under dependence, exact breakdown-

point results often depend on a specific model; see Genton and Lucas (2003), who

indicate that the breakdown point ε∗n(Z) of an estimator in cross-sectional regression

reduces to ε∗n(Z)/(1 +L) in time-series models with at most the Lth lagged variable.

There are other characteristics of global robustness than just the breakdown point,

for example, the maximum bias of an estimator caused by a given fraction of outliers.

Since such a measure is not easy to derive theoretically, we attempt to estimate the

maximum bias of RLTS by means of simulations in Section 6.
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5. Asymptotic properties

In this section, we first introduce the assumptions necessary for proving the main

asymptotic results. Later, the asymptotic distribution of LTS and RLTS are derived.

5.1 Assumptions

Let us now introduce some notation and definitions. First, the distribution functions

of εi and ε2i in model (1) are referred to as F and G, respectively, their density func-

tions are denoted f and g, provided that they exist, and the corresponding quantile

functions are F−1 and G−1, respectively. More generally, the distribution functions of

ri(β) and r2i (β) are denoted Fβ and Gβ and the corresponding quantile functions are

F−1
β and G−1

β , respectively (i.e., F ≡ Fβ0 and G ≡ Gβ0). Next, the true parameter

value in model (1) is referred to by β0, where the first element of vector β0 is assumed

to represent the intercept. The true parameter value with the intercept being changed

by a constant C is denoted β0
C , that is, β0

C = β0 + (C, 0, . . . , 0)⊤.

Further, the concept of β-mixing is introduced, which is central to the assumptions

made here. A sequence of random variables {xi}i∈N is said to be absolutely regular (or

β-mixing) if ωm = supi∈N E{supB∈σf
i+m

|P (B|σp
i )− P (B)|} → 0 as m → ∞, where σ-

algebras σp
i = σ(xi, xi−1, . . .) and σf

i = σ(xi, xi+1, . . .); see Davidson (1994) for details.

Numbers ωm,m ∈ N, are called mixing coefficients. For example, a stationary ARMA

process with continuously distributed innovations is absolutely regular.

Now, the assumptions necessary to derive the asymptotic distribution of LTS and

RLTS are presented. Let us only recall in this context that λ ∈ ⟨1/2, 1⟩ refers to the

limits limn→∞ hn/n or limn→∞ ĥn/n.

Assumption A
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A1 Random vectors {(yi, xi)}i∈N form a strongly stationary absolutely regular se-

quence with mixing coefficients ωm satisfying mr/(r−2)(logm)2(r−1)/(r−2)ωm → 0

as m → ∞ for some r > 2 and have finite rth moments.

A2 Let {εi}i∈N be a sequence of random variables with finite second moments and

E(εi|xi) = 0. The unconditional distribution function F of εi is assumed to be

strictly unimodal and absolutely continuous and its density function f has to be

bounded and continuously differentiable. Further, εi has to be symmetrically

distributed condionally on xi or to be independent of xi.

A3 Let Qs(λ) = E{xix
⊤
i I[|F (εi) − F (−εi − 2C)| ≤ λ]} be a nonsingular matrix for

any fixed C ∈ R.

A4 Assume that supβ∈Rp supz>α gβ(z) < ∞ for any α > 0, and if λ < 1, that

infβ∈Rp infz∈(−δ,δ) gβ
(
G−1

β (λ) + z
)
> 0 for some δ.

Assumption A1 formulates standard conditions of the (uniform) central limit theorem.

For independent (yi, xi), the existence of finite second moments is sufficient, r = 2.

Assumption A2 presents standard assumptions on the error term εi, although they

are more restrictive than necessary for the sake of simplicity. For example, if λ < 1 is

imposed (e.g., by using the discretized trimming sequence λ̂d
n), only trimmed moments

such as E{ε2i · I(ε2i ≤ ε2[hn]
)} have to exist (Čížek, 2008). Similarly, random variables

εi and xi are assumed to be independent if F is asymmetric to avoid specifying an

adequate kind of dependence between εi and xi. The strict unimodality of F is

needed for the identification of an intercept and can be relaxed if only slopes have

to be identified. On the other hand, a differentiable density f is necessary when the

asymptotic behavior of order statistics is analyzed (cf. Stromberg et al., 2000).

Assumption A3 formulates an analog of the standard full-rank condition, E(xix
⊤
i ) >
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0, taking into account that some observations are trimmed from the (R)LTS objective

function. If εi is independent of xi, Assumption A3 is equivalent to E(xix
⊤
i ) > 0. Ad-

ditionally, Assumption A3 has to hold only for C = 0 if εi is symmetrically distributed

conditionally on xi.

Assumption A4 formalizes the fact that the distribution Gβ should be absolutely

continuous: its density should not approach ∞ at any point and any β, which would

correspond to the distribution becoming discontinuous at some point. Assumption A4

is usually implied by F ≡ Fβ0 being absolutely continuous with a density function f ≡

fβ0 positive, bounded and differentiable around the points of trimming ±
√
G−1(λ);

see Čížek (2006) for the case of εi and xi being stochastically independent.

5.2 Asymptotic normality

Let us derive the asymptotic results for LTS, that is, estimator (2) defined by a

deterministic sequence of trimming constants hn = [λn], n ∈ N, for some λ ∈ ⟨1/2, 1⟩.

Theorem 3. Let Assumption A hold and let C solve the equation E{(εi + C)I[(εi +

C)2 ≤ q2λ,C]} = 0, where qλ,C =
√

G−1
β0
C
(λ). Next, let Qs(λ) = E[xix

⊤
i I((εi + C)2 ≤ q2λ,C)],

Js(λ) = −E[xix
⊤
i qλ,C{fi (−qλ,C)+ fi (qλ,C)}], and Qs(λ)+Js(λ) be a non-singular ma-

trix, where fi represents the conditional distribution of (εi + C)|xi. Then the LTS

estimator β̂
(LTS)
n defined by trimming hn = [λn] for n ∈ N and λ ∈ ⟨1/2, 1⟩ is a

√
n-

consistent and asymptotically normal estimator of the unique β0
C,

√
n(β̂

(LTS)
n −β0

C)
L→

N(0, V (λ)) as n → ∞, where the asymptotic covariance matrix equals

V (λ) = {Qs(λ) + Js(λ)}−1Σ(λ){Qs(λ) + Js(λ)}−1 (10)

and

Σ(λ) = E

[
∞∑

j=−∞

(ε1 + C)(ε1+|j| + C)x1x
⊤
1+|j|I((ε1 + C)2 ≤ q2λ,C)I((ε1+|j| + C)2 ≤ q2λ,C)

]
.
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Theorem 3 generalizes the existing asymptotic results concerning LTS (e.g., Čížek,

2006) to the case of heteroscedastic, asymmetrically distributed, or serially correlated

errors and facilitates new applications of LTS (e.g., Aquaro and Čížek, 2010). By

Theorem 3, LTS identifies β0
C = β0 + (C, 0, . . . , 0)⊤, that is, the slope parameters are

consistently estimated and the intercept estimate is asymptotically “shifted” by C.

Since ri(β
0
C) = εi +C, εi +C can be consistently estimated by the regression residuals

yi−x⊤
i β̂

(LTS)
n . This enables the estimation of functions of ri(β0

C) = εi+C including the

distribution and quantile functions Gβ0
C

and G−1
β0
C
, the density function fi of (εi+C)|xi,

and the asymptotic variance matrix V (λ) (see Čížek, 2010). However, if the errors

εi are symmetrically distributed, C = 0 and LTS identifies all regression parameters

including intercept. In addition, if εi is independent of xi and εj, j ̸= i, and fi = f ,

the asymptotic variance (10) reduces to the one found for LTS by Čížek (2006).

On the other hand, the proposed RLTS estimator uses data-dependent (random)

trimming sequences ĥn = [λ̂nn] and ĥd
n = [λ̂d

nn], see Section 3. They nonetheless

have, similarly to deterministic weights, well-defined limits limn→∞ ĥn/n = λ̂ and

limn→∞ ĥd
n/n = λ̂d, where λ̂n and λ̂d

n converge to these limits at rate n− 1
2 by Theorem 1

(to achieve this in the case of λ̂n, the initial estimators have to be
√
n consistent or the

error distribution has to be symmetric). In the following theorem, we can therefore

show that the asymptotic distribution of RLTS is the same as the one specified in

Theorem 3 for LTS using the sequence of trimming hn = [λ̂n], n ∈ N.

Theorem 4. Let the assumptions of Theorem 3 hold. Consider the RLTS estimator

β̂
(RLTS)
n defined by a trimming sequence {ĥn}n∈N such that ĥn/n = [λ̂nn]/n → λ̂ ∈

⟨1/2, 1⟩ in probability and |λ̂n − λ̂| = Op(n
− 1

2 ) as n → ∞. Then

√
n
(
β̂(RLTS)
n − β̂(LTS)

n

)
= (KOp(1), 0, . . . , 0)

⊤ + op(1) (11)
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as n → ∞, where K = I(“εi is asymmetrically distributed”).

This result shows that the RLTS estimator converges at
√
n rate and follows

asymptotically the same normal distribution as LTS with the same (limit) amount

of trimming. This result is independent of the initial estimate under very general

conditions. On the one hand, the initial first-stage estimator has to be only nτ -

consistent, τ > 0, as long as it guarantees |ĥn/n → λ̂| = Op(n
− 1

2 ) as n → ∞, see

Theorem 1. On the other hand, errors are allowed to be heteroscedastic, asymmetric,

or serially correlated. This contrasts with the necessary assumptions, for example,

iid symmetric errors, required by the existing one- and two-step robust methods

such as the one-step M-estimators (cf. Simpson et al., 1992). Thus, RLTS improves

the convergence rate of the initial estimator, and at the same time, is first-order

asymptotically independent of the initial estimator. The only limitation is that this

equivalence of RLTS and LTS does not hold for the estimate of intercept if the errors

εi are asymmetrically distributed. Note though that the majority of robust estimators

also does not identify the mean intercept under asymmetry (see e.g. Simpson et al.,

1992, and Stromberg et al., 2000).

6. Finite-sample properties

In this section, we present a Monte Carlo study done to assess finite-sample behav-

ior of the proposed RLTS estimator both under various error distributions (Section

6.1) and under the worst-case data contamination (Section 6.2). In particular, we

study to which extent the first-order asymptotic independence of RLTS on the ini-

tial estimator holds also in finite samples and what implications does it have for the

performance of RLTS. To this end, only trimming sequences ĥn = [λ̂nn] defined by

(7) are considered, which by definition exhibit more variation with respect to initial
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estimates than the discretized sequences ĥd
n. For comparison, we use the REWLS

estimator with the hard-rejection weights (4). Both estimators (using c = 2.5 in (6)

and (7)) are evaluated using three initial high breakdown-point estimators: the LMS,

LTS, and S estimators set up for the maximal breakdown point 1/2 (see Rousseeuw

and Leroy, 1987, for details). All initial robust estimators are computed using the

R-package ‘robustbase.’ The LS estimates are reported for comparison.

6.1 Behavior under various error distributions

We evaluate the performance of all estimators for the regression model

yi = 0.5 + x1i − 2x2i + εi, (12)

where x1i, x2i ∼ N(0, 1). The errors εi are generated from the standard normal

εi ∼ N(0, 1), heteroscedastic normal εi ∼ N(0, exp(x1i + x2i)), and asymmetric chi-

square εi ∼ χ2
4− 4 distributions, which are further referred to as NORM, NHET, and

CHISQ, respectively. Additionally, data OUT10 contaminated by 10% outliers are

studied: while 90% of observations are generated using model (12) and εi ∼ N(0, 1),

10% of observations are generated as x1i, x2i ∼ N(2, 1) and yi ∼ U(−20, 20), where

U(a, b) denotes the uniform distribution on ⟨a, b⟩.

The performance of each estimator T is measured by the mean squared error

(MSE). Having an experiment consisting of S simulated samples of size n, we obtain

S estimates β̂(T,s)
n , s = 1, . . ., S, and report MSE, MSE =

∑S
s=1

∑p
j=J |β̂

(T,s)
j,n −β0

j |2/S,

either for the whole parameter vector (J = 1) for designs with symmetrically dis-

tributed errors or only for the slope parameters (J = 2) for designs with asymmetri-

cally distributed errors. MSEs are in all cases evaluated for sample sizes from n = 25

to 400 and are based on 2500 simulated samples; see results in Table 1.
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Table 1: Mean squared errors of the LS, REWLS, and RLTS estimators in the linear
regression with normal, heterescedastic, contaminated, and asymmetric data.

Model Sample LS REWLS using RLTS using
size LMS LTS S LMS LTS S

NORM 25 0.139 0.507 0.371 0.309 0.223 0.210 0.211
50 0.064 0.144 0.118 0.105 0.087 0.084 0.084

100 0.031 0.047 0.044 0.040 0.038 0.038 0.037
200 0.015 0.019 0.019 0.018 0.018 0.018 0.018
400 0.008 0.009 0.009 0.009 0.009 0.009 0.009

NHET 25 0.545 0.598 0.504 0.452 0.396 0.386 0.386
50 0.268 0.228 0.208 0.189 0.167 0.168 0.168

100 0.135 0.108 0.099 0.089 0.085 0.085 0.084
200 0.068 0.053 0.050 0.043 0.043 0.043 0.043
400 0.034 0.030 0.028 0.022 0.022 0.022 0.022

OUT10 25 2.809 0.521 0.392 0.330 0.253 0.243 0.238
50 1.543 0.157 0.139 0.119 0.099 0.099 0.099

100 0.902 0.058 0.058 0.051 0.047 0.047 0.047
200 0.593 0.027 0.027 0.023 0.023 0.023 0.023
400 0.445 0.014 0.014 0.012 0.012 0.012 0.012

CHISQ 25 0.734 1.518 1.171 0.974 0.755 0.711 0.715
50 0.350 0.405 0.350 0.310 0.279 0.281 0.277

100 0.168 0.142 0.144 0.131 0.129 0.131 0.131
200 0.078 0.064 0.066 0.060 0.060 0.061 0.061
400 0.040 0.032 0.034 0.030 0.031 0.031 0.032

First, let us discuss the data NORM with the standard normal errors, for which

all compared estimators should be asymptotically equivalent to LS. In this case, LS

is the optimal estimator, and for n = 400, both REWLS and RLTS exhibit the same

MSEs, which are practically equal to those of LS. At smaller samples, the precision

of REWLS estimates depend on the initial estimates, which result in the 18%, 37%,

and 64% differences between the best and worst REWLS estimates at samples with

100, 50, and 25 observations, respectively. On the other hand, the differences in the

MSEs of RLTS do not exceed 5% for various initial estimators even at n = 25 and
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are negligible for n ≥ 100. Additionally, RLTS provides at smaller samples, n ≤ 100,

much smaller MSEs than REWLS.

Next, the data NHET with heteroscedastic normal errors represent data, where

trimming always takes place and REWLS thus depends on the initial estimator even

asymptotically. The results in Table 1 indicate that, at least for this type of het-

eroscedasticity, LS is not the optimal estimator anymore and it actually exhibits the

worst MSE for n ≥ 50. Although REWLS performs better than LS, its performance

considerably depends on the initial estimator: the MSE of REWLS estimates using

LMS or LTS as the initial estimator are always 20–30% or 10–20% larger than those

obtained with the initial S estimator. On the contrary, RLTS behaves practically

independently of the initial estimator for n ≥ 50 and provides the smallest MSEs.

Now, we analyze data OUT10 with normal errors, but contaminated by 10%

outliers this time. The behavior of REWLS and RLTS is similar to the case with

data NORM, whereas LS is extremely biased. The performance of RELWS depends

on the initial estimator, strongly at small samples and less so at larger samples (for

n ≥ 100, the differences in MSEs due to the initial estimator used with REWLS are

around 15%). The MSEs of RLTS are independent of the initial estimator at samples

with n ≥ 50 and significantly smaller than those of REWLS at small samples.

Finally, data CHISQ with asymmetrically distributed errors are studied. In Ta-

ble 1, the MSEs for the slope parameters are reported. Again, LS is not optimal and

exhibits the largest MSEs of all the estimators for n ≥ 100. As in the previous cases,

the RLTS results depend much less on the initial estimator than the REWLS results,

and additionally, RLTS performs much better than REWLS in small samples with

n ≤ 50. The only surprising result is that both two-step estimators perform generally

better using LMS rather than LTS as the initial estimator for n ≥ 100, although this

might be attributed to the fact that only slope parameters are considered.
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Altogether, RLTS preserves its asymptotic independence of the initial estimator

also in finite samples to a large extent. Typically, the differences in MSEs due to

the choice of initial estimator are negligible for n ≥ 50. Additionally, RLTS exhibits

much smaller MSEs than REWLS in very small samples with n ≤ 50 and outperforms

LS in all models except data NORM (this is true also for errors from the Student or

double exponential distribution, for instance, as unreported simulations show).

6.2 Behavior under point contamination

In Section 6.1, RLTS and REWLS were studied under various distributional schemes.

To estimate the worst effect of outliers on an estimator, we consider again normal

data with two explanatory variables, which are now contaminated by several identical

outliers. For a given sample size n and a contamination fraction α ∈ (0, 0.5), the

point-contamination model can be defined as follows: n− [αn] observations follow the

normal model yi = 0+ 0x1i +0x2i + εi, where x1i, x2i ∼ N(0, 1) and εi ∼ N(0, 1); the

remaining [αn] observations are identical outliers fixed at, without loss of generality

due to the sphericity of the normal model, x1i = x1 ∈ R and yi = Ko ≥ 0. We consider

n ∈ {25, 50, 100}, α ∈ {0.05, 0.10, 0.20}, and x1 ∈ {1, 8}, where x1 = 1 corresponds to

low-leverage contamination and x1 = 8 to high-leverage contamination. The values

of Ko vary on a grid from 0 to 50 (higher values of Ko do not affect the results)

and, for each estimator, the values of Ko leading to the worst MSE are determined.

The maximum MSEs of REWLS and 2S-LWS estimators based on the minimax-bias

LMS estimator for x1 = 1 and x1 = 8 evaluated using 1500 simulations are reported

in Table 2. Larger sample sizes are not reported since the results for REWLS and

2S-LWS are rather similar, especially for n = 400.

The maximum MSEs are smaller for x1 = 1 than for x1 = 8, but the overall pattern
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Table 2: The maximum mean squared errors of REWLS and RLTS under the point
contamination.

Contamination Sample x1 = 1 x1 = 8
[%] size REWLS RLTS REWLS RLTS
5 25 0.578 0.460 0.588 0.486

50 0.165 0.135 0.228 0.196
100 0.069 0.066 0.156 0.157

10 25 0.731 0.604 0.830 0.688
50 0.351 0.287 0.591 0.504

100 0.160 0.152 0.452 0.423

20 25 4.877 2.885 4.854 3.257
50 2.128 1.454 2.902 1.950

100 1.029 0.912 2.016 1.901

is similar. The maximum MSEs increase with an increasing level of contamination

and with a decreasing sample size. The MSEs of RLTS are generally smaller than

those of REWLS, but the differences are not very large for sample sizes n ≥ 100.

On the other hand, RLTS exhibits much smaller maximum MSEs at small sample

sizes similarly to simulations in Section 6.1. The differences are more pronounced

at higher levels of contamination, especially at 20%, where the maximum bias of

REWLS exceed that of RLTS by 45%–70%.

7. Conclusion

In this paper, the two-step robust estimation method RLTS is introduced, which com-

bines a high breakdown point and the asymptotic efficiency for Gaussian data. The

main feature of RLTS is its first-order asymptotic independence of the initial estima-

tor for a general underlying error distribution including heteroscedastic, asymmetric,

and serially correlated errors. This property permits an initial estimator to be se-

lected only with respect to its robust properties, allows easy and correct inference for
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robust RLTS estimates, and additionally, renders stable and precise estimates even in

very small samples. Although this method is proposed and discussed in the context of

linear regression, many extensions are straightforward. In particular, an extension of

the RLTS concept to nonlinear regression and maximum-likelihood based estimation

are feasible using the results of Čížek (2008).

Appendix

A. Proofs of the fundamental properties

Proof of Theorem 1: 1. Under the assumptions of the theorem, Gervini and Yohai

(2002, Lemma 4.1) state for dn and d0 defined in (6) and (5) that dn → d0 in probabil-

ity as n → ∞ since |dn − d0| ≤ supz∈R ∥F+
n (z)−F+(z)∥ = op(1). The claim 1 follows

from definitions (6) and (5) implying λ̂n = max{1−dn, 1/2} and λ̂ = max{1−d0, 1/2}

and the fact that d0 = supt≥c max{0, F+
0 (t)− F+(t)} = 0 if F+

0 = F+.

2. Suppose now that λ̂ ∈ (λk, λk+1⟩ for some k ∈ {0, . . . , D} (the case λ̂ =

λ0 = 1/2 follows from point 1). For any ε > 0, there is some n0 ∈ N such that

|λ̂n − λ̂| < ηn < (λ̂ − λk)/2 for n > n0 with probability higher than 1 − ε. Hence,

λ̂ ∈ (λk, λk+1⟩ implies λ̂n − 2ηn ∈ ⟨λk, λk+1), and by definition (9), λ̂d
n = λk for all

n > n0 with probability at least 1− ε. Thus, λ̂d
n → λk = λ̂d in probability as n → ∞.

3. Gervini and Yohai (2002, Lemma 4.2) proved under the assumptions of the

theorem that supz∈R |F+
n (z)−F+(z)| = Op(n

−1/2) for F being symmetric. The claim 3

follows from the inequality |λ̂n − λ̂| ≤ |dn − d0| ≤ supz∈R |F+
n (z)− F+(z)|.

4. The proof of Gervini and Yohai (2002, Lemma 4.2) shows that supz∈R |F+
n (z)−

F+(z)| = Op(n
−τ ) if β̂0

n and σ̂0
n are nτ -consistent (only the density f = F ′ and one

moment of |xi| have to exist because the first-order Taylor expansion is used instead of
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the second-order Taylor expansion in point 3). Next, |λ̂n−λ̂| ≤ supz∈R |F+
n (z)−F+(z)|

implies |λ̂n − λ̂| = Op(n
−τ ) as n → ∞. Since n−τ = o(ηn), the assumption |λ̂n − λ̂| =

op(ηn) of point 2 holds. In point 2, we showed that, for λ̂ ∈ (λk, λk+1⟩ and any ε > 0,

P (λ̂d
n = λk = λ̂d) > 1−ε for all n > n0 and some n0 ∈ N. Hence, |λ̂d

n− λ̂d| = Op(n
−α)

for any α > 0 (e.g., α = 1/2). �

Proof of Theorem 2: The breakdown point is derived only for RLTS with the

trimming sequence ĥn = [λ̂nn] defined by (7) because ĥd
n ≤ ĥn. In the linear model

(1), this guarantees that the breakdown point of RLTS with ĥd
n is higher than with

ĥn (at least if there are at most [n/2]− (p+ 1) contaminated observations).

For a given sample Z = {yi, xi}ni=1, let ε∗n(Z) = min{ε0∗n (Z), {[(n + 1)/2] − (p +

1)}/n}. The breakdown point of RLTS is larger than or equal to ε∗n(Z) if the RLTS

estimates β̂s
n obtained for samples Z0 = Z and Zs

m = {yi, xi}i∈{1,...,n}\Im ∪{ỹsi , x̃s
i}i∈Im

are uniformly bounded in s ∈ N for any m ≤ nε∗n(Z), an index set Im of size m, and

sequences of points {ỹsi , x̃s
i}s∈N, i ∈ Im (Zs

m represents a sample with m contaminated

observations). Note that m ≤ nε∗n(Z) ≤ [n/2] − (p + 1) and [n/2⌉ ≤ ĥn by (7), and

thus, p+1 ≤ ĥn−m. Hence, the objective function of RLTS at any sample Zs
m always

includes at least p+ 1 original non-contaminated points.

Now, the assumptions of the theorem correspond to those of Gervini and Yohai

(2002, Theorem 3.3). This is also true for the MAD scale estimator as shown in

Gervini and Yohai (2002, p. 18). We can thus apply Gervini and Yohai (2002, Theo-

rem 3.3) for the hard-rejection weights wi(β̂
0
n, σ̂

0
n) = I(|ri(β̂0

n)/σ̂
0
n| < tn) defining the

trimming constant ĥn =
∑n

i=1 wi(β̂
0
n, σ̂

0
n). In the proof of that theorem (equations

(32) and (35)), it is shown for w[i](β̂
0
n, σ̂

0
n) = I(|r[i](β̂0

n)/σ̂
0
n| < tn) that

1

n

ĥn∑
i=1

r2[i](β̂
0
n) =

1

n

n∑
i=1

w[i](β̂
0
n, σ̂

0
n)r

2
[i](β̂

0
n) ≤ c2 +

∫ +∞

−∞
u2dF (u) < +∞, (13)
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and for any p+ 1 indices 1 ≤ i1 < . . . < ip+1 ≤ n and β ∈ R, that

p+1∑
j=1

(yij − x⊤
ij
β)2 ≥ p+ 1

2
δ2(Z)∥β∥2 −

n∑
i=1

y2i , (14)

where δ(Z) = min∥v∥=1 min{|x⊤
ij
v| : 1 ≤ i1 < . . . < ip+1 ≤ n} > 0 as the points are in a

general position. Consequently, the RLTS estimates β̂s
n have to be uniformly bounded

in s ∈ N: on the one hand, the RLTS objective function is uniformly bounded at β̂0
n

by (13), and on the other hand, the RLTS objective function at β̂s
n would become

unbounded and larger than at β̂0
n if lim supn→∞ ∥β̂s

n∥ → +∞ by (14) because it always

contains at least p+ 1 non-contaminated points. Thus, RLTS does not breakdown if

m ≤ nε∗n(Z) points are contaminated, which closes the proof. �

B. Proofs of the asymptotic properties

Lemma 5. Let Assumption A hold and {λn}n∈N satisfy |λn−λ| = Op(n
− 1

2 ) for some

λ ∈ ⟨1/2, 1⟩ as n → ∞. Further, let µn and µ0 denote the solutions of equations

En(C;λn) = E{(εi + C)I((εi + C)2 ≤ (εi + C)2[λnn]
)} = 0 and E(C;λ) = E{(εi +

C)I((εi + C)2 ≤ G−1
C (λ))} = 0, respectively, where GC is the distribution function of

(εi + C)2. Then µn and µ0 exist, are unique, and E|µn − µ0| = O(n− 1
2 ) as n → ∞.

Proof: The solutions µn and µ0 exist since En(C;λ) and E(C;λ) converge to ±∞

for C → ±∞ and they are continuous in C. Consequently, solutions µn are uniformly

bounded: if supn∈N |µn| = +∞, supn∈N |En(µn;λn)| = +∞, which would contradict

the definition of µn. The uniqueness of µn and µ0 follows from the strict unimodality

of F . Now, for ε > 0 and K > 0, P (|λn − λ| < Kn− 1
2 ) > 1 − ε for any sufficiently

large n. Thus with probability 1 − ε, En(C;λn) − E(C;λ) → 0 uniformly in C as

n → ∞ by Čížek (2008, Corollary A.5), and consequently, µn → µ0 in probability.
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Next, since ∂E(µ0;λ)/∂C > 0 by Assumptions A3 and A4, there are some δ > 0

and K > 0 such that |E(C;λ)| ≥ K|C − µ0| for C ∈ U(µ0, δ). The consistency of

µn thus implies for some n0 ∈ N that µn ∈ U(µ0, δ) and |E(µn;λ)| ≥ K|µn − µ0|

with probability 1− ε for n > n0. As E(µn;λ) = E(µn;λ)− En(µn;λn) = Op(n
− 1

2 ) by

Čížek (2008, Corollary A.5), it follows that |µn − µ0| = Op(n
− 1

2 ) as n → ∞. Hence,

E|µn − µ0| = O(n− 1
2 ) because µn − µ0 is uniformly bounded. �

Proof of Theorem 3: First of all, the objective function of LTS equals

Sn(β;λ) =
n∑

i=1

r2i (β)I(r
2
i (β) ≤ r2[λn](β))

Therefore, we can now employ the existing asymptotic results for general trimmed

estimators introduced by Čížek (2008). In this context, note that Assumption A

covers all the assumptions relevant for the linear regression model used by Čížek

(2008) except for the identification assumptions. Hence, we can now employ the

results of Čížek (2008) once we verify the identification assumptions, which state that

the limit of Sn(β;λ)/n has a unique global minimum.

To do so, note that minimizing the objective function Sn(β;λ) leads to the nor-

mal equations ∂Sn(β;λ)/∂β = 0. Čížek (2006, Lemma 1) implies that the normal

equations and their derivative wrt. β can almost surely be expressed as (k = 1, 2)

S(k)
n (β;λ) =

n∑
i=1

[r2i (β)]
(k)I(r2i (β) ≤ r2[λn](β)) = 0. (15)

Moreover, Assumption A allows us to use the uniform-convergence result of Čížek

(2008, Lemma A.1), which implies uniformly in β (over any compact subset of Rp) that

Sn(β;λ)/n → E{r2i (β)I(r2i (β) ≤ G−1
β (λ))} = S(β;λ), S

′
n(β;λ)/n → E{−2ri(β)xi·

I(r2i (β) ≤ G−1
β (λ))} = D(β;λ), and 2Qn(β;λ) = S

′′
n(β;λ) → E{2xix

⊤
i I(r

2
i (β) ≤ G−1

β (λ))} =
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2Q(β;λ) in probability for n → ∞, where r2i (β) ∼ Gβ. The matrix Q(β;λ) is a posi-

tive semidefinite matrix, and at β0
C , Q(β0

C ;λ) is a positive definite matrix for any C ∈

R (Assumption A3) because r2i (β
0
C) = (εi+C)2. This guarantees that the asymptotic

objective function S(β;λ) has a unique global minimum if the minimum of S(β;λ) is

attained at some β0
C . If εi|xi is symmetric, D(β0;λ) = 0 since ri(β

0) = εi and S(β;λ)

has the unique global minimum at β0 = β0
C for C = 0. If εi|xi is asymmetric, let us first

denote C the solution of the equation E(C;λ) = E{ri(β0
C)I(r

2
i (β

0
C) ≤ G−1

β0
C
(λ))} = 0,

where ri(β
0
C) = εi + C (it exists and is unique by Lemma 5). Hence, the indepen-

dence of εi and xi (Assumption A2) implies that D(β0
C;λ) = 0 and the unique global

minimum is at β0
C ̸= β0. In both cases, the asymptotic objective function uniquely

identifies a parameter vector β0
C, which differs from β0 only by the value of intercept

if C ̸= 0. Thus, the identification assumptions are satisfied at β0
C.

For a sufficiently large n, we will now show that there is a solution to the normal

equations (15) in an arbitrarily small neighborhood of β0
C. If such a solution exists, it

has to be unique (with an arbitrarily high probability) and equal to the LTS estimate

minimizing Sn(β;λ) because D(β0
C;λ) = 0, Qn(β;λ) is positive definite around β0

C,

and positive semidefinite elsewhere: due to the continuity of Q(β;λ) at β0
C and the

uniform convergence of Qn(β;λ) to Q(β;λ), it is possible for ε > 0 to find some

n0 ∈ N such that the matrix Qn(β;λ) is positive definite in a neighborhood of β0
C

with a probability greater than 1− ε for any n > n0.

To find the solution of (15) for k = 1, the asymptotic linearity of LTS is em-

ployed in a neighborhood U(β0
C, n

− 1
2M) of β0

C, where M > 0. To characterize β ∈

U(β0
C, n

− 1
2M), one can express it as β = β0

C−n− 1
2 t for t ∈ TM = {t : ∥t∥ ≤ M}. Thus,

using the asymptotic linearity theorem (Čížek, 2008; Lemma A.7) for LTS,

∂Sn(β
0
C − n− 1

2 t;λ)

∂β
=

∂Sn(β
0
C;λ)

∂β
− 2{Qs(λ) + Js(λ)} · n

1
2 t+ op(1) (16)
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uniformly for all t ∈ TM and M > 0, where Qs(λ) = E{xix
⊤
i I(r

2
i (β

0
C) ≤ G−1

β0
C
(λ))} and

Js(λ) =
∂

∂β⊤ E{−xiri(β
0
C)I(r

2
i (β) ≤ G−1

β (λ))}
∣∣
β=β0

C

. An analytic form of Js(λ) for λ <

1 was derived by Čížek (2009, Lemma 3): Js(λ) = E
{
−xix

⊤
i qλ [fi(−qλ) + fi(qλ)]

}
,

where fi denotes the conditional probability density function of εi|xi and qλ =√
G−1

β0
C
(λ) (for λ = 1, it trivially holds Js(λ) = 0).

Thus, we have to show that, with an arbitrarily high probability, there is a t∗n ∈ TM

such that β0
C − n− 1

2 t∗n solves the normal equations S
′
n(β

0
C − n− 1

2 t∗n;λ) = 0. At such a

solution t∗n, equation (16) implies S
′
n(β

0
C;λ) = 2{Qs(λ) + Js(λ)} · n 1

2 t∗n + op(1) and,

recalling that Qs(λ) + Js(λ) is assumed to be a nonsingular matrix,

t∗n = {Qs(λ) + Js(λ)}−1 · 1

2
√
n
S

′

n(β
0
C;λ) + op(n

− 1
2 ) (17)

as n → ∞. To prove that t∗n is bounded in probability, we have to show that

−1

2
√
n
S

′

n(β
0
C;λ) =

1√
n

n∑
i=1

ri(β
0
C)xiI(r

2
i

(
β0
C

)
≤ r2[λn]

(
β0
C

)
) (18)

=
1√
n

n∑
i=1

ri(β
0
C)xiI(r

2
i

(
β0
C

)
≤ G−1

β0
C
(λ)) + op(1) (19)

is bounded in probability (the equality was derived in Čížek, 2008, Theorem 3.2,

and in particular, equations (B.3) and (B.4)). Since ri(β
0
C) = εi + C, the right-hand

side of (19) is a sum of identically distributed random variables with zero mean and

finite second moments (see also next paragraph), and as such, it is asymptotically

normally distributed (e.g., Arcones and Yu, 1994). Hence, (19) and t∗n in (17) are

bounded in probability, and for some n0 ∈ N and ε > 0, the right-hand side of (16)

equals zero for some t∗n ∈ TM , n > n0, with probability higher than 1 − ε. Then

β0 − n− 1
2 t∗n is the unique solution of (15), and consequently, the LTS estimate itself,
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β̂
(LTS,λ)
n = β0 − n− 1

2 t∗n. Apparently, it holds that
√
n
(
β̂
(LTS,λ)
n − β0

)
= t∗n = Op(1),

which implies the
√
n consistency of LTS.

Finally, we have to prove the asymptotic normality of LTS, that is, to find the

asymptotic distribution of t∗n. Because Qs(λ) and Js(λ) in (17) are constants, we

just have to derive the asymptotic distribution of (19). The summands of (19),

ri(β
0
C)x

⊤
i I(r

2
i (β

0
C) ≤ G−1

β0
C
(λ)), form by the construction of β0

C (ri(β0
C) = εi + C) a se-

quence of identically distributed random variables with zero mean and finite variances

because the expectation of r2i (β0
C)xix

⊤
i I(r

2
i (β

0
C) ≤ G−1

β0
C
(λ)) is finite by Assumption A3.

Hence, Assumption A1 allows us to employ the central limit theorem for β-mixing

sequences by Arcones and Yu (1994) for (19), proving that (19) is asymptotically

normal with finite variance

Σ(λ) = E
∞∑

j=−∞

(ε1+C)(ε1+|j|+C)x1x
⊤
1+|j|I[(ε1+C)2 ≤ G−1

β0
C
(λ)]I[(ε1+|j|+C)2 ≤ G−1

β0
C
(λ)].

By (17) and
√
n(β̂

(LTS,λ)
n − β0

C) = t∗n, it follows that
√
n(β̂

(LTS,λ)
n − β0

C)
L→ N(0, V (λ)),

where V (λ) = {Qs(λ) + Js(λ)}−1Σ(λ){Qs(λ) + Js(λ)}−1 due to ri(β
0
C) = εi + C. �

Proof of Theorem 4: Assumption A and the identification assumptions verified in

the proof of Theorem 3 allow us again to employ the results of Čížek (2008). Since

|λ̂n − λ̂| = Op(n
− 1

2 ), the asymptotic linearity stated by Čížek (2008; Lemma A.7)

applies also for the stochastic sequence of trimming constants λ̂n with an arbitrar-

ily high probability. Analogously to (16), we can thus write S
′
n(β

0
C − n− 1

2 t; λ̂n) =

Sn(β
0
C; λ̂n)− 2{Qs(λ̂)+Js(λ̂)} ·n

1
2 t+ op(1). Following the steps (16)–(17) of the proof

of Theorem 3 to solve for t, we find that the solution t̂∗n =
√
n(β̂

(LTS,λ̂n)
n − β0

C) equals

√
n(β̂(LTS,λ̂n)

n − β0
C) = {Qs(λ̂) + Js(λ̂)}−1 · n− 1

2S
′

n(β
0
C; λ̂n) + op(1). (20)
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Naturally, equation (17) formulated for the (fixed) limit value λ̂ holds as well:

√
n(β̂(LTS,λ̂)

n − β0
C) = {Qs(λ̂) + Js(λ̂)}−1 · n− 1

2S
′

n(β
0
C; λ̂) + op(1). (21)

Since LTS with a fixed λ̂ is defined by (21) and RLTS with a data-dependent λ̂n by

(20), the claim of the theorem is equivalent to showing for n → ∞ that

{Qs(λ̂) + Js(λ̂)}−1[n− 1
2S

′

n(β
0
C; λ̂n)− n− 1

2S
′

n(β
0
C; λ̂)] = (Op(1), 0, . . . , 0)

⊤ + op(1). (22)

Let us now define En(C;λn) = E{ri(β0
C)I(r

2
i (β

0
C) ≤ r2[λnn]

(β0
C))} and let β0

C1 and β0
C2

denote the solutions of En(C;λn1) = 0 for λn1 = λ̂n and of En(C;λn2) = 0 for λn2 = λ̂.

Since ∥β0
Cj − β0

C∥ = Op(n
− 1

2 ) for j = 1, 2 by Lemma 5, the asymptotic linearity of

Čížek (2008; Lemma A.7) also applies to β0
Cj: S

′
n(β

0
Cj;λnj) = S

′
n(β

0
C;λnj)− 2{Qs(λ̂) +

Js(λ̂)} · n 1
2{β0

Cj − β0
C} + op(1), j = 1, 2. After differencing these two equations for

j = 1, 2, the left-hand side of (22) can be expressed as

{Qs(λ̂) + Js(λ̂)}−1[n− 1
2S

′

n(β
0
C1; λ̂n)− n− 1

2S
′

n(β
0
C2; λ̂)] + 2n

1
2{β0

C1 − β0
C2}+ op(1).

As n
1
2{β0

C1 − β0
C2} = Op(1) by Lemma 5, we can prove (22) by showing that

{Qs(λ̂) + Js(λ̂)}−1[n− 1
2S

′

n(β
0
C1; λ̂n)− n− 1

2S
′

n(β
0
C2; λ̂)] = op(1). (23)

Next, we can rewrite the difference [S
′
n(β

0
C1; λ̂n)− S

′
n(β

0
C2; λ̂)]/

√
n as

1√
n

n∑
i=1

[
ri(β

0
C1)xiI(r

2
i

(
β0
C1

)
≤ r2

[λ̂nn]

(
β0
C1

)
)− ri(β

0
C2)xiI(r

2
i

(
β0
C2

)
≤ r2

[λ̂n]

(
β0
C2

)
)
]
. (24)

Denoting νi the summands in the sum (24), νi = ri(β
0
C1)xiI(r

2
i (β

0
C1) ≤ r2

[λ̂nn]
(β0

C1))−
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ri(β
0
C2)xiI(r

2
i (β

0
C2) ≤ r2

[λ̂n]
(β0

C2)), we can observe that the random vectors νi have zero

means: if εi is asymmetrically distributed, this follows from the definition of β0
Cj and

the independence of xi; if εi|xi is symmetrically distributed, this follows from β0
Cj = β0

and ri(β
0
Cj) = εi, j = 1, 2. We will now show that the variance of nανi is bounded for

0 < α < 1/4. Specifically,

nανi = nα
{
ri(β

0
C1)− ri(β

0
C2)

}
xiI(r

2
i

(
β0
C1

)
≤ r2

[λ̂nn]

(
β0
C1

)
)

+ nαri(β
0
C2)xi

[
I(r2i

(
β0
C1

)
≤ r2

[λ̂nn]

(
β0
C1

)
)− I(r2i

(
β0
C2

)
≤ r2

[λ̂n]

(
β0
C2

)
)
]
,

and using the Minkowski inequality, E[nανi]
2 can be thus bounded by

E[nνα
i ]

2 ≤ E
∥∥nα

{
ri(β

0
C1)− ri(β

0
C2)

}
xi

∥∥2 (25)

+ E
∥∥∥nαri(β

0
C2)xi

[
I(r2i

(
β0
C1

)
≤ r2

[λ̂nn]

(
β0
C1

)
)− I(r2i

(
β0
C2

)
≤ r2

[λ̂n]

(
β0
C2

)
)
]∥∥∥2

.(26)

Since ri(β0
Cj) = εi+Cj, the first term (25) behaves as o(1) for n → ∞ due to Lemma 5.

Because both r2
[λ̂nn]

(β0
C1) → G−1

β0
C
(λ) and r2

[λ̂n]
(β0

C2) → G−1
β0
C
(λ) as n → ∞, the triangle

inequality and Čížek (2008, Corollary A.5) imply that (26) is also asymptotically

negligible. Hence, we can apply the law of large numbers for L2-mixingales (Davidson

and de Jong, 1997, Corollary 2.1) to (24) written as n−1/2−α
∑n

i=1 n
ανi(K) → 0 for

some 0 < α < 1/4 in probability as n → ∞. Hence, (24) is negligible in probability

and (23) and (22) are valid, which concludes the proof. �
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