
Rewriting Aggregate Queries Using Views

Sara Cohen

Institute for Computer Science

The Hebrew University

Jerusalem 91904, Israel

sarina@cs.huji.ac.il

Werner Nutt

German Research Center for

Arti�cial Intelligence GmbH

Stuhlsatzenhausweg 3

66123 Saarbr�ucken, Germany

Werner.Nutt@dfki.de

Alexander Serebrenik

Institute for Computer Science

The Hebrew University

Jerusalem 91904, Israel

alicser@cs.huji.ac.il

Abstract

We investigate the problem of rewriting queries with aggre-

gate operators using views that may or may not contain ag-

gregate operators. A rewriting of a query is a second query

that uses view predicates such that evaluating �rst the views

and then the rewriting yields the same result as evaluating

the original query. In this sense, the original query and the

rewriting are equivalent modulo the view de�nitions. The

queries and views we consider correspond to unnested SQL

queries, possibly with union, that employ the operators min,

max, count, and sum.

Our approach is based on syntactic characterizations of

the equivalence of aggregate queries. One contribution of

this paper are characterizations of the equivalence of disjunc-

tive aggregate queries, which generalize our previous results

for the conjunctive case.

For each operator �, we introduce several types of queries
using views as candidates for rewritings. We unfold such a

candidate by replacing each occurrence of a view predicate

with its de�nition, thus obtaining a regular aggregate query.

The candidates have a di�erent, usually more complex op-

erator than �. We prove that unfolding the candidate, how-

ever, results in a regular aggregate query that is equivalent

to the candidate modulo the view de�nitions. This property

justi�es considering these types of queries as natural candi-
dates for rewritings. In this way, we reduce the problem

of whether there exist rewritings of a particular type to a

problem involving equivalence.

We distinguish between partial rewritings that contain

at least one view predicate and complete rewritings that

contain only view predicates. In contrast to previous work

on this topic, we not only give su�cient, but also necessary

conditions for a rewriting to exist. More precisely, we show

for each type of candidate that the existence of both, partial

and complete rewritings is decidable, and we provide upper

and lower complexity bounds.

1 Introduction

Rewriting queries using views is a fundamental problem in

databases, which has attracted considerable attention. View

usability techniques have applications in a number of ar-

eas. In query optimization, the execution of a query can

be accelerated if results from previous queries can be used

to compute answers [YL87, CR94, CKPS95]. In designing

information systems over which a huge number of a priori

known queries are posed periodically, it can be bene�cial to

store such intermediate results beforehand that are useful

for as many queries as possible [LFS97, RSS96]. Integrating

heterogeneous information sources is another problem which

may be reduced to the view usability problem [LSK95].

While the focus of this work was for a long time on

queries without aggregation, interest in aggregate queries

has been motivated recently by the surge of data warehous-

ing and decision support applications, where queries of this

kind typically occur. Optimization based on the reuse of

previously computed results is particularly promising for ag-

gregate queries, since often huge numbers of data items are

processed to produce a single aggregate value. In fact, most

existing data warehouses make use of this idea in their op-

timization algorithms in a more or less ad hoc way [Kim96].

In this paper we create a framework for studying the

view usability problem for aggregate queries. The queries

and views we consider correspond to unnested SQL queries,

possibly with union, that employ the operators min, max,

count, and sum. In contrast to previous work on this topic,

we not only give su�cient, but also necessary conditions for

a rewriting of a certain type to exist.

One contribution of this paper are syntactic characteri-

zations of the equivalence of disjunctive aggregate queries,

which generalize our previous results for the conjunctive case

[NSS98]. Another contribution is our \unfolding technique"

by which we reduce the problem of view usability to a prob-

lem involving equivalence. The characterizations of equiv-

alences of disjunctive queries thus enable us to extend our

view rewriting results to the disjunctive case.

For each aggregate operator, we introduce several types

of queries using views as candidates for rewritings. We dis-

tinguish between partial rewritings that contain at least one
view predicate and complete rewritings that contain only
view predicates. We show for each type of candidate that

the existence of both partial and complete rewritings is de-

cidable, and we provide upper and lower complexity bounds.

In Section 2, we collect basic de�nitions for non-aggregate

queries. In Section 3 we extend the de�nitions to queries

with aggregates. In Section 4 we give syntactic characteri-

zations of the equivalence of disjunctive aggregate queries.

The core of the paper is Section 5, where we develop a theory

of rewriting aggregate queries using views with and without

aggregates. Section 6 illustrates our rewriting techniques

with examples. In Section 7, we study the complexity of

recognizing and �nding rewritings. In Section 8, we survey

related work and conclude.

2 Preliminaries

We introduce conjunctive and disjunctive queries and review

their basic properties. We use standard Datalog syntax ex-

tended by aggregate functions. The goal of this section is to

present basic de�nitions that will be necessary to provide a

framework for analyzing unnested aggregate queries as they

are de�nable in SQL without using the having construct.

2.1 Syntax of Disjunctive Queries

We assume that there is an in�nite set of predicate symbols,

which are denoted as p, q, r. We denote the database as D.
A term, denoted as s, t, is either a variable or a constant.

A relational atom has the form p(s1; : : : ; sk), where p is a

predicate of arity k. We also use the notation p(�s), where �s
stands for a tuple of terms (s1; : : : ; sk). Similarly, �x stands

for a tuple of variables. An ordering atom or comparison has

the form s1 � s2, where � is one of the ordering predicates <,
�, >, or �. An atom is a relational atom or a comparison.

A condition, denoted as A, is a conjunction of atoms. We

assume that conditions are safe [Ull88].

A query is a non-recursive expression of the form

q(�s) A1 _ : : : _An;

where each Ai is a condition containing all the variables

appearing in the tuple �s.
A query is conjunctive if it contains only one disjunct. A

query is linear if no disjunct contains two relational atoms

with the same predicate symbol. A query is relational if
it contains only relational atoms (i.e. it does not contain

comparisons). By abuse of notation, we will often refer to a

query by its head q(�s) or simply by the predicate of its head

q.

2.2 Semantics of Disjunctive Queries

We de�ne in which way a query q, evaluated over a database
D, gives rise to a set of tuples qD or a bag, that is a multiset,
of tuples ffqggD .

An assignment for a condition A is a mapping of the

variables appearing in A to constants, and of the constants

appearing in A to themselves. Assignments are naturally

extended to tuples and atoms. Satisfaction of atoms and of

conjunctions of atoms by an assignment w.r.t. a database

are de�ned in the obvious way. For �s = (s1; : : : ; sk) we let
�s denote the tuple ((s1); : : : ; (sk)).

Under set semantics, a query q(�s) A1_: : :_An de�nes

a new relation qD, for a given database D, as follows:

qD :=

n[

i=1

f�s j satis�es Ai w.r.t. Dg:

Bag-set semantics has been introduced by Chaudhuri

and Vardi [CV93] to semantically model query execution by

SQL-based database systems. There, the database contains

relations, i.e. sets of tuples, while a query returns a bag, i.e.

a multset of tuples. We denote the union of two multisets

M1, M2 as M1]M2. The multiplicity with which an el-

ement occurs in the union is the sum of the multiplicities

with which it occurs in the single multisets. We formally

de�ne ffqggD in analogy to qD as:

ffqggD :=

n]

i=1

ff�s j satis�es Ai w.r.t. Dgg:

The de�nition means that for each condition Ai we collect

all satisfying assignments . This collection is a set. Then

we apply the assignments to the output variables �s. Since
�s may be the same tuple for di�erent assignments , the
result is a multiset. Finally, we take the multiset union of

all the multisets obtained in this way.

Also bag semantics has been introduced by Chaudhuri

and Vardi [CV93]. The only di�erence between bag se-

mantics and bag-set semantics is that in the �rst case the

database contains multisets of tuples while in the second

case it contains sets of tuples.

Two queries q and q0 are equivalent under set-semantics,

or set-equivalent , if over every database they return the same

sets of results. Similarly, q and q0 are equivalent under bag-
set-semantics, or bag-set-equivalent , if over every database

they return the same multisets of results, that is, ffqggD =

ffq0ggD for all databases D. Under set semantics, equiva-

lence of conjunctive and disjunctive queries can be decided

by checking whether there exist containment mappings or

homomorphisms between the queries [CM77, JK83, SY81].

3 Aggregate Queries

In this section we extend the general framework presented in

Section 2 to aggregate queries. Such queries are evaluated in

two phases. In the �rst phase, the query retrieves a multiset

of tuples from the database. The tuples are then grouped

into equivalence classes, and to each equivalence class an

aggregation function is applied. We de�ne �rst aggregation

functions and then introduce the syntax and semantics of

aggregate queries.

In [NSS98] we showed that equivalence of conjunctive

queries with a number of aggregate terms can be easily re-

duced to equivalence of queries with a single aggregate term.

This can be generalized for disjunctive queries. Also, rewrit-

ings of queries with several aggregate terms can be con-

structed from rewritings with a single term. Thus, in this

paper we consider only queries having a single aggregate

term in the head.

3.1 Aggregation Functions

We assume in this paper that the data we want to aggregate

are real numbers. We denote the set of real numbers as R. If
S is a set we denote byM(S) the set of �nite multisets over

S. A k-ary aggregation function is a function �:M(Rk
)!

R that maps multisets of k-tuples of real numbers to real

numbers. The aggregate queries that we consider in this

paper have the aggregation functions count, sum, and max.

Results for queries with the function min are analogous to

results for max-queries. Therefore, we do not consider min.

Note that our function count is analogous to the count(�)
function of SQL.

An aggregate term is an expression built up using vari-

ables, the operations addition and multiplication, and ag-

gregate functions.1 For example count and sum(z1 � z2),
are aggregate terms. Every aggregate term gives rise to an

aggregation function in a natural way. We use � and � as

abstract notations for aggregate terms. If we want to refer to

the variables occurring in an aggregate term, we write �(�y)
and �(�y), where �y is a tuple of distinct variables, consisting
of the variables in � or �, respectively.

We call terms of the form count, sum(y) and max(z) ele-
mentary aggregate terms. Abstractly, elementary aggregate

terms are denoted as �(y), where � is an aggregate function.

We call queries with elementary aggregate terms elementary
queries.

In this paper we are interested in equivalences of ele-

mentary queries and in rewriting elementary queries using

elementary views.

3.2 Syntax of Aggregate Queries

In this subsection we de�ne formally the syntax of aggregate

queries. An aggregate query is a query augmented by an

aggregate term in its head. Thus it has the form

q(�s; �(�y)) A1 _ : : : _ An: (1)

In addition, we require that

� �(�y) is an aggregate term;

� no variable x 2 �s occurs in �y;

� each condition Ai contains all the variables in �s and in

�y.

We call �s the grouping terms of the query. If the disjuncts

are not important we write B as an abstract notation for

the body of a query. If the aggregation term in the head

of a query has the form �(y), we call the query an �-query
(e.g., a max-query).

3.3 Semantics of Aggregate Queries

Consider an aggregate query q as in Equation (1). For a

database D, the query yields a new relation qD. To de�ne

the relation qD, we proceed in two steps.

We associate to q a non-aggregate query �q, called the

core of q, which is de�ned as

�q(�s; �y) A1 _ : : : _ An; (2)

The core is the query that returns all the values that are

amalgamated in the aggregate.

Then, we construct multisets as arguments for the ag-

gregate function �(�y) out of the assignments satisfying the

core. Let �i be the set of assignments to the variables in the

condition Ai that satisfy Ai, and let � :=
Un

i=1
�i be the

multiset union of the �i.

For a tuple �d, let

� �d := ff 2 � j (�s) = �dgg:

In the bags � �d, we group those satisfying assignments that

agree on �s. Therefore, we call � �d the group of �d. The tuple
�y contains the argument variables of the aggregate term in

the head of q. Then

� �d(�y) := ff(�y) j 2 � �dgg

1This de�nition blurs the distinction between the function as a
mathematical object and the symbol denoting the function. How-
ever, a notation that takes this di�erence into account would be
cumbersome.

is the multiset of tuples obtained by restricting assignments

in � �d to �y. Now we de�ne the result of evaluating q over D
as

q
D

:= f(�d; e) j �d = (�s) for some 2 �,
and e = �(� �d(�y))g.

where we interpret the aggregate term � as an aggregation

function.

4 Equivalence of Aggregate Queries

This section contains characterizations of equivalences of

aggregate queries. They generalize earlier results for con-

junctive aggregate queries [NSS98]. The characterizations of

equivalences of disjunctive queries enable us to extend our

view rewriting results to the disjunctive case. Formally, two

aggregate queries q, q0 are equivalent if for every database

D they de�ne the same relation, that is, qD = q0D.
Our result about disjunctive count-queries shows that

equivalence of such queries under bag-set-semantics is de-

cidable, and a slightly changed characterization shows that

the same is true for bag-semantics. This is remarkable, since

Ioannidis and Ramakrishnan [IR95] proved that contain-

ment of disjunctive queries under bag-semantics is undecid-

able.

4.1 Reduced Queries

Our characterizations of equivalence of count and sum-que-

ries rely on a speci�c normal form of conjunctive queries.

We say that a conjunctive query q(�s) R & C is reduced if

� there are no variables x, y occurring in C such that

C j= x = y;

� there is no variable x occurring in C such that C j=
x = d for a constant d.

We have shown that for every conjunctive query one can

compute in polynomial time an equivalent reduced conjunc-

tive query [NSS98].

4.2 Linear Expansion

In general, the comparisons in the body of a query induce

a partial order among the terms of the query. Such a par-

tial order contains disjunctive information, since it does not

specify completely how the terms are related to each other.

To deal with equivalence of arbitrary queries, which may

have comparisons, we have to consider all linear orders to

which such a partial order can be extended. We describe

now how to create such linearizations.

Let T = D [W be a set of terms, where D is a set of

constants and W is a set of variables. A linearization of T
is a set of comparisons L over the terms in T , such that for

any s, t 2 T , the set L implies exactly one of s < t, s = t,
or s > t.

Thus, a linearization L partitions the terms into equiva-

lence classes, such that the terms in each class are equal and

the classes are arranged in a strict linear order. In each class

of L, there is at most one constant. Otherwise, L would be

unsatis�able and entail any consequence.

We consider the conjunctive query q(�s) R & C where

R is a conjunction of relational atoms and C is a conjunction

of comparisons. Let D be a set of constants including those

appearing in q and let W be the set of variables occurring

in q. Let L be a linearization of D [W that is compatible

with the comparisons in C, that is, L[C is satis�able. Then

an equivalent reduced version of q(�t) R & L is called a

linearization of q w.r.t. L.

Example 4.1 Consider the query

q(x1; x2) p(x1; x2) & 0 � x1 & 0 < x2:

Then the following are linearizations of f0; x1; x2g that are
compatible with the comparisons in q:

L1 = f0 = x1 & x1 < x2g

L2 = f0 < x1 & x1 < x2g

L3 = f0 < x1 & x1 = x2g:

Conjoining them with q gives rise to the reduced queries

q1(0; x2) p(0; x2) & 0 < x2

q2(x1; x2) p(x1; x2) & 0 < x1 & x1 < x2

q3(x1; x1) p(x1; x1) & 0 < x1;

which are linearizations of q.

To a term linearization L, there may corresond more

than one linearization of q. For instance, conjoining q with
L3 and reducing it can also produce the query q03(x2; x2)
p(x2; x2) & 0 < x2. It is easy to see that all reduced versions
of a query are isomorphic, that is, they are the same up to

a renaming of variables.

If D contains the constants of q and W is the set of

variables of q, we denote by LD(q) the set of linearizations
of D [W that are compatible with the comparisons of q.

If q(�s) A is a conjunctive query, then a linear expan-
sion of q is a union of queries

qlin =
_

L2LD(q)

qL;

where each qL is a linearization of q w.r.t. L. The semantics

of unions of queries is de�ned as one would expect. That

is, under set semantics, a union of queries returns the union

of the set of tuples that are the results of the single queries

in the union. Similarly, under bag and bag-set-semantics,

it returns a multiset union. Note, that the linear expansion

of a query di�ers depending on whether the comparisons

are interpreted over the integers or over the rational num-

bers, since more sets of comparisons are satis�able over the

rationals than over the integers.

Let q(�s) A1 _ : : : _ An be a disjunctive query. For

i = 1; : : : ; n we de�ne conjunctive queries qi(�s) Ai. Then

a linear expansion of q is a union of linear expansions of the

qi, that is, a query of the form

qlin =

n_

i=1

_

L2LDi
(qi)

qiL:

If q and the Di are clear from the context, we simply write

qlin =
W
i2I

W
L
qiL.

Proposition 4.2 Let q be a disjunctive query and qlin be a
linear expansion of q. Then q and qlin are equivalent, both
under set-semantics and under bag-set-semantics.

2We denote as GI the class of problems that are many-one-
reducible to the graph isomorphism problem.

4.3 Count-Queries and Bag-Set-Equivalence

Two count-queries are equivalent if they return the same re-

sults with the same multiplicities. This means that, under

bag-set-semantics, they return the same multisets. There-

fore equivalence of count-queries is the same as equivalence

of their cores under bag-set-semantics. Thus, in the follow-

ing, we investigate bag-set-equivalence of disjunctive non-

aggregate queries.

We say that two unions of queries q =
W
i2I

qi and q
0
=W

j2J
q0j are isomorphic if there is a bijective mapping �: I !

J such that qi and q
0

�(i) are isomorphic for all i 2 I.

Theorem 4.3 (Isomorphism Implies Bag-Set-Equi-
valence) Let q and q0 be two disjunctive queries. If q and
q0 have isomorphic linear expansions, then they are bag-set-
equivalent.

In order to prove the converse of the preceding theorem,

we have to control the set of constants over which we take

the linear expansion.

Theorem 4.4 (Bag-Set-Equivalence Implies Isomor-
phism) Let q(�s) and q0(�s0) be two disjunctive queries, and

let D be the set of constants occurring in q or q0. Let qlin be a

linear expansion of q over D and q0
lin

be an analogous linear
expansion of q0 over D. If q and q0 are bag-set-equivalent,

then qlin and q0
lin

are isomorphic.

For the relational case we have shown a simpler charac-

terization.

Theorem 4.5 (Relational Queries) Two relational que-
ries are bag-set-equivalent if and only if they are isomorphic.

The theorems of this subsection also hold verbatim for

bag-equivalence of queries if in the de�nition of isomorphism

we take into account the multiplicity of relational atoms in

a query (see also [CV93]).

4.4 Equivalence of Sum-Queries

We have extended our characterization for equivalence of

conjunctive sum-queries to the disjunctive case. This ex-

tension is analogous to our extension for count-queries and

is not presented due to lack of space. The characteriza-

tion shows that deciding the equivalence of disjunctive sum-

queries is in PSPACE. Thus it is interesting to note that de-

ciding equivalence of disjunctive sum-queries is no more dif-

�cult than deciding equivalence of conjunctive sum-queries.

We have also shown that equivalence of sum-queries that

without constants or without comparisons can be reduced

to bag-set-equivalence.

Theorem 4.6 (Equivalence of Sum-Queries) Let q and
q0 be sum-queries without constants or without comparisons
and �q and �q0 be their cores. Then the following are equiva-
lent:

1. q and q0 are equivalent;

2. �q and �q0 are bag-set-equivalent;

3. �q and �q0 are isomorphic.

aggregate q arbitrary q relational q relational q linear q linear

function q
0 arbitrary q

0 arbitrary q
0 relational q

0 arbitrary q
0 linear

count, sum GI-hard2/in PSPACE GI-complete GI-complete polyn. polyn.

max �P
2 -complete �P

2 -complete NP-complete NP-hard/in �P
2 polyn.

Table 1: Complexity of Equivalence

4.5 Equivalence of Max-Queries

Equivalence of max-queries can be reduced to a property of

non-aggregate queries that we call dominance. Let q(�s; t)
and q0(�s0; t0) be two queries. We say that q is dominated by

q0 if for every database, whenever q returns a tuple (�d; d),
then q0 returns a tuple (�d; d0) with d0 � d. We say that q
and q0 dominate each other if q is dominated by q0 and q0 is
dominated by q.

Proposition 4.7 Two disjunctive max-queries are equiva-
lent if and only if their cores dominate each other.

Dominance of disjunctive queries is �P
2 -complete. It can

be checked in a fashion similar to checking containment.

Obviously, if a query q is contained in another query q0,
then q is dominated by q0. If the queries are relational, then
the converse also holds.

Theorem 4.8 (Dominance is Containment) Consider
relational disjunctive queries q and q0. Then q is dominated
by q0 if and only if q is contained in q0.

4.6 Complexity of Equivalence

Our syntactic characterizations of equivalences of disjunc-

tive aggregate queries can be translated into algorithms and

thus give rise to upper bounds for the complexity of deciding

equivalence. The lower bounds hold already for conjunctive

aggregate queries (see [NSS98]). We denote as GI the class

of problems that are many-one-reducible to the graph iso-

morphism problem.

Theorem 4.9 (Disjunctive Queries)

� Checking the equivalence of disjunctive sum or count-
queries is GI-hard and in PSPACE.

� Checking the equivalence of disjunctive max-queries is
�
P
2 -complete.

Our characterizations of special cases give rise to more

speci�c complexity bounds. In addition, we have re�ned our

characterizations to cover also asymmetric cases, where one

query is relational or linear and the second one is arbitrary.

Lower bounds for equivalences among conjunctive aggregate

queries (see [NSS98]) yield also lower bounds for disjunctive

queries. We also found asymmetric cases where the lower

bounds di�er from the lower bounds for more speci�c sym-

metric cases.

We summarize our results about the complexity of equiv-

alence checking for disjunctive aggregate queries in Table 1.

For conjunctive queries the table would be exactly the same.

Thus, it is remarkable that deciding equivalences among dis-

junctive queries is no more di�cult than deciding equiva-

lences among conjunctive queries.

5 Rewriting of Aggregate Queries

Given a set of queries V called \views" and an aggregate

query q, our goal is to �nd a new query r, that uses data
base relations and some views, such that the evaluation of

q and the evaluation of r yield the same result over all

databases. In our set of views we allow both aggregate

and non-aggregate queries. We can assume that for each

aggregate query we have an analogous non-aggregate query

obtained by projecting out the aggregate term. We assume,

w.l.o.g., throughout this paper that the sets of variables used

in the views are disjoint.

5.1 Equivalence Modulo a Set of Views

The relationship between a query q and its rewriting r is

not simply equivalence of queries, because the views are not

additional data base relations, but are determined by the

base relations indirectly. In order to take this relationship

into account, we give a de�nition of equivalence of queries

modulo a set of views.

We consider aggregate queries that use predicates both

from R, a set of base relations, and V, a set of view def-

initions. We want to de�ne the result of evaluating such

a query over a database D. We assume that a database

contains only facts about the base relations.

For a database D, let DV be the database that extends

D by interpreting every view predicate v 2 V as the rela-

tion vD. If q is a query that contains also predicates from V,
then qDV is the relation that results from evaluating q over
the extended database DV .

If q, q0 are two aggregate queries using predicates from

R [V, we de�ne that q and q0 are equivalent modulo V,
written q �V q

0
, if qDV = q0DV for all databases D.

5.2 Rewritings

Our goal is to rewrite an aggregate query using a set of views.

We �rst give a general de�nition of rewritings. Later on, we

will concentrate on rewritings that have a special form. Let

q be a query, V be a set of views over the set of relations

R, and r be a query over V [R. All of q, r, and the views

in V may be aggregate queries or not. Then we say that r
is a rewriting of q using V if q �V r. If r is a rewriting of

q using V, we say that r is a partial rewriting of q using V
if r contains at least one atom with a predicate from V and

that r is a complete rewriting of q using V if r contains only
atoms with predicates from V.

For simplicity of exposition, we will consider only com-

plete rewritings. Any de�nitions and characterizations pro-

posed for complete rewritings are applicable also for partial

ones in a very intuitive way, i.e. by extending the set of

views by queries that de�ne the atoms in the original query.

However, searching for partial rewritings may give rise to

simpler algorithms than searching for complete rewritings.

Thus, we will only di�erentiate between complete and par-

tial rewritings when considering complexity results.

Let r be a query, aggregate or non-aggregate, and a be a
relational atom in the body of r. A query r0 is a diminution
of r by a if r0 is obtained from r by dropping a from the body

of r and possibly adding comparisons to r. We say that r is
diminishable modulo V if there is an atom a such that r and
a diminution by a are equivalent modulo V. Otherwise, r is
undiminishable.

Undiminishable queries are in general preferable to di-

minishable queries because fewer relations have to be ac-

cessed to evaluate them. For this reason, we are interested

in undiminishable rewritings.

5.3 Conjunctive Rewritings

In this subsection we consider conjunctive rewritings, i.e.

rewritings that are of a conjunctive form and use only con-

junctive views. This simpli�es the presentation. We relax

this restriction in the sequel.

Compared to the rewriting problem for non-aggregate

conjunctive queries, there is an additional complication when

we are looking for rewritings of aggregate queries. In the

case of non-aggregate conjunctive queries, the candidates

for rewritings are conjunctive queries over the views. In

the case of aggregate queries, even if we admit only queries

whose body is a conjunction of atoms, there is an in�nity of

possible aggregate functions that one could use in a rewrit-

ing.

Example 5.1 Consider the three aggregate queries

q1(x; count) p(x; y1) & p(x; y2)

v1(x; count) p(x; y)

r1(x; z
2
) v1(x; z):

Then it is easy to see that r1 is a rewriting of q1 modulo fv1g.
The aggregate function in a rewriting need not be a poly-

nomial, but can also be a root. Consider

q2(x; count) p(x; y)

v2(x; count) p(x; y1) & p(x; y2)

r2(x;
p
z) v2(x; z):

Again, r2 is a rewriting of q2 modulo fv2g.

This example shows that it may be very hard to make

statements about the existence of rewritings and to search

for them if we do not restrict the class of candidates to be

considered. Our next step is therefore to identify for each

aggregate operator a class of queries that we consider as nat-

ural candidates for rewritings of queries with that operator.

To illustrate the de�nitions and the process of rewriting,

we will give lifelike examples in Section 6.

5.3.1 Rewriting Candidates

For each aggregate operator, we restrict the kind of views

that we want to consider for rewritings. We call those views

valid views. First, a view with the same aggregate opera-

tor as the query is valid. For operators that are sensitive

to the multiplicity of tuples, namely count and sum, we ad-

mit as additional views only count views. For the operator

max, which is insensitive to multiplicities, we consider non-

aggregate views. As mentioned before, this includes also

views that are obtained from aggregate views by strippin o�

their aggregate argument.

De�nition 5.2 (Valid Views) Let v be a view and � an
aggregate function. We say that v is a valid view for rewrit-
ing an �-query q if one of the following holds:

� v is an �-query (e.g., v and q are both sum-queries);

� v is a non-aggregate query and � is the function max;

� v is a count-query and � is the function sum.

In the sequel we will assume that all views used in rewrit-

ings are valid. In Table 2 we summarize which kinds of views

are valid for which kind of aggregate query. Since for every

aggregate query there is an analogous non-aggregate query

obtained by projecting out the aggregate term, we allow in

fact arbitrary aggregate views in max-query rewritings.

Aggregation Function Valid Views

count count

sum count, sum

max max, non-aggregate

Table 2: Views valid for aggregation functions

We call sum and max-queries parametric queries, and
count and non-aggregate queries non-parametric queries. In
a similar way, we talk about parametric and non-parametric

views. Parametric queries and views have an aggregate op-

erator that takes an argument.

Now, for each of the aggregate operators sum and max

we are going to de�ne two classes of queries that we con-

sider as natural candidates for rewritings. Theorem 5.10

will justify our choice.

First, we specify the body of the candidates. Relational

atoms in the body that are formed with the predicate of

a non-aggregate view are allowed to be arbitrarily instan-

tiated. Atoms that are formed with the predicate of an

aggregate view, say the view v(�s; �), are only allowed to

have the form v(��s; z). This means, the non-aggregate ar-

guments are instantiated, but the aggregate argument is not.

We will write �v as a shorthand notation for an atom with

the predicate v if the arguments �s and z are either clear or
unimportant. Next, we provide a technical de�nition.

De�nition 5.3 (Output Variable) Let v(�s; �) be an ag-
gregate view and v(��s; z) an instantiation of v. Then z is
the output variable of the atom v(��s; z). If the atom is clear
from the context, we will simply say that z is the output
variable of v.

The candidates for rewriting queries with an operator

� 2 fsum; maxg have the general form

r(�s; �(y �
Y

�z)) B; (3)

where all views occurring in B are valid for �, and y and

�z are output variables of aggregate views occurring in B.
Moreover, each output variable occurs only once in B, and
no output variable is involved in a comparison. The last

condition ensures that aggregates in a view are not subjected

to selection conditions.

Note that the expression y �
Q

�z is a shorthand notation

for the product of all the variables zi 2 �z and y. Note that
by the constraints given below, the tuple �z will always be

empty for candidates for rewriting max-queries and thus the

product of �z will be 1. The notation was introduced thus

for uniformity.

For each operator � we distinguish between those candi-

dates that use a view with � (called �-view candidates) and

those that do not (called pure �-candidates).

De�nition 5.4 (�-view Candidates) The query de�ned
by Equation (3) is an �-view candidate if the following hold:

� B has exactly one occurrence of an �-view, v, and y
appears as the output variable of v;

� z 2 �z if and only if z appears as an output variable of
a non-�-view.

De�nition 5.5 (Pure �-Candidates) The query de�ned
by Equation (3) is a pure �-candidate if the following hold:

� B has no occurrences of �-views, and y appears in B;

� z 2 �z if and only if z appears as an output variable of
a view.

We extend the de�nition of pure �-candidates to count-

views and de�ne a pure count-candidate as a query of the

form

r(�s; sum(
Y

�z)) B;

where z 2 �z if and only if z appears only as an output

variable of a view.

Let � be one of the aggregation functions max, sum and

let � = �(y). Then we write f�(
Q

�z) as a shorthand for

�(y �
Q

�z)). If � is count and � = count, then f�(
Q

�z) is

a shorthand for �(y �
Q

�z)). We say that � is the canonical
aggregate term for �.

De�nition 5.6 (Rewriting Candidates) A query r is an
�-rewriting candidate if it is an �-view candidate or a pure
�-candidate. For �-rewriting candidates we employ the ge-
neric notation

r(�s; f�(
Y

�z)) B;

where � is the canonical aggregate term for �.

To make our generic de�nition more intuitive, we spec-

ify in Table 3 the format of the candidates for the di�erent

aggregate functions. Recall that for count only pure candi-

dates are de�ned.

For clarity we use the notation vc to denote count-views.
Similarly, vm and vs denote max and sum-views, respec-

tively, while v (without a superscript) denotes a non-aggre-
gate view. The symbol C stands for a conjunction of com-

parisons.

5.3.2 Unfoldings of Candidates

In this section we reduce the problem of verifying whether

a rewriting candidate is in fact a rewriting of a given query

to the problem of checking equivalence of aggregate queries,

which was dealt with in Section 4.

Essentially, in order to check whether a rewriting can-

didate r is in fact a rewriting of an aggregate query q, we
unfold the view predicates in the body of r, thus obtaining
a condition that consists only of base predicates. The aggre-

gate query whose body is this unfolded condition and whose

head has the same arguments as r is denoted as ru. Then r
is a rewriting of q if and only if ru and q are equivalent.

In order to properly de�ne the unfolding, we have to

specify how to instantiate the bodies of the views used in the

candidate. Special care has to be taken for the aggregation

variable.

De�nition 5.7 (Extension) Let v(�s; �(y)) be a paramet-
ric view and �v = v(��s; z) be an instantiation of v. Then

the extension of � for �v is �̂ := � [fz=yg. If v is non-

parametric, then the extension of � for �v is �̂ := �.

Extensions will be used to instantiate the bodies of views

in an unfolding. They are de�ned in such a way that an

extension replaces the output variable of a view with the

parameter of the original aggregate function.

De�nition 5.8 (Unfolding) Let r(�s; f�(
Q

�z))) B be a
rewriting candidate. Then the unfolding of r is the query

ru(�s; �) B0;

where B0 has been obtained from B by replacing each view

atom �v with the condition �̂Bv that is obtained by instan-
tiating the body Bv of v with the extension of � for �v.

The unfolding operation mimics the two phase evaluation

of the original query r over a database DV , as de�ned in

Subsection 5.1. Thus the following theorem holds.

Theorem 5.9 (Unfolding Preserves Equivalence) Let
r be a rewriting candidate of a query over V and let ru be its
unfolding. Then r �V r

u.

Proof. (Sketch) The proof is by a case analysis accord-

ing to the di�erent rewriting candidates and aggregate func-

tions. For the sake of simplicity we present in this paper

only the proof for count-rewriting candidates. Recall that

for count only pure rewriting candidates are de�ned (see

Table 3).

A count-rewriting candidate has the form:

r(�s; sum(

nY

i=1

zi)) v1(�1�s1; z1) & : : : & vn(�n�sn; zi) & C:

As we have shown in the long version of this paper, one can

assume that the views in r are not instantiated. Therefore
we assume w.l.o.g. that r has the form

r(�s; sum(

nY

i=1

zi)) v1(�s1; z1) & : : : & svn(�sn; zi) & C;

with the unfolding ru(�s; count) B1 & : : : Bn & C:
Let D be a database, �d 2 jDjn, and d be a natural num-

ber. We show that (�d; d) 2 rDV if and only if (�d; d) 2 (ru)D.
\Only if." Suppose that (�d; d) 2 rDV . Then there are

assignments �1; : : : ; �m such that

1. �j satis�es the body of r over DV ;

2. �j(�s) = �d, for all j 2 1::m;

3. d =
Pm

j=1

Qn

i=1
�j(zi).

For each i, j, we de�ne the set 	ij as consisting of assign-

ments that are de�ned for the variables occurring in the

body Bi of vi such that satis�es Bi and (�si) = �j(�si):
That is, 	ij contains those assignments that are counted

by vi as producing the output �j(�si) for vi. Thus, the set

	ij has �j(zi) elements. Let 1; : : : ; n be assignments such

that for some j 2 1::m it holds that i 2 	ij . We show that

each assignment �u

that satis�es the body of ru and maps �s
to �d can be constructed in a unique way from such i, and
that, conversely, each such �u

gives rise to a unique sequence

Aggregation

Function

Candidate

Type
Rewriting Candidate

count pure r(�s; sum(

nY

i=1

zi)) vc1(�1�s1; z1) & : : : & vcn(�n�sn; zn) & C

sum pure r(�s; sum(y �

nY

i=1

zi)) vc1(�1�s1; z1) & : : : & vcn(�n�sn; zn) & C

sum-view r(�s; sum(y �

nY

i=1

zi)) vs(��ss; y) &
vc1(�1�s1; z1) & : : : & vcn(�n�sn; zn) & C

max pure r(�s;max(y)) v1(�1�s1) & : : : & vn(�n�sn) & C

max-view r(�s;max(y)) vm(��sm; y) &
v1(�1�s1) & : : : & vn(�n�sn) & C

Table 3: Patterns of Rewriting Candidates

of i's. Since each 	ij has �j(zi) elements, the number of

such assignments �u

is d =
Pm

j=1

Qn

i=1
�j(zi). From this,

we conclude that the query ru returns the tuple (�d; d) over
D.

\If." Suppose that ru returns (�d; d0) over D. Then

there is at least one mapping �u

such that �u

(�s) = �d and �u

satis�es the body of ru. As before, we construct assignments

 1; : : : ; n out of �
u

, and an assignment � to the variables of
r out of the i. By construction, � satis�es the body of r and
�(�s) = �d. Hence, there is a number d such that (�d; d) 2 rD.
Therefore, as we have shown above, (�d; d) 2 (ru)D. However,
ru is an aggregate query and aggregates depend functionally
on their group. Thus, d = d0 and (�d; d0) 2 rD.

Our choice of aggregate functions, f�(
Q

�z), may seem

arbitrary at �rst glance. However, if we expect the query

obtained by unfolding the rewriting to be equivalent to the

rewriting modulo V, then this function is the only choice.

We make this more precise in the following theorem.

Theorem 5.10 (Natural Rewriting Candidates)
Let r(�s; f�(

Q
�z)) B be a rewriting candidate and let

ru(�s; �) be the unfolding of r. Let r0(�s; �) B be an aggre-
gate query obtained from r by replacing the aggregate term
� with the term �.

If r0 �V ru, then the functions � and f�(
Q

�z) compute
the same aggregate value for every database and every group
of values retrieved by �r = �r0.

Proof. (Sketch) The query r is equivalent to ru mod-

ulo V. Hence, r �V r0. Now the statement follows because

aggregates are functionally dependent on the grouping vari-

ables.

We have proposed \natural" candidates for rewriting ag-

gregate queries. We now consider the problem of verifying if

a rewriting candidate is in fact a rewriting when given a par-

ticular query. We call this problem the rewriting veri�cation
problem.

Theorem 5.11 (Rewriting Veri�cation Criterion)
Let q be an aggregate query and let r be a rewriting candidate
of q over V. Then r is a rewriting of q, i.e. q �V r, if and
only if q � ru.

By the theorem above we have reduced the rewriting ver-

i�cation problem to the problem of equivalence of aggregate

queries. This problem was considered in Section 4.

5.4 Disjunctive Rewritings

We relax some of our previous restrictions on the form of

a rewriting. We consider rewritings de�ned as disjunctive

queries and rewritings using disjunctive views. We will call

such rewritings disjunctive rewritings. Such extensions are

both natural and necessary to increase the possibilities of

�nding rewritings.

5.4.1 De�nitions

We extend our de�nition of candidates for disjunctive rewrit-

ings using disjunctive views. Essentially, we require that

each disjunct be a candidate as de�ned above (see De�ni-

tion 5.6). Formally, the de�nition is as follows.

De�nition 5.12 (Disjunctive Rewriting Candidates)
Let � be one of max, sum, or count. A query r is a disjunc-
tive �-rewriting candidate if it has the form

r(�s; �(z)) r1(�s; z) _ : : : _ rn(�s; z);

where

1. r1; : : : ; rn are conjunctive �-rewriting candidates;

2. � = max if � is max, and � = sum if � is sum or
count.

Unfolding is de�ned similarly as in the conjunctive case

(De�nition 5.8). However we require that the result be

transformed to disjunctive normal form (DNF). This is use-

ful since the only known technique for checking equivalence

requires the queries to be in DNF. The Rewriting Veri�ca-

tion Criterion (Theorem 5.11) still holds. The proof makes

use of the result for conjunctive rewritings.

5.4.2 Expressiveness of Disjunctive Rewritings

The general goal of allowing disjunctive rewritings is to in-

crease the expressiveness of rewritings. However, we show

that under certain conditions the existence of a disjunc-

tive rewritings implies already the existence of a conjunc-

tive rewriting. By a \pure disjunctive rewriting" we mean

a rewriting having only pure candidates as disjuncts.

Theorem 5.13 (Expressiveness of Rewritings) Let q
be a linear count or sum-query over the rational numbers,
and let V be a set of relational conjunctive views. If there
exists a pure disjunctive rewriting of q over V, then there
exists also a pure conjunctive rewriting of q.

Proof. (Sketch) Without loss of generality we assume

that q is a reduced query. Let r be a rewriting of q over V.
Then �q and �ru are bag-set-equivalent. Hence, by Theo-

rem 4.4, they have isomorphic linear expansions over the

set of constants appearing in q or ru.
Let L be a linearization that does not identify terms.

Such a linearization exists because q is a query ranging over
the rationals. Let �qL be the corresponding disjunct in the

linear expansion of �q.
There is a query isomorphic to �qL in the linear expansion

of the core of the unfolding of r. Let this query be (�ruk)M ,

where �ruk is a disjunct of r, and M is a linearization of the

core of ruk. Since qL is linear, there is exactly one isomor-

phism between the two queries. We assume w.l.o.g. that this

isomorphism is the identity.

The core of q has the form �q(�x) R & C, while rk has

the form

rk(�x;
Y

zi) v1(�1�x1; z1) & : : : & vl(�l�xl; zl) & Ck;

and the core of the unfolding of rk has the form

�ru
k
(�x) �1B1 & : : : & �lBl & Ck;

where Bj is the core of the view vj . The views vj do not

have comparisons, therefore each �jBj is a conjunction of re-

lational atoms. We abbreviate the conjunction of the �jBj

as Rk. Since the identity mapping is an isomorphism be-

tween qL and (�ruk)M , the relational parts of the bodies are

identical, that is, R = Rk.

We call those variables in the body of a query that do not

appear in the head of the query nondistinguished variables.
The variables in R can be partitioned into those that are

introduced by a �j , and the nondistinguished variables of the
bodies of the vj . One can show that all variables appearing

in C, the comparisons of q, are of the �rst kind. This will

complete the proof because then we obtain a conjunctive

rewriting of q from rk by replacing the comparisons Ck in

rk with the comparisons C of q.

Note that according to our de�nition of valid views sum-

marized in Table 2, pure disjunctive candidates for rewriting

count and sum-queries use only count-views. Note as well,

that as the following example demonstrates, the preceding

theorem does not hold over the integers.

Example 5.14 Consider the count query q and the set of

views V := fv1; v2g, ranging over the integers and de�ned

as follows:

q(count) p(x; y) & 1 � x � 2

v1(count) p(1; y)

v2(count) p(2; y):

Then r(sum(z)) v1(z)_v2(z) is a disjunctive rewriting of
q, but it is easy to see that there is no conjunctive rewriting
of q over V.

Disjunctive rewritings have additional sources of com-

plexity over conjunctive rewritings. Allowing disjunctive

queries adds expressiveness and therefore can add complex-

ity. However, we will show (Theorem 7.1) that allowing

disjunctive rewritings does not increase the complexity of

the rewriting veri�cation problem.

6 Examples

In this section we present examples that illustrate query

rewritings. Our examples come from the university environ-

ment.

6.1 Example 1

We consider the following university database, containing

two schemes and two views on the schemes.

grades(student name,course name,grade)

courses(course name,teacher name,location)

v max course grade(c,max(g)) grades(s,c,g)
v courses and teachers(c,t) courses(c,t,l)

The courses relation describes the courses given in the

university. We assume that each course may be taught by

a number of teachers and may take place in a number of

locations. In addition, each teacher can teach many courses.

The grades relation contains information on students and

their grades in the courses they have taken.

The view v max course grade de�nes a relation which

contains the maximal grade in each course, and the view

v courses and teachers projects the relation courses on

attributes course name and teacher name.

Suppose we are given the following query:

q(c;max(g)) courses(c; \Smith"; l) & grades(s; c; g)

This query retrieves the maximal grade in each course taught

by Smith. We are interested in rewriting the query with the

views given above.

According to De�nition 5.2, for rewriting a max-query,

both non-aggregate and max-views are valid. Thus both

v max course grade and v courses and teachers are valid.
By De�nition 5.5 of pure candidates, we can only use

the view v courses and teachers in searching for a pure

candidate. Clearly we can only �nd a partial rewriting of

our query using only pure candidates. This rewriting will

be of the following form:

r1(c
0;max(g0)) grades(s; c0; g0) &

v courses and teachers(c0; \Smith")

When searching for a max-view candidate, we must use
the max-view, and the y parameter of the candidate's for-

mula (De�nition 5.4) must appear only as the return value

of it. Thus we can derive two rewritings from max-view

candidates as follows:

r2(c
0;max(g0)) v max course grade(c0; g0) &

courses(c0; \Smith"; l)

r3(c
0;max(g0)) v max course grade(c0; g

0
) &

v courses and teachers(c0; \Smith")

Note that r2 is a partial rewriting, while r3 is a complete
rewriting. Also note that all the rewritings presented are

undiminishable.
By our unfolding technique we can prove that all the

rewriting candidates above are in fact rewritings. To sim-

plify we will prove only that r3 is a rewriting. Reasoning for
r1 and r2 may be done in an analogous way.

By Theorem 5.11 in order to prove that r3 is a rewriting
of q we have to show that ru3 � q.

We note that the substitution of v max course grade, �1
is de�ned as fc0=cg. Similarly, we de�ne the substitution of

v courses and teachers, �2 as fc
0=c; \Smith"=tg. Thus the

extension of �1 is �̂1 = fc
0=c; g0=gg since g0 is the output vari-

able of the instantiation of the view and g is its parameter

(De�nition 5.7). Clearly, �̂2 = �2.
Applying the De�nition 5.8 of an unfolding we get

ru3(c
0;max(g0)) grades(s; c0; g0) &

courses(c0; \Smith"; l)

In order to complete the proof we have to establish the

equivalence between the two max queries|q and ru3. By the
max queries equivalence criterion (Theorem 4.7) we must

evaluate the cores of the queries and check for mutual domi-

nance. The cores of q and ru3 are relational and thus we have
shown that dominance is exactly containment. The cores of

q and ru3 are isomorphic and therefore they clearly contain

one another. Thus ru3 � q and r3 is in fact a rewriting.

6.2 Example 2

We now look at another aspect of the university database.

We consider the following schemes and views that de�ne

relations pertaining to salaries of teaching assistants. This

example may seem a bit odd but in fact it models exactly

the situation at the Hebrew University in Jerusalem as per-

taining to the payment policy of teaching assistants.

ta(name,course name,job type)

salaries(job type,sponsorship,amount)

v positions per type(j,count) ta(n,c,j)
v salary for ta job(j,sum(a)) salaries(j,s,a)

At the Hebrew University, there may be many teaching

assistants in a course and a student may be a TA in many

courses. Each TA has a job type in the course he assists.

For example, he may give lectures, grade exercises, or in-

struct a lab. Teaching assistants are �nanced by di�erent

sources, like science foundations and the university itself.

For each job type, each sponsor gives a �xed amount. Thus,

a lab instructor may receive $600 per month from the uni-

versity and $400 from a government science foundation. All

the data is kept in the two schemes de�ned above.

In the �rst view, v positions per type, we compute the

number of positions of each type held in the university. In

the other view, v salary for ta job we compute the total

salary given for each type of position.

We are interested in calculating the total amount of mon-

ey spent on each job position. This can be evaluated by the

following query:

q(j; sum(a)) ta(n; c; j) & salaries(j; s; a)

Both views de�ned above are valid for rewriting this query.

It may be noted that these views are not valid for rewriting

the query in the previous example, and vice versa.

To create a pure candidate we can only use the view

v positions per type and clearly we can only create a par-

tial rewriting using this view, as it does not contain any

information from the salaries relation.

We will present the only undiminishable complete rewrit-

ing that may be computed using the above de�ned views. It

is derived as a sum view candidate.

r(j
0
; sum(a

0 � cnt)) v positions per type(j
0
; cnt) &

v salary for ta job(j
0
; a
0
)

To prove that this candidate is in fact a rewriting we

must unfold r. We perform an unfolding deriving the fol-

lowing query:

ru(j0; sum(a0)) ta(n; c; j0) & salaries(j0; s; a0)

Clearly, ru and q are isomorphic and thus it follows that

ru � q. We have shown that the unfolding operation pre-

serves equivalence and thus r is a rewriting.

7 Complexity Results

7.1 Rewriting Veri�cation Problem

Given a query q, and a rewriting candidate, r, recall that
the rewriting veri�cation problem is the problem of checking

whether r is in fact a rewriting of q. We have shown that we

can reduce rewriting veri�cation to equivalence of aggregate

queries (Theorem 5.11). This reduction is done by unfolding

the candidate, to derive an aggregate query ru and checking

equivalence of q and ru.
Conjunctive queries can be unfolded in polynomial time.

Thus in this case, the rewriting veri�cation problem has

exactly the same complexity as checking for equivalence.

Therefore, the complexity results obtained in Table 1 for

equivalence can be easily viewed as complexity results for

the rewriting veri�cation problem when we replace q0 with
ru.

Verifying disjunctive rewritings has an additional source

of complexity over conjunctive rewritings. Allowing disjunc-

tive queries adds expressiveness and one may therefore sup-

pose that it adds complexity. An additional source of com-

plexity is the natural extension of the unfolding technique

for disjunctive rewriting candidates. Recall that one step

in computing the unfolding and checking for equivalence is

to create a query in DNF. Thus unfolding a candidate may

yield an exponential blowup in the size of the query if the

candidate contains disjunctive views and one may conjecture

that veri�cation of disjunctive rewritings and searching for a

rewriting may be much more di�cult in this case. However,

we have shown that our upper bounds for the problem of

verifying conjunctive rewritings also hold for the disjunctive

case.

Theorem 7.1 (Complexity of Veri�cation)

� One can verify in PSPACE whether a disjunctive can-
didate is a rewriting of a count or a sum-query.

� For max-queries the problem to verify whether a dis-
junctive candidate is a rewriting is �P

2 -complete.

The intuitive reason why the above theorem holds is that

some kind of disjunction is already present in the veri�cation

problem for queries with comparisons. The additional source

of complexity due to disjunctive views is of the same kind

as the one introduced by comparisons.

7.2 Rewriting Existence Problem

Given a query q and a set of views V we consider the prob-

lem of checking whether there exists a complete or partial

rewriting of q using V, in the form de�ned above. We call

these problems the complete or partial rewriting existence
problem respectively.

Compared to the Veri�cation Problem, the Existence

Problem has an additional source of complexity, since here

the candidate to be veri�ed also has to be found.

For relational max-queries and relational views, veri�-

cation essentially consists in �nding containment mappings

between the query and the unfolded candidate (cf. Theo-

rem 4.8). Therefore, the need to also �nd the rewriting can-

didate does not add to the overall complexity of the problem.

Theorem 7.2 (Relational Max-Queries)

1. Both the complete and partial rewriting existence prob-
lems are NP-complete for relational max-queries and
sets of relational conjunctive views.

2. Both problems are still NP-complete even if both, que-
ries and views, are linear and conjunctive.

For sum and count-queries we consider �rst the case

where the query, q, is conjunctive and where we are inter-

ested in checking the existence of a conjunctive rewriting, r,
over a set of conjunctive views V. Our results are summa-

rized in Table 4 below.

query type complete partial

rewriting rewriting

arbitrary NP-hard/in PSPACE in PSPACE

q is relational NP-complete NP-complete

q is linear NP-complete polyn.

Table 4: Complexity of the Rewriting Existence Problem for

sum and count-queries in the conjunctive case.

The di�culty in proving decidability in the general case

is that a query may have rewritings of arbitrary size, as is

illustrated by the following example.

Example 7.3 Consider the count-query q and the view v
de�ned as follows:

q(x; count) p(x; y) & 0 � x

v(x; count) p(x; y) & 0 � x:

Then, obviously, r(x; z) v(x; z) is a rewriting of q. How-
ever, if we de�ne queries rni for i 2 1::n as

rni (x; count) p(x; y) & i � x & x � i+ 1

if 0 � i < n

rnn(x; count) p(x; y) & n � x;

then also

rn(x; sum(z)) rn0 (x; z) _ : : : _ r
n
n(x; z)

is a rewriting of q for every n. The rn may be arbitrarily

large. However, in order to form them, new constants are

needed that occur neither in the query nor the views, namely

the numbers, 1; 2; : : : ; n.

We conjecture that if there is a rewriting of a query q
using V, then there exists one that uses only constants oc-

curring in q or in V. However, we were not able to prove

this. We were only able to show decidability for the case

that we consider only rewritings that do not introduce new
constants.

Theorem 7.4 (Decidability of Restricted Existence
Problem) Let q be an aggregate query and V be a set of
views. Under the assumption that we are only searching for
a rewriting using constants appearing in q or V, the rewriting
existence problems are decidable.

8 Conclusion

Questions related to the view usability problem have been

studied extensively. For example, containment and equiva-

lence under set semantics, have been investigated in [CM77,

ASU79, SY81, JK83, SS92, vdM92, LMSS93, LS95]. Con-

tainment for conjunctive queries under multiset semantics,

which is the semantics of SQL, has been studied in [CV93].

Techniques for using views to answer queries have been

suggested by a number of researchers, although most of this

work did not pay much attention to the formal aspects of

the problem [YL87, CR94, CKPS95].

The view usability problem for conjunctive queries under

set semantics has been treated by Levy et al. in [LMSS95].

Chaudhuri et al. investigated view usability for conjunctive

queries under multiset semantics in [CKPS95].

A method to use views for queries with grouping and ag-

gregates has been developed by Gupta et al. [GHQ95]. The

method is based on rewrite rules to transform the tree repre-

sentation of a query. It is sound, but it does not allow one to

�nd all possible equivalent rewritings using the views. Levy

et al. studied the same problem and gave su�cient condi-

tions for an aggregate SQL-query to be computable from a

set of views. Their algorithms are claimed to be complete in

some cases, e.g., when the views do not contain aggregation

and the constraints in the where-part of the query and the

views contain only equality predicates, although no proofs

are provided [SDJL96].

We have studied the problem of �nding rewritings of ag-

gregate queries using aggregate and non-aggregate views.

Our approach is based on syntactic characterizations of the

equivalence of aggregate queries.

We de�ned classes of aggregate queries using views for

which unfolding the view de�nitions is a transformation that

preserves equivalence. Such queries are natural candidates

for rewritings. A candidate is a rewriting of a given query

if the query and the unfolding of the candidate are equiv-

alent. Thus syntactic characterizations of equivalence turn

into syntactic characterizations of rewritings.

The characterizations are the basis for studying the prob-

lem of �nding rewritings. This problem has two sources of

complexity, the �rst of which is to assemble the rewriting,

and the second to verify that it is in fact a rewriting.

We distinguish between complete and partial rewritings,

the former being to rewrite the query using only views. It

turns out that in general the two problems have the same

complexity, although for special cases, �nding partial rewrit-

ing is an easier problem.

We leave for future research the problem of rewriting

w.r.t. integrity constraints, the rewriting of nested queries,

or queries with a having clause. Rewriting these queries

involves open questions in equivalence theory.

9 Acknowledgments

This research was supported in part by the Esprit Long

Term Research Project 22469 \Foundations of Data Ware-

house Quality" (DWQ), by Grants 8528-95-1 and 9481-1-98

of the Israeli Ministry of Science, and by a grant of the

French Ministry of Research and Technology.

The authors express their gratitude to Yehoshua Sagiv

for many valuable discussions.

References

[ASU79] A.V. Aho, Y. Sagiv, and J.D. Ullman. E�-

cient optimization of a class of relational expres-

sions. ACM Transactions on Database Systems,
4(4):435{454, 1979.

[CKPS95] S. Chaudhuri, S. Krishnamurthy, S. Potarnianos,

and K. Shim. Optimizing queries with material-

ized views. In P.S.Yu and A.L.P. Chen, editors,

Proc. 11th International Conference on Data En-
gineering, Taipei, March 1995. IEEE Computer

Society.

[CM77] A.K. Chandra and P.M. Merlin. Optimal im-

plementation of conjunctive queries in relational

databases. In Proc. 9th Annual ACM Symposium
on Theory of Computing, 1977.

[CR94] C.M. Chen and N. Roussopoulos. The imple-

mentation and performance evaluation of the

ADMS query optimizer. In M. Jarke, editor,

Proc. 4th International Conference on Extending
Database Technology, Cambridge (UK), March

1994. Springer-Verlag.

[CV93] S. Chaudhuri and M. Vardi. Optimization of real

conjunctive queries. In Proc. 12th Symposium
on Principles of Database Systems, Washington

(D.C., USA), May 1993. ACM Press.

[GHQ95] A. Gupta, V. Harinarayan, and D. Quass. Ag-

gregate query processing in data warehouses.

In Proc. 21st International Conference on Very
Large Data Bases. Morgan Kaufmann Publish-

ers, August 1995.

[IR95] Y.E. Ioannidis and R. Ramakrishnan. Beyond

relations as sets. ACM Transactions on Database
Systems, 20(3):288{324, 1995.

[JK83] D.S. Johnson and A. Klug. Optimizing con-

junctive queries that contain untyped variables.

SIAM Journal on Computing, 12(4):616{640,

1983.

[Kim96] R. Kimball. The Data Warehouse Toolkit. John
Wiley and Sons, 1996.

[LFS97] F. Llirbat, F. Fabret, and E. Simon. Eliminating

costly redundant computations from SQL trigger

executions. In Proc. 1997 ACM SIGMOD In-
ternational Conference on Management of Data,
pages 428{439, Tucson (Arizona, USA), June

1997.

[LMSS93] A.Y. Levy, I. Singh Mumick, Y. Sagiv, and

O. Shmueli. Equivalence, query-reachability, and

satis�ability in datalog extensions. In Proc. 12th

Symposium on Principles of Database Systems,
pages 109{122, Washington (D.C., USA), May

1993. ACM Press.

[LMSS95] A.Y. Levy, A.O. Mendelzon, Y. Sagiv, and D. Sri-

vastava. Answering queries using views. In Proc.
14th Symposium on Principles of Database Sys-
tems, pages 95{104, San Jose (California, USA),

May 1995. ACM Press.

[LS95] A.Y. Levy and Y. Sagiv. Semantic query opti-

mization in datalog programs. In Proc. 14th Sym-
posium on Principles of Database Systems, pages
163{173, San Jose (California, USA), Proc. 14th

Symposium on Principles of Database Systems

1995. ACM Press.

[LSK95] A.Y. Levy, D. Srivastava, and T. Kirk. Data

model and query evaluation in global informa-

tion systems. Journal of Intelligent Information
Systems, 5(2):121{143, 1995.

[NSS98] W. Nutt, Y. Sagiv, and S. Shurin. Decid-

ing equivalences among aggregate queries. In

Proc. 17th Symposium on Principles of Database
Systems, pages 214{223, Seattle (Washington,

USA), June 1998. ACM Press. Long version as

Report of Esprit LTR DWQ.

[RSS96] K.A. Ross, D. Srivastava, and S. Sudarshan. Ma-

terialized view maintenance and integrity con-

straint checking: Trading space for time. In Proc.
1996 ACM SIGMOD International Conference
on Management of Data, pages 447{458, Mon-

treal (Canada), June 1996.

[SDJL96] D. Srivastava, Sh. Dar, H.V. Jagadish, and A.Y.

Levy. Answering queries with aggregation us-

ing views. In Proc. 22nd International Confer-
ence on Very Large Data Bases, Bombay (India),
September 1996. Morgan Kaufmann Publishers.

[SS92] Y. Sagiv and Y. Saraiya. Minimizing restricted-

fanout queries. Discrete Applied Mathematics,
40:245{264, 1992.

[SY81] Y. Sagiv and M. Yannakakis. Equivalence among

relational expressions with the union and di�er-

ence operators. J. ACM, 27(4):633{655, 1981.

[Ull88] Je�rey D. Ullman. Principles of Database and
Knowledge-Base Systems, volume I. Computer

Science Press, 1988.

[vdM92] R. van der Meyden. The complexity of query-

ing inde�nite data about linearly ordered do-

mains. In Proc. 11th Symposium on Principles
of Database Systems, pages 331{345, San Diego

(California, USA), May 1992. ACM Press.

[YL87] H.Z. Yang and P.-A. Larson. Query transfor-

mation for PSJ queries. In Proc. 13th Inter-
national Conference on Very Large Data Bases,
pages 245{254, Brighton (England), September

1987. Morgan Kaufmann Publishers.

