{: SCISPACE

formerly Typeset

@ Open access « Journal Article - DOI:10.1002/SPE.4380240204
Rewriting executable files to measure program behavior — Source link [4

James R. Larus, Thomas Ball

Institutions: University of Wisconsin-Madison

Published on: 01 Feb 1994 - Software - Practice and Experience (Wiley)

Topics: Executable, Instrumentation (computer programming), Compiler and Profiling (computer programming)

Related papers:

« ATOM: a system for building customized program analysis tools
« EEL: machine-independent executable editing

« Systems for Late Code Modification

« Binary translation

« Instrumentation and optimization of Win32/intel executables using Etch

Share this paper: @ ¥ M &

View more about this paper here: https:/typeset.io/papers/rewriting-executable-files-to-measure-program-behavior-
1sqwj97624

https://typeset.io/
https://www.doi.org/10.1002/SPE.4380240204
https://typeset.io/papers/rewriting-executable-files-to-measure-program-behavior-1sqwj97624
https://typeset.io/authors/james-r-larus-30436tq2ca
https://typeset.io/authors/thomas-ball-1rcnokw3ql
https://typeset.io/institutions/university-of-wisconsin-madison-1lo9rg1b
https://typeset.io/journals/software-practice-and-experience-2g2qipvt
https://typeset.io/topics/executable-28d6uhle
https://typeset.io/topics/instrumentation-computer-programming-3782ub0e
https://typeset.io/topics/compiler-1rd4cb0x
https://typeset.io/topics/profiling-computer-programming-3r53qtu6
https://typeset.io/papers/atom-a-system-for-building-customized-program-analysis-tools-1n7zfnqrg4
https://typeset.io/papers/eel-machine-independent-executable-editing-gw0wb790b8
https://typeset.io/papers/systems-for-late-code-modification-3di1htqyhz
https://typeset.io/papers/binary-translation-2e8rhdkrt4
https://typeset.io/papers/instrumentation-and-optimization-of-win32-intel-executables-2v068znpat
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/rewriting-executable-files-to-measure-program-behavior-1sqwj97624
https://twitter.com/intent/tweet?text=Rewriting%20executable%20files%20to%20measure%20program%20behavior&url=https://typeset.io/papers/rewriting-executable-files-to-measure-program-behavior-1sqwj97624
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/rewriting-executable-files-to-measure-program-behavior-1sqwj97624
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/rewriting-executable-files-to-measure-program-behavior-1sqwj97624
https://typeset.io/papers/rewriting-executable-files-to-measure-program-behavior-1sqwj97624

Rewriting Executable Files to
Measure Program Behavior -.

James R. Larus
Thomas Ball

Technical Report #1083

March 1992

Rewriting Executable Files to Measure Program Behavior

James R. Larus and Thomas Ball*
larus@cs.wisc.edu
Computer Sciences Department
University of Wisconsin—Madison
1210 West Dayton Street
Madison, WI 53706 USA
608-262-9519

March 25, 1992

Abstract

Inserting instrumentation code in a program is an effective technique for measuring many
aspects of program performance. The instrumentation code can be added at any stage of
the compilation process by system tools such as the compiler or linker or by external tools
that are part of a measurement system. For a variety of reasons, adding this code after the
compilation process-—by rewriting the executable file—is simpler and more generally useful
than adding it earlier.

This paper describes the problems that arose in writing the tools qp and qpt, which
add profiling and tracing code to programs on the MIPS and SPARC processors. Many of
these problems could have been avoided with minor changes to compilers and executable
files’ symbol tables. These changes would simplify this technique for measuring program
performance and make it more generally useful.

A program’s performance often cannot be understood without the assistance of tools such as
execution time profiler or cache simulators. Parallel programs’ performance is even less comprehen-
sible without the assistance of performance tools. Most performance tools make minor additions
and modifications to the measured program. These changes add small bits of code (known as
tnstrumentation code) to record the execution of program events or to collect and record data.

Tools can add instrumentation code at any stage during compilation (see Figure 1). Even
before the process begins, a source-to-source transformer can add measurement code directly into
a program’s source [5, 6, 7]. Instrumentation of this type is appropriate for measuring source-level
characteristics, such as the type of statements used.

During the first step in the process, a modified compiler can insert instrumentation code

while compiling a program [4, 8]. If the source of a compiler is available, this approach can

*This work was supported in part by the National Science Foundation under grants CCR-8958530 and CCR-
9101035 and by the Wisconsin Alumni Research Foundation.

Modify Compiler

........... Rewrite Assembly Code
i pee—1 L Profile While
H Modify Linker Executing
Rewrite Sou;ce Program '
Linker
............. Rewrite
Modify Assembler Executable

Libraries

H
H
H

Modify Libraries

F igure 1: Options for instrumenting a computer program.

take advantage of compiler analysis to reduce measurement cost by placing instrumentation code
intelligently (1, 8]. In addition, a compiler maintains mappings between syntactic and semantic
structures and compiled code that are useful in placing instrumentation code and interpreting
its measurements. However, modifying compilers has many disadvantages. The source of high-
quality compilers typically is unavailable to third parties. To compound the problem, programs
are written in a variety of languages, each of which has its own compiler, and use libraries that
are supplied compiled. In addition, because compilers typically defer code generation until their
final stage, an instrumenter only sees a compiler’s intermediate representation, which blurs the
association between instrumentation and particular instructions. The final disadvantage is the
necessity of recompiling a program, which greatly increases the cost of measuring it.

After compilation, the effects of compiler optimization and code generation are visible and
directly measurable. One possibility, which addresses most problems in the previous approach,
is to rewrite the assembly language produced by a compiler before passing it to the assembler
[9]. However, on some systems (most notably, MIPS), generating assembly language changes the
compiler’s behavior and prevents it from producing debugging information.

Similarly, if sources to the assembler or linker are available, either tool can insert instrumen-
tation code. The linker has the additional advantage of processing an entire program, including
libraries, so it can ensure that all modules are measured and can use interprocedural information
[11]. By contrast, if a program is instrumented earlier, specially instrumented libraries may be

necessary. Another advantage of using a linker is that some assemblers reorganize code to schedule

instructions—for example, the MIPS assembler. This optimization is not visible until the linking
stage.

Programs can be dynamically instrumented with the process-control mechanism used by de-
buggers on subordinate processes [2]. However, the cost of this mechanism, which requires two
process context switches for each interaction, is far too high to make this approach competitive.

The final alternative, which this paper advocates, is to insert instrumentation code following
compilation by rewriting an executable file (a.out) to add instrumentation code. MIPS’s tool
pixie has used this approach with great success [10]. For convenience, we will call the process
rewriting an executable file and the tool performing it an ezec editor. This alternative has many
advantages. An exec editor is largely independent of earlier stages in the compilation process. It
does not require sources for or modifications to compilers, assemblers, or linkers. Also, it works
for programs written in different source languages and compiled with non-standard (e.g., gec)
compilers. In addition, rewriting executable files shares link-time instrumentation’s advantages
because it manipulates entire programs, including libraries.

Our experience in using this approach in qp and gpt, however, illustrates why the technique is
not widely applied. gqp is a basic block execution profiler similar to MIPS’s pixie. In addition to
the naive approach of placing counters in each basic block, it implements a sophisticated algorithm
for placing counting code that reduces profiling overhead by a factor of four or more [1]. gpt is
a modified version of qp that also traces a program’s instruction and data references using the
technique of abstract execution [8]. Abstract execution dramatically reduces the cost of program
tracing and the size of trace files by factors of 50 or more. gqpt is a second generation tracing
system. The earlier version, AE, was a modification to the Gnu C compiler gcc that inserted
tracing code while compiling a C program.

Rewriting an executable file is complicated by three outside factors: inappropriate compiler
conventions, inadequate symbol table information, and awkward a.out structure. None of these
factors is fatal. All can be ameliorated at the cost of additional time and complexity. The rest
of the paper describes these problems and the techniques necessary to instrument a.out files on
MIPS and SPARC systems. The paper divides into three parts. The first explains more details
of qp and gpt, to provide a firm basis for understanding the instrumentation process. The second
part describe problems caused by these factors and outlines our solutions to them. The final section
suggests simple changes to compilers and a.out files that would greatly simplify this method of

program instrumentation.

1 Description of QP and QPT

gp and qpt process each compiled routine from an a.out file in turn. They construct a control-

flow graph for each routine, which identifies potential paths through the procedure. Next, they

Symbol
Table
(optional)

Uninitialized
Data (bss)

Initialized
Data

Text
Segment

Figure 2: Organization of a Unix executable file.

compute the best locations for the instrumentation code and modify the existing code by inserting
additional instructions and adjusting jump and branch offsets to accommodate new code. Finally,
they write a new a.out file containing instrumented routines and an updated symbol table.

A Unix executable (a.out) file is composed of five major parts (see Figure 2). The first is a
header that records the other pieces’ size and locations within the file. The next is the text segment,
which contains a program’s executable code. The data segment, which contains statically-allocated
data, follows the text segment. The data segment is composed of initialized data and uninitialized
data (also known as bss). The latter is not explicitly represented in an a.out file. Instead, the
file’s header records the size of bss and its space is allocated when the program begins execution.
Following the program is an optional symbol table that maps source program names and line
numbers to instruction and data addresses. The detail and quality of information in this table
varies widely, depending on the format of the a.out file and the optimization and debugging level
at which a program was compiled.

qp/qpt first reads an a.out file’s header and symbol table. At this stage, qp/qpt only must
know the starting address of each procedure, but it also extracts information for later stages of
the instrumentation process from the symbol table, to eliminate the need for a second pass over
the table. If the file has been stripped (i.e., the symbol table removed), qp/qpt cannot process it
and quits.

With procedure entry information, gp/qpt can construct a CFG (control-flow graph) for each
procedure in a text segment. A control-flow graph is a common compiler data structure that
concisely represents flow of control among instructions in a procedure. The nodes in a CFG are
called basic blocks. They delimit straight-line, single-entry, single-exit sequences of instructions.
The edges represent jumps between blocks or fall-throughs between consecutive blocks. gp/qpt
constructs the CFG in two passes over a routine’s instructions. The first pass examines each

instruction to find jumps and, from them, the first and last instruction in each basic block. The

(before)

Figure 3: Instrumenting edges.

second pass records edges connecting the blocks. The code to build a CFG is machine-independent
and relies upon a small collection of machine-specific routines to categorize an instruction and to
determine destination addresses for jumps.

gp/qpt uses the CFG to place instrumentation code in optimal locations [1]. The first step is to
compute a weighting that assigns a likely execution frequency to each edge. A weighting is either
computed by a heuristic based on the structure of the CFG or is derived from a previous profile of
the program. After computing a weighting, qp/qpt computes a maximum weight spanning tree of
the CFG. This set of edges is the largest and costliest (i.e., most frequently executed) subgraph of
the CFG that need not be instrumented. All edges not in the tree must be instrumented to either
record the number of times that they executed or the sequence in which they execute, depending
on whether a program is being profiled or traced. The information recorded along these edges is
sufficient to reconstruct a full profile or trace.

Instrumenting edges, as opposed to basic blocks, is one of qp/qpt’s innovations. We show
elsewhere [1] that instrumentation code on edges is always as good, and frequently much better,
than code limited to a block. In practical terms, it is only slightly more co‘mplex to place code
along edges. The instrumentation code for edges coming into a block is placed immediately before
a block (see Figure 3). The source of an incoming edge either jumps to the block or falls through
from the previous block. In the former case, a jump can be redirected to either land on the
instrumentation code or, if the edge is not measured, to bypass the code and go directly to the

block. In the latter case, control can still fall through to instrumentation code, if the code for a

5

fall-through edge is placed first in the sequence of instrumentation code segments. If a fall-through
edge is not instrumented, but other incoming edges are, a new jump is necessary to jump over the
instrumentation code.

Obviously, inserting code into a compiled program changes the distance between instructions
and requires adjustment of jumps. qp/qpt builds a map between the original and new location
of each instruction for other purposes (see Section 2.2). The map itself is constructed in another
pass over a routine by noting the size of the instrumentation code inserted between each pair of
instructions. This map can be used to adjust branch offsets and jump target addresses when a
modified routine is written out. The control-flow graph is not modified since it represents the
original program.

gpt inserts instrumentation code within blocks to collect information necessary for tracing
address references. This information takes two forms. The first is a value loaded from memory
and the second is a result from a function call. This instrumentation code causes similar relocation
problems that can also be resolved by the address map.

The final stage in processing a routine is to write it out. At this point, qp/qpt does not have a
direct representation of an instrumented routine. Instead, annotations on both flow graph edges
and blocks and in auxiliary tables describe the additional instrumentation code and the changes to
existing instructions. qp/qpt writes an instrumented routine to a temporary file. After processing
all routines, qp/qpt goes back and copies this file into a new copy of the executable file. At this
point, gp/qpt knows the new address of every routine and is able to patch forward calls (i.e., to
a later routine in the executable file) that were left unresolved in the temporary file.

While writing a new executable file, qp/qpt is able to use its mappings to update symbol
table information. Fixing this information facilitates debugging the instrumented executable files,
particularly while developing the tool that performs the instrumentation. If the symbol table is
properly updated, an instrumented program can still be debugged with symbolic debuggers.

2 Rewriting Executable Files

The process of rewriting an executable file is not as simple as the description above suggests.
Quirks in every instruction set and a.out file format complicate the process. This section discusses
complications that arose while instrumenting programs for the two popular RISC computers, MIPS
and SPARC. Other computers have different problems, many of which can be solved by the same
techniques used for these computers.

The MIPS and SPARC processors are both reduced instruction set computers (RISC). This
type of processor offers many advantages for exec editing. The most important are a small in-
struction set and fixed-length instructions, both of which greatly simplify decoding instructions in

a routine. Other characteristics of RISCs, most notably the exposed pipeline (i.e., delayed loads

instrumentation
code.for .
load instruction

branch

1

delayed branch delayed branch |

Block i

record result
restore state

Block i+1 -

delayed branch

@ 1)

Figure 4: Control transfer to a delay slot.

and branches), complicate exec editing and are discussed below.

MIPS and SPARC processors uses different a.out file formats. MIPS uses a proprietary format
called ECOFF, while Sun uses a derivative of the BSD a.out format for the SPARC. ECOFF is
a more complex file format that contains significantly more precise debugging information. The
additional complexity provides few benefits for qp, as it extract only three pieces of information
from the MIPS symbol table: procedures’ starting addresses, whether a procedure comes from an
assembly-language file, and the register that holds a procedure’s return address. gpt also uses
the line number map. On the other hand, ECOFF’s complexity does not adversely affect qp/qpt,

mainly because of MIPS’s 1dfcn library, which hides many details of the data structures.

2.1 Delayed Instructions

In general, delayed control-transfer instructions (e.g., delayed branches and subroutine calls) cause
no problems in constructing flow graphs. However, two uses of delayed instructions cause difficul-
ties in instrumenting programs. The first occurs when an instruction in a delay slot (the window of
instructions that execute after the jump, but before control transfers) belongs to two basic blocks.
The other arises when recording the result of an instruction in a delay slot.

An instruction in a delay slot belongs to two basic blocks if it is the target of a jump (see
Figure 4a). The delay slot instruction is both the last instruction of one block and the first
instruction of the subsequent block. A compiler optimizer saves an instruction by fusing two

blocks when the last instruction of a block is identical to the first instruction of the succeeding

block. The overlap complicates instrumentation since instrumentation code cannot fit between the
blocks. The obvious solution, which works well, is to undo the minor optimization by duplicating
the overlap instruction so each block has its own copy.

Unfortunately, delayed branches cause more serious problems when an instruction in a delay
slot produces a value that must be recorded for an address trace (see Figure 4b). Traced val-
ues originate from either load instructions or function calls. A call from within a delay slot is
ineffectual, so only delayed memory loads are traced. Instrumentation code to record the loaded
value will not fit in the delay slot. An alternative is to move the load and instrumentation code
immediately before the delayed branch. The load instruction, however, may modify a register
used by the subsequent conditional branch. The general solution is to execute the load as part
of the instrumentation code that records its value, before the conditional branch. This code se-
quence masks the load’s effect, by saving and restoring its target register, so as not to affect the
subsequent branch or original load, which executes in the delay slot and modifies the program’s

state.

2.2 Indirect Jumps

Indirect jumps are commonly perceived to be a serious impediment to constructing CFGs and
instrumenting programs. The perception is incorrect because compiled code uses these jumps in
a stylized manner that can be analyzed. Hand-written assembly code can use indirect jumps in a
less controlled manner that makes control-flow analysis impossible. Aside from threads packages,
setjmp’s and longjmp’s, and procedure returns, indirect jumps occur only in switch statements
in which the alternative targets are collected into a jump table. No other constructs in commonly-
used higher-level languages have an obvious analogue or implementation with indirect jurnps (as
opposed to indirect calls).!

Indirect jumps through jump tables are innocuous, since, when the table can be found (see
Section 2.3), it contains the addresses of the jump’s destinations. These addresses demarcate CFG
edges. In addition, the table entries can be updated to redirect the jump to the new locations of
the target blocks.

On the other hand, if a jump table cannot be found or if an indirect jump is not part of a
switch statement, the instrumented code must ensure that the jump lands on the relocated, not
original, address of its target block. This complication arises when a switch statement is either
hand-written or highly optimized, so the location of the jump table cannot be extracted from
the instruction sequence. Without special attention, instrumented code would fail at the indirect

Jump because its destination is an address in the original, not instrumented, program.

1The exception to this rule is continuations in Scheme, ML, and other functional languages, which are just
indirect jumps on a larger scale.

old text segment new text segment

-

-
il (rx < oid_etext)
X w *rx;

jumnp rx

old_etext

Figure 5: Translation table for indirect jumps.

To avoid this error, qp/qpt uses a program’s original text segment as a translation table to
map from addresses in the original program to addresses in the new program (see Figure 5).
Before an indirect jump with an unknown destination, a small amount of code compares the jump
address against the end of the old text segment. If the address is lower, the code dereferences the
translation table to find the new target for the jump. The same mechanism permits gp/qpt to
trace programs that use signals—which MIPS’s pixie does not permit. The sigvec system call,
which establishes a signal handler, requires the address of a function to invoke for a signal. This
address is a literal value that is difficult to recognize or translate in qp/qpt. However, qp/qpt
easily recognizes a sys_sigvec system call and adds code before it to translate the function’s
address. The cost of a translation table is the extra memory required to store it. A translation
table doubles the size of the original text segment, while instrumentation code expands it by

70%-200%, so the translation table requires about one-third of the instrumented text space.

2.3 Code and Data

Some compilers store read-only data in a program’s text space. This has several benefits: it shares
a single copy of the data among multiple processes (since text segments are usually shared); it
reduces the distance between instructions and data, thereby permitting more efficient addressing;
and it ensures that values are not modified (since text segments are usually read-only). However,
mixing code and data greatly complicates construction of CFGs because distinguishing instructions
from data is often difficult.

Data in a text segment occurs in two places (see Figure 6). The first is jump tables for
switch statements. On MIPS, compilers place these tables in the data segment. On SPARC,
they occur in the text segment immediately following the indirect jump that uses them. Either

approach, if consistently applied, is acceptable, though placing the tables in the data segment

Text Segment

< Routine

Code

Jump Table
¢ Code

Constants

Figure 6: Data in text segment.

Jump Jump
Table Table
Start ~End Stat <*Egpd

Indirect Indirect
Jump : Jump
Code Code ‘

PR

Qut of U
Text

Segment

(a) (b)

Figure 7: Finding end of a jump table.

slightly simplifies an exec editor. Finding the beginning of a consistently located table is easy.
The table’s extent can be found in one of two ways. The safest is to examine instructions before
the indirect jump to find a comparison that checks if the index expression is within the table’s
bounds. This comparison contains the table’s size. It can be found if a compiler generates stylized
code for switch statements and if the compiler’s optimizer does not severely reorder the code.
This approach consistently works for the MIPS.

The other way to find the end of a jump table in text space is to scan it. An entry that does not
contain a legal address in the text space must be an instruction beyond the table (see Figure 7a).
However, entries can be both legal instructions and legal instruction addresses. The two can be
distinguished, and the actual end of the table determined, by finding a jump address in the table
(or a jump instruction’s target from the program) that lands on a table entry (see Figure 7b).

The other form of data in a text segment are literal constants. They typically appear imme-

diately after a routine’s instructions. These values are difficult to distinguish from instructions

10

and can cause a control-flow analyzer to construct incorrect basic blocks that contain invalid in-
structions. Constants can be segregated from instructions by carefully identifying basic blocks in
a routine. The analyzer constructing these blocks must detect the last instruction in a routine,
which typically is a return, and stop scanning at that point. However, as a routine can contain
more than one return instruction or can end with an unconditional backward branch, the ana-
lyzer must examine the partially-constructed CFG to determine if control passes to an instruction
following a return or unconditional jump. If not, the instruction marks the end of the routine.

A special case is a “routine” consisting entirely of data (frequently a table of constants). This
confusion arises because symbol tables record names in the text segment and contain too little
information to distinguish procedures from tables. In this case, an analyzer cannot even begin
constructing a CFG, so the previous technique does not work. However, the analyzer can identify
a table either because of its name’s stylized form or because its first word is an invalid instruction.
The latter test is facilitated by instruction set encodings, such as SPARC’s, that make small

integers correspond to invalid instructions.

2.4 Hidden Procedures and Entries

SPARC symbol tables occasionally do not record all procedure entry points in a library. Hand-
written libraries contain internal routines omitted from the symbol table. These hidden routines
are discovered in two ways. The first is at calls to routines that are not in the symbol table. The
other is when a procedure’s CFG does not account for all of its space and the last instruction
is followed by valid instructions. qp/qpt adds hidden routines to its internal symbol table and
instruments them like conventional routines. However, they lack meaningful names and their
assigned names complicate reporting results.

Hand-written routines can also have multiple entry points. This practice is common for com-
plementary numeric routines (such as sin and cosine), where one routine is a short stub that
transforms its arguments and jumps into the other routine. Symbol tables do not record the
alternative entry point, so qp/qpt’s instrumentation code is typically slightly inaccurate for these
routines. The problem could be corrected by making an additiohal pass over a program to detect

these entries, but the expense is not worth the small benefit.

2.5 Register Allocation

At high optimization levels, some compilers allocate registers interprocedurally, which violates the
register-use conventions of most programs. In general, qp/qpt is unconcerned with register-use
conventions since instrumentation code sequences save and restore registers and do not affect a

program’s state. However, the cost of pushing and popping registers on the stack frequently exceeds

11

the instrumentation cost itself. qp/qpt reduces this overhead on MIPS with register scavenging.?
While scanning instructions to construct a CFG, qp/qpt notes the unused caller-saved registers
in a procedure. These registers can be used by instrumentation code, without preserving their
values, since the procedure’s callers expect these registers to be modified.?

However, register scavenging depends on a program obeying the caller-save register-use con-
vention. Interprocedurally register allocated code and some hand-written routines violate this
convention by holding a value in caller-saved register across a call in which the callee does not
modify the register. gp/qpt must detect these violations and fall back on the more general code
sequences that save and restore state. The MIPS symbol table provides part of the information
necessary to detect violations. It records the source language of the file containing a procedure, so
assembler code can be identified and treated as suspect. However the symbol t.::le does not record
a file’s optimization level, so interprocedurally optimized code is difficult to detect. This omission
is particularly frustrating as the symbol table records a file’s debugging level. qp/qpt resolves this
problem with a command-line argument that indicates whether a program was compiled at -O3
or -O4 (and is interprocedurally register allocated).

Interprocedural register allocation complicates address tracing in another way. Registers con-
taining global variables are implicit parameters to routines and their values must be recorded upon
function entry. Fortunately, register-allocated global variabies appear as upwardly-exposed uses
in the program slices used to compute address traces [8] and can be treated identically to other

function arguments.

2.6 Shared Libraries and Position-Independent Code

SunOS and other operating systems use shared libraries to reduce the size of executable files and
the amount of memory consumed by multiple copies of library routines [3]. When a program
begins execution, it dynamically loads the shared libraries into its address space. Currently, the
unresolved references and missing code in a dynamically-linked program prevent qp/qpt from
instrumenting it. Conceptually, at least, it would not be difficult to instrument a dynamically-
linked program by linking the libraries with /1ib/1d.so and then rewriting the resulting complete
program.

However, shared libraries rely on position-independent code (PIC) to reduce the work required
for dynamic linking. qp/qpt processes this code, even though they do not instrument dynamically-
linked programs, since PIC libraries are used by statically-linked programs. On the SPARC, PIC

?Register scavenging is unnecessary on SPARC, since three global registers are deliberately left unused by the
SPARC ABI (application binary interface). qp/qpt ensures that a program follows this convention before using
these registers.

3 A more sophisticated version of this technique would look for caller-saved registers that are dead at each
instrumentation point.

12

introduces three complications:

o It frequently invokes a call instruction to compute an absolute address. The return address
for the call determines the address of the call instruction, which can be used to compute

other addresses. Fortunately, these calls have a stylized form:
call .+8

that is easily recognized. qp/qpt disregards them since they do not alter control flow.

e Code sequences for switch tables look different because the code does not know the absolute
address of the jump table. The solution is to modify qp/qpt to look for the alternative code

sequence and parse it correctly.

¢ PIC code uses trampolines to invoke dynamic linked routines. A frempoline is a short code
sequence containing a relocatable jump to a routine. An application calls the trampoline,
whose address is known at static-link time, and it, in turn, jumps to a dynamic routine.
Since trampolines are stored in the data segment, they can easily be distinguished from true
procedures. In addition, when constructing a call graph to report profile statistics or to
generate the trace regeneration code, qp/qpt must follow calls through trampolines to find
the routines that are actually invoked.

2.7 Back-Tracing

Quick program profiling requires a back-trace of all routines active at an exit system call. This
back-trace identifies basic blocks that do not satisfy Kirchoff’s flow law because their entry arcs
have a count one greater than their exit arcs. This imbalance, which affects the quick profiling
algorithm, can easily be rectified with a list of call sites active at exit (i.e., a back-trace). On
SPARC systems, a short code sequence, invoked immediately before the exit system call, collects
and records a back-trace.

On the other hand, on MIPS systems, it is extremely difficult to produce a back-trace from
within a running program because each stack frame stores its return address at a different offset.
The symbol table records these offsets, but the table is unavailable during program execution.
Instead, the exit code sequence dumps all active stack frames, so other tools can examine them
in conjunction with the symbol table to compute the back-trace. In general, this approach works
well since exit is rarely invoked from within deeply-nested procedures in a normally-terminating
program. However, routines with large local variables (as frequently happens with Fortran pro-
grams) cause extraneous information to be dumped at a large cost in time and disk space. An
alternative would be to record the return address information in the instrumented program, so it

could write a back-trace at runtime.

13

at
runtime

Initialized

initialized
Data Data

initialized
Data

® ®) ©

Figure 8: Location of new text segment.

2.8 Abutting Text and Data

On MIPS processors, text and data segments are widely separated in a program’s address space,
so qp/qpt can expand a program’s text space without running into its data segment addresses.
On SPARC processors, the two segments abut so the text segment cannot expand. On these
machines, the instrumented code must be placed in another part of the address space.

A logical place is immediately following the data segment (Figure 8a). However, the format of
a.out files complicates this placement. In these files, a data segment is divided into initialized data,
which is directly represented in a file and bss or uninitialized data (see Figure 2) bss is implicitly
represented by its length in the a.out file. If qp/qpt placed the new code after the initialized
data, where it minimizes the size of the resulting a.out file, it resides in addresses previously
occupied by uninitialized data and requires substantial, and perhaps impossible, modification to a
program’s data addresses. On the other hand, if qp/qpt placed the new code after the uninitialized
data (Figure 8b), it forces the bss data to be represented explicitly in the a.out file, which can
increase its size by an order of magnitude or more.

A practical solution combines the two approaches. qp/qpt places the instrumented code after
the initialized data in the a.out file, but as soon as the program starts executing, it copies the new
code to locations above the bss data and clears the memory it previously occupied (Figure 8c).
This process works well, but greatly complicates debugging since breakpoints cannot be set until

the code and bss segments flip.

2.9 Startup and Termination

qp/qpt adds instrumentation code that performs actions immediately before a program starts
executing and just after it finishes running. qp/qpt’s startup code allocates a buffer on top of the

stack by copying the program’s arguments and environment down the stack. The code then jumps

14

to the normal startup routine, which invokes the program. New startup code is easy to add since
a.out files explicitly identify a program’s entry point. qp/qpt simply changes the entry point to
be its new routine.

qp/qpt termination code, which writes out the instrumentation buffer after a program finishes,
is more difficult to install. A program terminates either because of an exception or an exit system
call. Unix does not provide an exception-handling mechanism that permits gp/qpt to gain control
reliably at errors. Consequently, programs that terminate abnormally cannot be fully profiled or
traced. Normally, however, terminating programs invoke an exit system call. qp/qpt installs a call
on its termination routine immediately before an exit system call. qp/qpt can determine whether
a system call is exit by examining the instructions before the call to find the system call number
loaded into an argument register. At calls in which this test is ambiguous, qp/qpt inserts a short

code sequence to check dynamically if the call is exit.

3 Recommendations

pixie, qp, and qpt demonstrate that rewriting executable files is both a practical and effective
means of measuring program behavior. However, the discussion above also shows that choices
inadvertently made by operating systems and compilers can significantly complicate the process.
Fortunately, a few simple changes to compiler and a.out file formats would greatly simplify the
process of rewriting executable files, at little or no cost to the rest of the system. The rest of this

section briefly lists a few important changes of this type.

3.1 Separate Code and Data

Perhaps the most important change would be to separate instructions clearly from data, or at
least, ensure that the two are clearly distinguishable. From the perspective of an exec editor,
instructions belong in the text segment, data in the data segment. However, this distinction is not
always practical for reasons discussed above. In this case, data should be stored separately from
instructions, either by placing it at the end of the text segment or strictly after each procedure’s
code. Intermixing instructions and jump tables complicates instrumentation unnecessarily. How-
ever, if data is stored in the text segment, the symbol table must be extended slightly to identify
the portions of the text segment that contain data.

3.2 a.out Library

MIPS provides a library of routines (1dfcn) to access information in an ECOFF executable file.
This library hides much of the complexity of the ECOFF file format, which compactly stores

detailed debugging information in a collection of interlinked symbol tables. Other vendors should

15

emulate this library and provide a higher-level interface to their a.out files than the common
standard of providing only a description of its data structures.

For an exec editor, however, 1dfcn has two shortcomings. An easily correctable problem is
that 1dfcn does not provide access to line number data information in an a.out file. A more
fundamental problem is that the library is oriented to programs that extract information from a
file, rather than those that create a copy of the file with some modified information. The 1dfcn
iterators do not guarantee that objects are traversed in the order in which they appear in a file,
so an exec editor must traverse the symbol tables itself, to ensure that each record is processed in

the correct order.

3.3 a.out Improvements

A few minor changes to an a.out file’s symbol table would eliminate many of the problems
discussed above at little or no cost. The text and data segments should be separated in memory,
so the text segment can expand without running into data. The symbol table should record for
every indirect jump whether it is part of a switch statement and, if so, the location of its jump
table. In addition, authors of libraries should take care to ensure that all procedures in a library are
recorded in its symbol table and that procedures with multiple entry points are distinguished by
the table. Finally, symbol tables should record the optimization level of each file. These changes,

at most, require a minor expansion of the quantity of information in a table.

4 Conclusions

Instrumenting a program with small amounts of monitoring code is an effective way of measuring
a program’s performance. Although instrumentation code can be added at many points during
compilation, waiting until the end of the process and rewriting the resulting executable file reduces
the cost of measuring the program and exposes its entire code to instrumentation. Some tools,
including MIP’s pixie and the authors’ qp and gpt, have successfully used this approach to profile
and trace programs.

However, rewriting an executable file requires that an exec editor find all procedures in the
file and build their control-flow graphs. A few design decisions inadvertently made by operating
systems and compilers significantly complicate this process. These choices include intermixing
code and data, not identifying jump tables for switch statements, omitting procedure entries
from the symbol table, violating register-use conventions without recording the fact, using stack
formats that prevent runtime back-tracing, and placing the data segment immediately after the
text segment. Most of these decisions can be changed in a way that simplifies exec editing without

affecting programs’ execution cost or significantly increasing the size of a.out files. Making these

16

changes would encourage the widespread use of this approach to program measurement and would

lead to new tools that provide deeper insight into program performance.

Acknowledgements

Tony Laundrie’s profiling program bbp identified many of the problems discussed above and pro-

vided the idea of using the old text segment as an indirect jump table. Jeff Hollingsworth provided

many helpful comments on this paper.

References

(1]
(2]

(10]

(11]

Thomas Ball and James R. Larus. Optimally Profiling and Tracing Programs. In Conference Record of the
Nineteenth Annual ACM Symposium on Principles of Programming Laenguages, pages 59-70, January 1992,

Matt Bishop. Profiling Under UNIX by Patching. Software Practice & Ezperience, 17(10):729-739, October
1987.

Robert A. Gingell, Meng Lee, Xuong T. Dang, and Mark K. Weeks. Shared Libraries in SunOS, n.d.

Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. An Execution Profiler for Modular Programs.
Software Practice & Experience, 13:671-685, 1983.

Amir Kishon, Paul Hudak, and Charles Consel. Monitoring Semantics: A Formal Framework for Specifying,
Implementing, and Reasoning about Execution Monitors. In Proceedings of the SIGPLAN 91 Conference on
Programming Language Design and Implemeniation, pages 338-352, June 1991.

Donald E. Knuth. An Empirical Study of FORTRAN Programs. Software Practice & Ezperience, 1{2):105-133,
1971.

Manoj Kumar. Measuring Parallelism in Computation-Intensive Scientific/Engineering Applications. IEEE
Transactions on Computers, 37(9):1088-1098, September 1988,

James R. Larus. Abstract Execution: A Technique for Efficiently Tracing Programs. Software Practice &
Ezperience, 20(12):1241-1258, December 1990.

Barton P. Miller, Morgan Clark, Jeff Hollingsworth, Steven Kierstea;d, Sek-See Lim, and Timothy Torzewski.
IPS-2: The Second Generation of a Parallel Program Measurement System. IEEE Transactions on Parallel
and Distributed Systems, 1(2):206-217, April 1990,

MIPS Computer Systems, Inc. RISCompiler Languages Programmer’s Guide, December 1988.

David W. Wall. Global Register Allocation at Link Time. In Proceedings of the ACM SIGPLAN ’'86 Symposium
on Compiler Construction, pages 264-275, June 1986.

17

