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Abstract

In this paper, the estimation of the regression mean using the Reweighted Nadaraya-Watson (RNW) estimator
has been considered. The RNW is a modification of the Nadaraya-Watson (NW) estimator in order to obtain
some more refinement estimator. We have considered some conditions under which the asymptotic normality of
the proposed estimator has been derived. Then we generalized this result to the multivariate case by considering
the estimation of the regression mean at distinct points.

Keywords: Nadaraya-Watson estimator, Reweighted Nadaraya-Watson estimator, regression mean, weighted
coefficient, asymptotic normality.

1. Introduction

Theory and methodology for nonparametric regression is now well developed for the case of the estimation of
the regression mean, to motivate the problem, consider a sequence of independent and identically distributed real
random variables {(X;,Y;)}-,; with a joint pdf f(x,y) as a bivariate random variable (X,Y). The simple
nonparametric regression function is written as

Y, =m(X,)+e (1.1)

where X;:i = 1,2,...,n are called the predictors, Y;:i = 1,2,...,n are the corresponding responses, m(X;) are
the unknown regression mean functions to be estimated nonparametrically, and €;:i = 1,2,...,n denote the
measurement errors, where  e~N(0, o2).

The regression mean function m(x) is the conditional mean, which is given by
_ _ vy
m(x) = E(Y|x) = [= 5= dy, (1.2)

where g(x) is the marginal density function of X. Using the kernel estimation, the regression mean function
m(x) is estimated by m(x), where

m(x):jmdy. (1.3)

Conditional density estimation was introduced by Rosenblatt (1969). A bias correction was proposed by
Hyndman et al. (1996). Fan et al. (1996) proposed a direct estimator based on a local polynomial estimation. One
of the most widely used and studied estimators in the literature is the one proposed independently by Nadaraya
(1964) and Watson (1964). Nadaraya—Watson kernel estimation is denoted by fyu (Y|x) and defined as,

fNW(.le) = ?:1 K,(y — Yi)WiNW(x) (1.4)

where,
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W (X): Kh(x_xi) (15)
| gKh(Xfxi)

This gives the NW estimator  7i(X;) of m(X;), where
M) = BE(Y|X = x) = 2= ViknG=X0) (1.6)

2?_11(}1()( Xl)

2. Reweighted Nadaraya-Watson Estimator

The large bias and boundary effects are considered to be the most important defects in the case of the
Nadaraya-Watson estimator. The Nadaraya-Watson estimator was treated and modified in order to obtain some
more refinement estimator, which is called the Reweighed Nadaraya-Watson (RNW) estimator, see Cai (2001),
De Gooiger and Zerom (2003).

The (RNW) estimator is derived by a slight modification of the well-known Nadaraya-Watson estimator, to
solve such disadvantages. The (RNW) conditional density estimator is defined by,

Faw (¥ [X) ZK w ™ (x) 2.1)
where,
Ti(X)K (x=X;) (2.2)
Zr X -X. )

where the probability weights 7, (x) are considered with the following constraints,

w ‘RNW (X )

7, (x) 20, Zn:fi(x)=1 and Zn:ri(x)(xi—x)Kh(x -X,)=0- (2.3)

These probability weights 7, (x ) will introduce a force to the Nadaraya-Watson weights w " (x ) and the next

step is how to evaluate these weights 7, (x ) using the conditions (2.3).

The way to indicate the unique solution of 7, (x) by maximizing the function ;'09(“ ) subjected to the

previous constraints via Lagrange multipliers.
Let G = log(r; (x))+,<(1—21i (x)j—anri ) (x; =X YK, (x; =X ).
i=1 i=1 i=1

Now differentiating the function G with respect to z; (X ), we obtain

G &1

= A - -X )
ot (X) izlz'i(x) - Z Xi X )
The solution can be derived directly by solving the equation oG -0,
or; (x)
Salha and Shekh Ahmed (2009) have showed that
7, (x) = ! (2.4)

n(A(x; =X )K, (x; =X )+1)’
where A can be derived as a unique minimizer of L (/1) where | (1) is defined by
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L(/l):—znllog(1+/1(xi X )K, (x =X )) (2.5)

The weighted coefficient 7, (x) depends on the computed A value and that makes (RNW) estimator is more
available in the practice.

3. Main Results

In this section, we state some conditions under which we derive the main two results in this paper. The first
result is stated in Theorem 1, where the asymptotic normality of the (RNW) estimator is shown. The second
result is presented in Theorem 2, where the result of Theorem 1 has been generalized to the case of multivariate.

First, we consider the following notations.

4, =J'qu(u)du
v, :Jquz(u)du

o?(x)=Var(Y,X, = x)
4. Conditions

Consider the following conditions:

Cl. The kernel K (-) is a symmetric and bounded density with a bounded support[-1, 1], and satisfies
Iu K (u)du =0, juZK (u)du <oo.

C2. For fixed X, g(x)>0, g() and o°() are continuous at X and m(:) has continuous second order

derivatives in neighborhood of X .
C3. The conditional density function of Y given X =x is bounded.

C4. E(IYI°|X; =U) < M < o forsome &> 2, inaneighborhood of X.

C5. lim h =0, and lim nh® =0.

h—o0 n—o

Now, we state and prove the first main result in this paper.

Theorem 1. Under the conditions C1-C5, the following holds:

M[rﬁ(x)— m(x)—% h2,m"(x)+0, (h? )}—D—> N (O, g(x)j K 2(u)du)

Proof .
¥, -m (), (0K, (x =X )
[ (x)=m(x)]==—7
iZ:l:Wi (X )K, (x =X;)
Z[Yi —m(X ) +m(X ) =m(x)w, (x)K, (x =X;)
gwi(X)Kh(X -X)
={(nh)# 3,49, }3; {10, (1)}, 3.1)
where
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o = B8R — MWK Cx = X0,

1
Jo == [m(X) = mEOIwi (K (x = X0,

i=1

and

1 n
Js == ) Wi Ki(x = X9,
i=1
Lemma 1. Under the conditions C1, C2 and C5, the following holds,

w, (x)=n"b; (x)t+o0, 1),

where

bi(x)=|:1+M(xi _X)Kh(x_xi)Kh(X_xi)i|l ,

g(x)

Proof. See De Gooiger and Zerom (2003).

Let & =Y, -m(X;)

JZ:%Z[m(Xi)—m(x )b, (x)K, (x =X, ). (32)
Lo
J, = b, (x )K, (x =X ).

Using Taylor expansion, we have

m (X)) =m () (¢, =m0+ ) 1o, (), ®3)

Lemma 2. Under the conditions C1-C5, the following hold

h2

Lo, = 7y2m”(x)g(x)+0p(h2)

2. J;=9(x)+0,().

Proof.

i) By Equations (3.2) and (3.3), we have

3, =21nizn1:m"(x)(xi—x)zbi(x)Kh(x—Xi)+Op(h2)
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=%m”(x)j(u—x)2Kh(x —u)g (u)du

:éyzm”(x)g(xﬁop(h).
i) Similarly
=libi (X Ky (x —u)g (u)du ZJKh (x —u)g (u)du +0, (1)

(x)[K, (u)du+0, (1) =g (x)+0, (1).
Now, 31:%%“@, A, =hb, (x) &K, (x =X, )-

Since, E(gi |xi):0, E (A )=0, thisimpliesthat E(J;) = 0.
Lemma 3. Under the conditions C1- C5, the following hold
3,—25N (00 (x)[K?(u)du).
Proof.
Var (J, _Var[ ZAJ ZVar )=Var (A, )=E (4,)
=h|[[b?(x)(r; -m (X, D) KE(x =X )F (XY )dX, dY,
=h v’ Yi|Xi=x dY, [KZ(x =X, )g (X,)dX, +o, (1)

=E(Y[X, =x IKZ )g (x —hu)du +o, (1)
=Var (Y, [X; =x)g (x) _[K u)du +o, (1).

To show the asymptotic normality distribution of J , we use Liapounov’s theorem. It is sufficient to show that,

fors>0,
1 2+(§
_§E|A'_E o @ N —o.
Pn = s !
[ZVar }
n d n
E‘Ai‘Zﬂi (n,1)1+EZE‘Ai‘2+O
pn — i=1 ~ — i=1 N 0
n 1+E n 1+—
{nZVar(Ai )} {ZVar(A, )}
i=1l i=1l
Now,
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PRV 246 L2\ 248 -2 248
() 2> A" = ()2 E[a, " =n 2E[A,[*" — 0, by C4.
i=1

Therefore, we have p, — 0, this completes the proof of the lemma. A combination of lemmas (1)-(3) and
Equation (3.1) completes the proof of Theorem 1.

In the next Theorem, we will generalize Theorem 1 to the case of multivariate. Schuster (1972) has generalized
the asymptotic normality of the Nadaraya-Watson estimator that was shown in Nadaraya (1965) by evaluating it
at distinct points.

Theorem 2. Suppose X, X,,...,X, are distinct points and g(x,)>0, for i=12,..,k. Then under the
conditions C1 to C5, we have
\/ﬁ(fﬁ(xl,xz, e Xp) — m(xq, Xq, ...xk))T - 7",

where Z"has a multivariate normal distribution with mean vector 0 and a diagonal covariance matrix

—lc werec__zm Z(u)du,i =
C =[c, ], where ¢, g(xi)IK()d’ 12,..k.

Proof. For simplicity, we will prove the theorem in the case k =2 . Also, we will use the techniques of Schuster
(1972).
For i=12

Voo (x,)=Y,U5 (%), Vo (x)=vh(v, (x,)-EV, (x,))
un<xs)=§um<xs>, V, ()= 2Va(x,)

W, (Xs ) = (U ni (Xl )’Vni (Xl )’ U, (Xz )’Vni (Xz ))’

Iz, =(U, ()W, (U, (LY, ()T

g(x)) W(x;) 0 0
_(K2(y uW(Xl) V(xl) 0 0
A_IK (u)d 0 0 g(x,) W (x,)]
00 Wix) Vix)

where, g (x)=[f (x,y)dy,W (x)=[yf (x,y)dy and v (x)=[y*f (x,y)dy.

Let Z be a four-variate normal random variable with zero mean vector and covariance matrix A.

143



www.ccsenet.org/ijsp International Journal of Statistics and Probability \ol. 4, No. 1; 2015

Lemma 4. Under the conditions C1 to C5, we haveZ —2—Z .

Proof.

Using Cramer-World theorem, let C =(c,,d,,c,,d,) in R* We wantto show thatczT —2>CZ".

The following hold for s=1,2 and r=1,2,s#r

1= EUZ (x.)=9g(x _[K (u)du +0O (h).
2- EV .[K u)du+0O (h).
3- EU, (x,V, IK u)du +0O (h).

4- EU, (x;)U, (x,)=0(h).
5 EV, (x,V, (x,)=0(h).

6- EU, (x,V, (x,)=0(h).
We will prove (2) to illustrate the method (the proof of the remaining completes using the same technigues.

(2) EVZ2(x,)= h(Evn’j2 (x,)-(EV, (x,)f )
:h[”Yh—fK{Xs hxi}vi(xs)f (X,Y,) dX dY,

_(J'J'Yh—zK [Xs;xi }vs(xs)f (xi,Yi)dxiinjz}

:hDJ'Yh—‘ZKZ(u)Ni (xs)f (x;—huY,)dudy,
_(”Yi K (uw, (x,)f (xs—hu,Yi)duin)z}

= [[y 72 ( X[ (x.Y,)=huf "(x,Y,) dudY, ]+O (h)
= Y7 (x,¥, ) dY, [K?(u)du=+0 (h)

_[K )du+O (h).

The proof of Lemma 4 can be obtained by using the same techniques of the proof of Lemma 1 in Schuster
(1972).

Now, let
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n n n

2= e (302 )0 0] 3V ) w ) S0 ()= ()} SV () w )]

i=1 i=1 i=1 i=1

Lemma 5. Under the condition of Lemma 4, the following holds 7z~ —2 7.

Proof. Let B, =(g(x,)- EU. (x,)w(x,)—EV, (x,) g(x,)-EU, (x,), w(x,)-EV, (x, )

For s=12
[EU. (x ‘j K Xs =2, (x,)g (u)du —g (x,)
zUK(u)g(xs—hu)du—g(xs)
=J'K(u){g(xs)—hug'(xs)+%}du+O(h2)—g(xs)
:‘g IuK u)du +0 (h*)-g (x,)+0O(h?)
<sup, g | —Iu K (u)du+0 (h*)-g(x,)+0 (h?*)=0(h?)
|EUn1(xs)—g(xs) :O(hz)
Similarly,

|Ev

‘HY j C(xF (XY, )dX Y, —w (x,)

:UYin(u)g(xs—hu)f (Xs —huY ; )dudY ; —w (x, )

=[J¥if (Vi b, —hw ) K (u)g (x, ~hu)du| =0 (h?).

1
Therefore, B =0 (h?). Thisimpliesthat, Z -Z.=(nh>)2 =0(1), usingC5.

To complete the proof, define the function H from R* and R? by

T
H (Y11y21y31y4):(§:—j1§_:J .

Let €=(g(x,),W(x,), g(x,),w (X)), andwrite Z" = (nh)%(l'n —-6)", where

LR DILCAD SRCRD STHCRD SICR)

=1 =1
Now, the proof of the theorem completes using the Mann-Wald Theorem.

5. Application (Simulation Study)
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In this section, the performance of the RNW kernel estimator in estimating the regression mean function is tested
using two simulated data. The performance of the estimator has been tested using the mean squared error (MSE),
which is defined by

SSE
n

MSE =

~

and the correlation coefficients between the predicted values y and the actual values y, R
by

32,5, , which is defined

2 _q_SSE
vy SSTO'

where, SSE = Z(yi _y)z denotes the total sum of errors, ssSTO :Z(yi _y)z denotes the total sum of squares

and Yy denotes the mean of actual values.

Also, a comparison between the RNW kernel estimator and the NW kernel estimator has been given. Two
samples of size 400 are simulated from the following two models.

The first model is

y =sin2z(1—x %) +xe,

where e~N(0,1) and ~uniform[0,1] ,and the second is

y =X sin2zx +e,

where e~N(0,0.1) and x~ uniform[0,1].

Figure 1 and Figure 2 present two scatter plots of the simulated data, the perfect curve, the RNW estimator and the
NW estimator for the first and second models, respectively. The results of the simulation studies are collected in
Table 1.

Table 1. Results of the simulation studies.

Model  Estimator Rf’y MSE

First RNW 0.9676385 0.0122138
NW 0.9573843 0.0160839

Second RNW 0.9485958 0.0068545
NW 0.9411828 0.0078424

—— RNW estimator
——~— NW estimator
—————— Perfect curve

0.0 0.2 0.4 0.6 0.8 1.0
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Figure 1. RNW and NW estimator for the first model

—— RNW estimator
——~—NW estimator
——————— Perfect curve

0.0 0.2 0.4 0.6 0.8 1.0

X

Figure 2. RNW and NW estimator for the second model

6. Conclusion

In this paper, we considered the RNW kernel estimator of the regression mean function. We derive the asymptotic
normality of the regression mean function at different conditional points. Two applications using simulated data
indicate that the performance of the RNW kernel estimator is reasonably good and it is better than the NW kernel
estimator.
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