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Abstract 

In this paper, the estimation of the regression mean using the Reweighted Nadaraya-Watson (RNW) estimator 

has been considered. The RNW is a modification of the Nadaraya-Watson (NW) estimator in order to obtain 

some more refinement estimator. We have considered some conditions under which the asymptotic normality of 

the proposed estimator has been derived. Then we generalized this result to the multivariate case by considering 

the estimation of the regression mean at distinct points. 

Keywords: Nadaraya-Watson estimator, Reweighted Nadaraya-Watson estimator, regression mean, weighted 

coefficient, asymptotic normality. 

1. Introduction  

Theory and methodology for nonparametric regression is now well developed for the case of the estimation of 

the regression mean, to motivate the problem, consider a sequence of independent and identically distributed real 

random variables {(𝑋𝑖 , 𝑌𝑖)}𝑖=1
𝑛  with a joint pdf 𝑓(𝑥, 𝑦) as a bivariate random variable (𝑋, 𝑌). The simple 

nonparametric regression function is written as 

                           i i iY m X                                    (1.1) 

where 𝑋𝑖: 𝑖 = 1,2, … , 𝑛 are called the predictors, 𝑌𝑖: 𝑖 = 1,2, … , 𝑛  are the corresponding responses, 𝑚(𝑋𝑖) are 

the unknown regression mean functions to be estimated nonparametrically, and 𝜖𝑖: 𝑖 = 1,2, … , 𝑛  denote the 

measurement errors, where  𝜖~𝑁(0, 𝜎2). 

The regression mean function 𝑚(𝑥) is the conditional mean, which is given by 

                    𝑚(𝑥) = 𝐸(𝑌|𝑥) = ∫
𝑦 𝑓(𝑥,𝑦)

𝑔(𝑥)
𝑑𝑦,                             (1.2) 

where 𝑔(𝑥) is the marginal density function of 𝑋. Using the kernel estimation, the regression mean function 

𝑚(𝑥) is estimated by �̂�(𝑥), where 

                 
 

 

ˆ ,
ˆ .

ˆ

y f x y
m x dy

g x
                              (1.3) 

Conditional density estimation was introduced by Rosenblatt (1969). A bias correction was proposed by 

Hyndman et al. (1996). Fan et al. (1996) proposed a direct estimator based on a local polynomial estimation. One 

of the most widely used and studied estimators in the literature is the one proposed independently by Nadaraya 

(1964) and Watson (1964). Nadaraya–Watson kernel estimation is denoted by 𝑓𝑁𝑊(𝑌|𝑥) and defined as, 

     𝑓𝑁𝑊(𝑦|𝑥) = ∑ 𝐾ℎ(𝑦 − 𝑌𝑖)𝑤𝑖
𝑁𝑊(𝑥)𝑛

𝑖=1                          (1.4) 

where, 
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                                (1.5) 

This gives the NW estimator  �̂�(𝑋𝑖) of  𝑚(𝑋𝑖), where 

                               �̂�(𝑥) = �̂�(𝑌|𝑋 = 𝑥) =
∑ 𝑌𝑖

𝑛
𝑖=1 𝐾ℎ(𝑥−𝑋𝑖)

∑ 𝐾ℎ(𝑥−𝑋𝑖)𝑛
𝑖=1

                       (1.6) 

2. Reweighted Nadaraya-Watson Estimator 

The large bias and boundary effects are considered to be the most important defects in the case of the 

Nadaraya-Watson estimator. The Nadaraya-Watson estimator was treated and modified in order to obtain some 

more refinement estimator, which is called the Reweighed Nadaraya-Watson (RNW) estimator, see Cai (2001),  

De Gooiger  and  Zerom (2003). 

The (RNW) estimator is derived by a slight modification of the well-known Nadaraya-Watson estimator, to 

solve such disadvantages. The (RNW) conditional density estimator is defined by, 

                       
1

ˆ |
n

RNW

RNW h i i

i

f y x K y Y w x


   ,                        (2.1) 

where,  

                       
   

   
1

i h iRNW

i n

i h i

i

x K x X
w x

x K x X











 ,                             (2.2) 

where the probability weights  xi  are considered with the following constraints, 

( ) 0i x  , 
1

( ) 1
n

i

i

x


     and     
1

( )( ) ( ) 0
n

i i h i

i

x X x K x X


   .        (2.3) 

These probability weights ( )i x  will introduce a force to the Nadaraya-Watson weights    ,NW

iw x  and the next 

step is how to evaluate these weights ( )i x  using the conditions (2.3). 

The way to indicate the unique solution of ( )i x  by maximizing the function  
1

log ( )
n

i

i

x


  subjected to the 

previous constraints via Lagrange multipliers. 

Let       
1 1 1

log ( ) 1 ( ) ( ) .
n n n

i i i i h i

i i i

G x x n x x X K x X    
  

 
      

 
    

Now differentiating the function G with respect to ( )i x , we obtain 

     
1 1

1
.

( ) ( )

n n

i h i

i ii i

G
n n x X K x X

x x
 

  


    


   

The solution can be derived directly by solving the equation 0
( )i

G

x





,                   

Salha and Shekh Ahmed (2009) have showed that 

                           
    

1
( ) ,

1
i

i h i

x
n x X K x X





  

        (2.4) 

where  can be derived as a unique minimizer of  L  , where  L   is defined by  
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1

log 1
n

i h i

i

L X x K x X 


       (2.5) 

The weighted coefficient ( )i x  depends on the computed   value and that makes (RNW) estimator is more 

available in the practice. 

3. Main Results 

In this section, we state some conditions under which we derive the main two results in this paper.  The first 

result is stated in Theorem 1, where the asymptotic normality of the (RNW) estimator is shown. The second 

result is presented in Theorem 2, where the result of Theorem 1 has been generalized to the case of multivariate. 

First, we consider the following notations.    

 

 

   xXYVarx

duuKu

duuKu

ii

j

j

j

j











2

2






 

4. Conditions 

Consider the following conditions: 

C1. The kernel ( )K   is a symmetric and bounded density with a bounded support  1, 1 , and satisfies 

   20,u K u du u K u du    . 

C2. For fixed x ,   0, ( )g x g  and 2( )   are continuous at x  and ( )m   has continuous second order 

derivatives in neighborhood of x . 

C3. The conditional density function of Y given xX   is bounded. 

C4. 𝐸(|𝑌𝑖|𝛿|𝑋𝑖 = 𝑈) ≤ 𝑀 < ∞ for some ,2  in a neighborhood of x . 

C5. .0limand,0lim
3



nhh

nh

  

Now, we state and prove the first main result in this paper. 

Theorem 1. Under the conditions C1-C5, the following holds: 

            







 duuKxgNhOxmhxmxmnh

D

p

22

2

2 ,0
2

1
ˆ   

Proof . 

   
     

   

     

   

     
1
2

1

1

1

1

1

1 2 3

ˆ

( ) ( )

1 1 , (3.1)

n

i i h i
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where 



www.ccsenet.org/ijsp International Journal of Statistics and Probability Vol. 4, No. 1; 2015 

141 

 

𝐽1 = √
ℎ

𝑛
∑ [𝑌𝑖 − 𝑚(𝑋𝑖)]𝑤𝑖(𝑥)𝐾ℎ(𝑥 − 𝑋𝑖)

𝑛
𝑖=1 , 

𝐽2 =
1

𝑛
∑[𝑚(𝑋𝑖) − 𝑚(𝑥)]𝑤𝑖(𝑥)𝐾ℎ(𝑥 − 𝑋𝑖)

𝑛

𝑖=1

, 

and 

𝐽3 =
1

𝑛
∑ 𝑤𝑖(𝑥)𝐾ℎ(𝑥 − 𝑋𝑖).

𝑛

𝑖=1

 

Lemma 1. Under the conditions C1, C2 and C5, the following holds, 

       ,111

pii oxbnxw  
  

where 

 
   
 

      ,1

1
1

2











 ihihii XxKXxKxX

xg

xgh
xb


 

Proof. See De Gooiger and Zerom (2003). 

Let  iii XmY 
 

     1

1

.
n

i i h i

i

h
J b x x K x X

n




   

       2

1

1
.

n

i i h i

i

J m X m x b x K x X
n 

                         (3.2) 

   3

1

1
.

n

i h i

i

J b x K x X
n 

 

 

Using Taylor expansion, we have 

       
 

   
2

2 .
2!

i

i i p

X x
m X m x X x m x m x o h


                 (3.3) 

Lemma 2. Under the conditions C1-C5, the following hold 

1.      2

2

2

2
2

hOxgxm
h

J p   

2.    13 poxgJ  . 

Proof.  

i) By Equations (3.2) and (3.3),  we have 

        2

1

2

2
2

1
hOXxKxbxXxm

n
J p

n

i

ihii  
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21

2
hm x u x K x u g u du    

     hOxgxm
h

p 2

2

2
 . 

ii) Similarly  

           

         

3

1

1
1

1 1 .

n

i h h p

i

h p p

J b x K x u g u du K x u g u du O
n

g x K u du O g x O



    

   

 



 

Now, 
1

1

1
,

n

i

i

J
n 

      i i i h ihb x K x X   . 

Since,    0, 0,i i iE X E     this implies that  𝐸(𝐽1) = 0. 

Lemma 3. Under the conditions C1- C5, the following hold 

      2 2

1 0, .
DJ N x g x K u du   

Proof. 
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1 1

22 2

2 2

2 2
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1 1
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i i i i
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To show the asymptotic normality distribution of 
1,J  we use Liapounov’s theorem. It is sufficient to show that, 

for 0  , 
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Now,  
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ii

n

i

i EnEnEn , by C4. 

Therefore, we have 𝜌𝑛 → 0, this completes the proof of the lemma. A combination of lemmas (1)-(3) and 

Equation (3.1) completes the proof of Theorem 1.  

In the next Theorem, we will generalize Theorem 1 to the case of multivariate. Schuster (1972) has generalized 

the asymptotic normality of the Nadaraya-Watson estimator that was shown in Nadaraya (1965) by evaluating it 

at distinct points. 

Theorem 2. Suppose 
kxxx ,...,, 21

 are distinct points and   ,0ixg for ki ,...,2,1 . Then under the 

conditions C1 to C5, we have   

√𝑛ℎ(�̂�(𝑥1, 𝑥2, … 𝑥𝑘) − 𝑚(𝑥1, 𝑥2, … 𝑥𝑘))
𝑇

→ 𝑍∗, 

where *Z has a multivariate normal distribution with mean vector 0 and a diagonal covariance matrix 

,ijC c   
 where 

 

 
 

2

2 , 1,2,..., .
i

ii

i

x
c K u du i k

g x


   

Proof. For simplicity, we will prove the theorem in the case 2k . Also, we will use the techniques of Schuster 

(1972). 

For ni ,...,2,1  and 2,1s , define the followings: 

   ,
1*

si

is

sni xw
h

Xx
K

h
xU 







 
         ,**

snisnisni xEUxUhxU   

   * * ,ni s i ni sV x Y U x         ,**

snisnisni xEVxVhxV   

       



n

i

snisn

n

i

snisn xVxVxUxU
11

,  

          ,,,, 2211 xVxUxVxUxW ninininisni   

         T

nnnnn xVxUxVxUZn ,,,, 2211  

 

   

   

   

   

1 1

1 12

2 2

2 2

0 0

0 0
,

0 0

0 0

g x W x

W x V x
A K u du

g x W x

W x V x

 
 
 
 
 
  

  

where,   ( , ) , ( ) ( , )g x f x y dy W x y f x y dy   and 2( ) ( , ) .V x y f x y dy   

Let Z be a four-variate normal random variable with zero mean vector and covariance matrix A. 
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Lemma 4. Under the conditions C1 to C5, we have ZZ
D

n  . 

Proof. 

Using Cr�̀�mer-World theorem, let  2211 ,,, dcdcC   in 𝑹4. We want to show that TDT

n CZCZ  . 

The following hold for 2,1s  and rsr  ,2,1  

1-        2 2

in s sEU x g x K u du O h  . 

2-        2 2

in s sEV x V x K u du O h  . 

3-          2

i in s n s sEU x V x w x K u du O h  . 

4-      
i in s n rEU x U x O h . 

5-      
i in s n rEV x V x O h . 

6-      
i in s n rEU x V x O h . 

We will prove (2) to illustrate the method (the proof of the remaining completes using the same techniques. 

(2)        2*2*2

snsnsn xEVxEVhxEV
iii

  

   

   

2
2

2

2
2

,

,

s ii
i s i i i i

s ii
s s i i i i

x XY
h K w x f X Y dX dY

h h

x XY
K w x f X Y dX dY

h h

  
  

 

  
   

    





     

      

2
2

2

,

,

i
i s s i i

i i s s i i

Y
h K u w x f x hu Y dudY

h

Y K u w x f x hu Y dudY


 



 






 

         2 2 , ,i i s s i s i iY K u w x f x Y huf x Y dudY O h      

     2 2,i s i iY f x Y dY K u du O h    

     2

sV x K u du O h  . 

The proof of Lemma 4 can be obtained by using the same techniques of the proof of Lemma 1 in Schuster 

(1972). 

Now, let  
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               * * * * *

1 1 2 2 2 2

1 1 1 1
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i i i i
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Lemma 5. Under the condition of Lemma 4, the following holds ZZ
D

n * . 

Proof. Let                 Tnnnnn xEVxwxEUxgxEVxwxEUxgB 2

*

22

*

22

*

11

*

1 1111
,,,   

For 2,1s  

         
1

*

1

1 s
n s s s s

x U
EU x g x K w x g u du g x

h h

 
   

 
  

     s sK u g x hu du g x    

     
 

   
2 2

2

2

s

s s s

h u g x
K u g x hug x du O h g x

 
     

 
  

 
 

       
2

2 2 2

2

s

s s

h g x
g x u K u du O h g x O h


      

           
2

2 2 2 2 2sup
2

x s

h
g x u K u du O h g x O h O h      

     
1

2

n s sEU x g x O h  . 

Similarly, 

         
1

* 1
,s i

n s s i i s i i i i s

x u
EV x w x Y K w x f X Y dX dY w x

h h

 
   

 
   

       ,i s s i i sY K u g x hu f x hu Y dudY w x      

      2( ).i i s sY f Y x hw K u g x hu du O h      

Therefore,  2

nB O h .  This implies that, 

1

* 5 2( ) (1),n n nZ Z nh o     using C5. 

To complete the proof, define the function H from 𝑹4 and 𝑹𝟐 by 

2 4
1 2 3 4

1 3

( , , , ) , .

T

y y
H y y y y

y y

 
  
 

 

Let 
1 1 2 2( ( ), ( ), ( ), ( )),g x w x g x w x   and write  

1

* 2( ) ( ) ,
n

T

nZ nh T    where 

       * * * *

1 1 2 2

1 1 1 1

1
, , , .

i i i i

n n n n

n n n n n

i i i i

T U x V x U x V x
n    

 
  

 
     

Now, the proof of the theorem completes using the Mann-Wald Theorem.  

5. Application (Simulation Study) 
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In this section, the performance of the RNW kernel estimator in estimating the regression mean function is tested 

using two simulated data. The performance of the estimator has been tested using the mean squared error (MSE), 

which is defined by 

MSE
SSE

n
 , 

and the correlation coefficients between the predicted values �̂� and the actual values 𝑦, 𝑅𝑦,�̂�
2  , which is defined 

by 

2

ˆ, 1 ,y y

SSE
R

SSTO
   

where,  
2

ˆ
iSSE y y  denotes the total sum of errors,  

2

iSSTO y y   denotes the total sum of squares 

and  y  denotes the mean of actual values. 

Also, a comparison between the RNW kernel estimator and the NW kernel estimator has been given. Two 

samples of size 400 are simulated from the following two models. 

The first model is  

2sin 2 (1 ) ,y x xe    

where 𝑒~𝑁(0, 1)  and ~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0, 1] , and the second is  

sin 2 ,y x x e   

where 𝑒~𝑁(0, 0.1)  and 𝑥~ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚[0, 1].  

Figure 1 and Figure 2 present two scatter plots of the simulated data, the perfect curve, the RNW estimator and the 

NW estimator for the first and second models, respectively. The results of the simulation studies are collected in 

Table 1. 

Table 1. Results of the simulation studies. 

Model Estimator 
2

ˆ,y yR
 

MSE 

First 
RNW 0.9676385 0.0122138 

NW 0.9573843 0.0160839 

Second 
RNW 0.9485958 0.0068545 

NW 0.9411828 0.0078424 
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Figure 1. RNW and NW estimator for the first model 
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Figure 2. RNW and NW estimator for the second model 

6. Conclusion 

In this paper, we considered the RNW kernel estimator of the regression mean function. We derive the asymptotic 

normality of the regression mean function at different conditional points. Two applications using simulated data 

indicate that the performance of the RNW kernel estimator is reasonably good and it is better than the NW kernel 

estimator. 

References 

Cai, Z. (2001). Weighted Nadaraya-Watson regression estimation. Statistics and Probability Letters, 51, 

307-318. 

De Gooiger, J., & Zerom, D. (2003). On conditional Density Estimation. Statistical Neerlandica, 57, 159-176. 

Fan, J., Yao. Q., & Tong, H. (1996). Estimation of conditional densities and sensitivity measures in nonlinear 

dynamical systems. Biometrika, 83, 189-206. 

Hyndman, R. J., Bashtannyk, D. M., & Grunwald, G. K. (1996). Estimating and visualizing conditional densities. 

J. Comput. Graph. Statist., 5, 315–336. 

Nadaraya, E. A. (1964). On estimating regression. Theory of Probability and its Applications, 9, 141-142. 

Nadaraya, E. A. (1965). On nonparametric estimation of density functions and regression curves. Theory of 

Probability and its Applications, 10, 186-190. 

Rosenblatt, M. (1969). Conditional probability density and regression estimates in Multivariate Analysis II, Ed. 

P.R. Krishnaiah, pp. 25-31. New York: Academic Press. 

Salha, R., & Shekh Ahmed, H. (2009). On the Kernel Estimation of the Conditional Mode. Asian Journal for 

Mathematics and Statistics, 2(1), 1-8. 

Schuster, E. (1972). Joint asymptotic distribution of the estimated regression function at a finite number of 

distinct points. The Annals of Mathematical Statistics, 43(1), 84-88.  

Watson, G. S. (1964). Smooth regression analysis. Sankhya Ser. A., 26, 359-372. 

 

Copyrights 

Copyright for this article is retained by the author(s), with first publication rights granted to the journal. 

This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 

license (http://creativecommons.org/licenses/by/3.0/). 

 


