
Rewriting Strategies for
Instruction Selection

Martin Bravenboer

Eelco Visser

www.stratego-language.org

Technical Report UU-CS-2002-021
Institute of Information and Computing Sciences

Utrecht University

April 2002



This technical report is a preprint of:
M. Bravenboer and E. Visser. Rewriting Strategies for Instruction Selection.
To appear in S. Tison (editor) Rewriting Techniques and Applications
(RTA’02). Lecture Notes in Computer Science. Springer-Verlag, Copenhagen,
Denmark, June 2002. ( c© Springer-Verlag)

Copyright c© 2002 Martin Bravenboer and Eelco Visser

Address:
Institute of Information and Computing Sciences
Universiteit Utrecht
P.O.Box 80089
3508 TB Utrecht
email: visser@acm.org
http://www.cs.uu.nl/~visser/

http://www.cs.uu.nl/~visser/


Rewriting Strategies for Instruction Selection

Martin Bravenboer
Eelco Visser

Institute of Information and Computing Sciences, Universiteit Utrecht, P.O. Box
80089, 3508 TB Utrecht, The Netherlands. http://www.cs.uu.nl/∼visser,

mbravenb@cs.uu.nl, visser@acm.org

Abstract. Instruction selection (mapping IR trees to machine instruc-
tions) can be expressed by means of rewrite rules. Typically, such sets
of rewrite rules are highly ambiguous. Therefore, standard rewriting en-
gines based on fixed, exhaustive strategies are not appropriate for the
execution of instruction selection. Code generator generators use spe-
cial purpose implementations employing dynamic programming. In this
paper we show how rewriting strategies for instruction selection can be
encoded concisely in Stratego, a language for program transformation
based on the paradigm of programmable rewriting strategies. This em-
bedding obviates the need for a language dedicated to code generation,
and makes it easy to combine code generation with other optimizations.

1 Introduction

Code generation is the phase in the compilation of high-level programs in which
an intermediate representation (IR) of a program is translated to a list of machine
instructions. Code generation is usually divided into instruction selection and
register allocation. During instruction selection the nodes of IR expression trees
are associated with machine instructions.

The process of instruction selection can be formulated as a rewriting problem.
First the IR tree is rewritten to an instruction tree, in which parts (tiles) of the
original tree are replaced by instruction identifiers. This instruction tree is then
flattened into a list of instructions (code emission) during which (temporary)
registers are introduced to hold intermediate values. Typically, the set of rewrite
rules for rewriting the IR tree is highly ambiguous, i.e., there are many instruc-
tion sequences that implement the computation specified by the tree, some of
which are more efficient than others. The instruction sequence obtained depends
on the rewriting strategy used to apply the rules.

Standard rewriting engines such as ASF+SDF [4] provide a fixed strategy
for exhaustively applying rewrite rules, e.g., innermost normalization. This is
appropriate for many applications, e.g., algebraic simplifications on expression
trees, but not for obtaining the most efficient code sequence for an instruction
selection problem.

For the construction of compiler back-ends, code generator generators such
as TWIG [1], BEG [5], and BURG [8] use tree pattern matching [6] and dynamic
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programming [2] to compute all possible matches in parallel and then choose the
rewrite sequences with the lowest cost. These systems use the same basic strat-
egy, although there are some differences between them, mainly in the choice of
pattern match algorithm and the amount of precomputation done at generator
generation time. Although some other tree manipulation operations can be for-
mulated in these systems, they are essentially specialized for code generation.
Other compilation tasks need to be defined in a different language.

In this paper we show how rewriting strategies for instruction selection can be
encoded concisely in Stratego, a language for program transformation based on
the paradigm of programmable rewriting strategies [10,11]. The explicit specifi-
cation of the rewriting strategy obviates the need for a special purpose language
for the specification of instruction selection, allows the programmer to switch
to a different strategy, and makes it easier to combine code generation with
other optimizations such as algebraic simplification, peephole optimization, and
inlining.

In Section 2 we illustrate the instruction selection problem by means of a
small intermediate representation, and a RISC-like instruction set, define in-
struction selection rules, and discuss covering a tree with rules. In Section 3 we
explore several strategies for applying the RISC selection rules, including global
backtracking to generate all possibilities, innermost rewriting, and greedy top-
down (maximal munch). It turns out that no dynamic programming is needed in
the case of simple instruction sets. In Section 4 we turn to the problem of code
generation for complex instruction set (CISC) machines, which is illustrated with
a small instruction set and corresponding rewrite rules. In Section 5 we intro-
duce a specification of a rewriting strategy based on dynamic programming in
the style of [1] to compute the cheapest rewrite sequence given costs associated
with rewrite rules. The generic specification of dynamic programming is very
concise, it fits in half a page, and provides a nice illustration of the use of scoped
dynamic rewrite rules [9].

2 Instruction Selection

In this section we describe instruction selection as a rewriting problem. First we
describe a simple intermediate representation and a subset of an instruction set
for a RISC-like machine. Then we describe the problem of code generation for this
RISC machine as a set of rewrite rules. The result of rewriting an intermediate
representation tree with these rules is a tile tree which is turned into a list of
instructions by code emission, a transformation which flattens a tree. In Section 4
we will consider code generation for a CISC-like instruction set.

2.1 Intermediate Representation

An intermediate representation (IR) is a low level, but target independent rep-
resentation for programs. Constructors of IR represent basic computational op-
erations such as adding two values, fetching a value from memory, moving a
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module IR

imports Operators

signature

sorts Exp Stm

constructors

BINOP : BinOp * Exp * Exp -> Exp // arithmetic operation

CONST : Int -> Exp // integer constant

REG : String -> Exp // machine register

TEMP : String -> Exp // symbolic (temporary) register

MEM : Exp -> Exp // dereference memory address

MOVE : Exp * Exp -> Stm // move between memory a/o registers

Fig. 1. Signature of an intermediate representation

value from one place to another, or jumping to another instruction. These oper-
ations are often more atomic than actual machine instructions, i.e., a machine
instruction involves several IR constructs. This makes it possible to translate in-
termediate representations to different architectures. Figure 1 gives the signature
of a simple intermediate representation format. We have omitted constructors
for forming whole programs; for the purpose of instruction selection we are only
interested in expressions and simple statements. Figure 2 shows an example IR
expression tree in textual and corresponding graphical form. The expression de-
notes moving a value from memory at the address at offset 8 from the sum of
the B and C registers to memory at offset 4 from the FP register.

2.2 Instruction Set

Code generation consists of mapping IR trees to sequences of machine instruc-
tions. The complexity of this task depends on the complexity of the instruction
set of the target architecture. Reduced Instruction Set (RISC) architectures pro-
vide simple instructions that perform a single action, while Complex Instruction
Set (CISC) architectures provide complex instructions that perform many ac-
tions. For example loading and storing values from and to memory is expressed

MOVE

MEM MEM

BINOP BINOP

PLUS REG CONST

"FP" 4

PLUS BINOP CONST

PLUS TEMP TEMP 8

"B" "C"

MOVE(MEM(BINOP(PLUS,REG("FP"),CONST(4))),

MEM(BINOP(PLUS,BINOP(PLUS,TEMP("B"),TEMP("C")),CONST(8))))

Fig. 2. Example IR expression tree
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module RISC

signature

sorts Instr Reg

constructors

TEMP : String -> Reg // temporary register

REG : String -> Reg // machine register

R : Reg -> Reg // result register

ADD : Reg * Reg * Reg -> Instr // add registers

ADDI : Reg * Reg * Int -> Instr // add register and immediate

LOADC : Reg * Int -> Instr // load constant

LOAD : Reg * Reg -> Instr // load memory into register

LOADI : Reg * Reg * Int -> Instr // load memory into register

MOVER : Reg * Reg -> Instr // move register to register

STORE : Reg * Reg -> Instr // store register in memory

STOREI : Reg * Reg * Int -> Instr // store register in memory

Fig. 3. Constructors for a subset of the instructions of RISC machine.x

by separate instructions on RISC machines, while CISC instruction sets allow
many instructions to fetch their operands from memory and store their results
back to memory.

We will first consider code generation for the small RISC-like instruction set
of Figure 3. The instructions consist of arithmetic operations working on regis-
ters and storing their result in a register (only addition for the example), load
and store operations for moving values from and to memory, and an operation for
loading constants and one for moving values between registers. Several instruc-
tions have an ‘immediate’ variant in which one of the operands is a constant.
In load and store operations these immediate values indicate an offset from the
address register. For example, LOADI(REG("a"), REG("b"), 8) means loading
the value at offset 8 from the address in register b. The sequence of instructions
in Figure 4 implements the example IR tree in Figure 2.

2.3 Selecting Instructions with Rewrite Rules

The process of instruction selection can be divided into two phases. First, de-
termine for each tree node which instruction to use. Then linearize the tree into
a sequence of instructions (code emission). The connection between machine in-
structions and intermediate representation can be defined in terms of rewrite
rules. Figure 5 defines rules mapping IR tree patterns to RISC instructions. To
translate a complete IR tree to machine instructions we now have to find an

[ADD(TEMP("b"),TEMP("B"),TEMP("C")),

LOADI(TEMP("a"),TEMP("b"),8),

STOREI(TEMP("a"),REG("FP"),4)]

ADD b B C

LOADI a b 8

STOREI a FP 4

Fig. 4. An instruction sequence in abstract and concrete syntax.
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module IR-to-RISC-Rules

imports IR RISC

rules

Select-ADD :

BINOP(PLUS, e1, e2) -> ADD(R(TEMP(<new>)), e1, e2)

Select-ADDI :

BINOP(PLUS, e, CONST(i)) -> ADDI(R(TEMP(<new>)), e, i)

Select-LOADC :

CONST(i) -> LOADC(R(TEMP(<new>)), i)

Select-MOVER :

MOVE(r@<REG(id) + TEMP(id)>, e) -> MOVER(r, e)

Select-STORE :

MOVE(MEM(e1), e2) -> STORE(e2, e1)

Select-STOREI :

MOVE(MEM(BINOP(PLUS, e1, CONST(i))), e2) -> STOREI(e2, e1, i)

Select-LOAD :

MEM(e) -> LOAD(R(TEMP(<new>)), e)

Select-LOADI :

MEM(BINOP(PLUS, e, CONST(i))) -> LOADI(R(TEMP(<new>)), e, i)

Fig. 5. Instruction selection rules mapping IR trees to instructions.

application of rules to nodes of the tree such that each node of the tree is cov-
ered by some pattern; except for ‘leaf’ nodes such as REG, TEMP and constants.
Figure 6 shows a possible covering for the example IR tree of Figure 2 together
with the resulting instruction tree.

In an expression tree, results from subexpressions are passed implicitly up in
the tree. When breaking a tree into a sequence of instructions this is no longer the
case; intermediate values should be stored into registers or in memory. We will
assume here that they can be stored in registers. In the rewrite rules in Figure 5
passing of intermediate values is achieved by generating a new temporary register
at the position of the destination register to hold the result of the instruction.
For example, rule Select-ADD generates the term ADD(R(TEMP(<new>)), e1,
e2). The R( ) constructor indicates that this argument contains the result of
the instruction. The new primitive generates a new unique name.

2.4 Code Emission

After covering the IR tree with instructions, the program is still in tree shape.
Code emission linearizes the tree into a list of instructions. For example, for
the tiling in Figure 6 we get the code sequence of Figure 4. A specification of a
code emission strategy based on the generic tree flattening strategy postorder-
collect is given in Appendix A.

3 Strategies for Instruction Selection

In the previous section we have seen that rewrite rules can be used for expressing
the mapping from intermediate representation trees to lists of machine instruc-
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MOVE

MEM MEM

BINOP

PLUS CONSTREG

4"FP"

BINOP

PLUS CONSTBINOP

8PLUS TEMP TEMP

"B" "C"

STOREI

LOADI REG 4

R ADD 8 "FP"

TEMP R TEMP TEMP

"a_0" TEMP "B" "C"

"b_0"

STOREI(LOADI(R(TEMP("x_0")), ADD(R(TEMP("y_0")),TEMP("B"),TEMP("C")),8),

REG("FP"),5)

Fig. 6. Optimum tiling of the example tree and the corresponding instruction
tree with temporary intermediate result registers.

tions. However, the set of rewrite rules in Figure 5 is highly ambiguous, i.e., there
are many rewritings possible. For example, Figure 7 shows all 9 possible tilings
for the example expression in Figure 2 together with three of the code sequences
pretty-printed. This kind of ambiguity is typical for instruction selection rules.
Therefore, the instruction sequence finally obtained depends on the rewriting
strategy used to order the application of selection rules. In this section we will
examine several strategies and their applicability to instruction selection.

3.1 Intermezzo: Rewriting Strategies

Thusfar we have considered algebraic signatures and standard rewrite rules. In
a normal rewriting system a term over a signature is normalized with respect to
the set of rewrite rules. In Stratego the rewriting strategy is not fixed, but can
be specified in a language of strategy combinators. A strategy is a term trans-
formation that may fail. Rewrite rules are basic strategies. Examples of basic
combinators are sequential composition, non-deterministic choice, deterministic
choice, and a number of generic term traversal operators. Using these combina-
tors a wide variety of rewriting strategies can be defined. The Stratego library
provides a large number of generic strategies built using these combinators. In
the rest of this paper we will define several compound strategies. The strategy
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STORE(LOAD(a,ADD(b,ADD(c,B,C),LOADC(d,8))),ADD(e,FP,LOADC(f,4)))

STORE(LOAD(a,ADD(b,ADD(c,B,C),LOADC(d,8))),ADDI(g,FP,4))

STORE(LOAD(a,ADDI(h,ADD(i,B,C),8)),ADD(j,FP,LOADC(k,4)))

STORE(LOAD(a,ADDI(h,ADD(i,B,C),8)),ADDI(l,FP,4))

STORE(LOADI(m,ADD(n,B,C),8),ADD(o,FP,LOADC(p,4)))

STORE(LOADI(m,ADD(n,B,C),8),ADDI(q,FP,4))

STOREI(LOAD(r,ADD(s,ADD(t,B,C),LOADC(u,8))),FP,4)

STOREI(LOAD(r,ADDI(v,ADD(w,B,C),8)),FP,4)

STOREI(LOADI(x,ADD(y,B,C),8),FP,4)

ADD c B C

LOADC d 8

ADD b c d

LOAD a b

LOADC f 4

ADD e FP f

STORE a e

ADD n B C

LOADI m n 8

LOADC p 4

ADD o FP p

STORE m o

ADD y B C

LOADI x y 8

STOREI x FP 4

Fig. 7. All possible instruction selections for the example IR tree and three
pretty-printed code sequences

elements in these definitions will be explained when needed. For a full account
we refer to the literature; good starting points are [10,9,11].

3.2 Exhaustive Application

The traditional way to interpret a set of rewrite rules is by applying them ex-
haustively to a subject term. The following strategy takes this approach:

innermost-tilings =

innermost(Select-ADD + Select-ADDI + Select-STORE + Select-LOAD +

Select-STOREI + Select-LOADC + Select-LOADI + Select-MOVER)

The local non-deterministic choice operator (s1 + s2) combines two strategies
s1 and s2 by trying either of them. If that fails the other is tried. If one of the
branches has succeeded the choice is committed, i.e., no backtracking to this
choice is done if the continuation fails.

The innermost strategy takes a transformation, e.g., a choice of rules, and
applies them exhaustively to a subject term starting with the inner terms. This
is expressed generically as

innermost(s) = all(innermost(s)); try(s; innermost(s))

The generic traversal combinator all(s) applies the transformation s to each
direct subterm of a constructor application. Thus, <all(s)>C(t1,...,tn) de-
notes C(<s>t1,...,<s>tn). The first part of the strategy normalizes all direct
subterms of a node. After that (; is sequential composition), the strategy tries to
apply the transformation s. If that succeeds the result, e.g., the right-hand side
of the term, is again normalized. The combinator try(s) is defined as try(s)
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= (s <+ id). That is, try to apply s, but if that fails do nothing, i.e., use the
identity strategy id. Thus, if s fails the subject term is in normal form.

The innermost strategy is not adequate for instruction selection, however. It
produces the worst result, e.g., the first result in Figure 7. This is caused by
the fact that reducible subexpressions of a pattern are reduced before the (more
complex) pattern itself is applied. Furthermore, the exhaustive application is
overkill since instruction selection rules do not need exhaustive application; each
node needs to be rewritten at most once.

3.3 All Rewritings

Another approach is to generate all possible results. This is achieved by the
following strategy:

all-tilings =

bagof(topdown(try(Select-ADD ++ Select-ADDI ++ Select-STORE

++ Select-STOREI ++ Select-LOADC

++ Select-LOAD ++ Select-LOADI ++ Select-MOVER)))

In constrast to the + operator used above, the global non-deterministic choice
operator (s1 ++ s2) is a non-committing choice operator. This means that after
one of the branches has succesfully terminated, but the continuation fails, the
strategy backtracks to the other branch. Formally, we have that (s1 ++ s2);
s3 is equal to (s1; s3) ++ (s2; s3), which does not hold for +. This property
is used by the bagof(s) operator to produce the list of all possible results by
forcing a backtrack to the last choice point. The topdown strategy, defined as

topdown(s) = s; all(topdown(s))

traverses a tree in pre-order, applying a transformation s to a node before trans-
forming its subterms using the generic traversal operator all. The list of all
results in Figure 7 was produced using this strategy.

After generating the list of all possible results we could define a filter that
selects the best solution. As a specification this is interesting, as an implemen-
tation it is not feasible due to the combinatorial explosion; for each node all
possible rewrites for its subnodes need to be considered.

3.4 Maximal Munch

If each rule corresponds to a machine instruction, the best solution is usually
the shortest sequence of instructions. In other words, we want to maximize the
tree tilings selected. The following strategy takes this approach:

maximal-munch =

topdown(try((Select-ADDI <+ Select-ADD) + Select-LOADC

+ (Select-STOREI <+ Select-STORE)

+ (Select-LOADI <+ Select-LOAD) + Select-MOVER))

8



Starting at the root of the expression tree, the strategy tries to apply one of
the selection rules. Instead of combining all rules with the non-deterministic
choice operator +, some pairs of rules are combined using the deterministic
choice operator (s1 <+ s2), which always tries its left argument first. In this
way the maximal-munch strategy gives priority to patterns that take the largest
bite, e.g., preferring Select-ADDI over Select-ADD. In fact, this simple strategy,
combining pre-order top-down traversal with rule priority, is adequate for simple
RISC-like instruction sets.

3.5 Pattern Matching

As can be seen from the examples above, programmable strategies allow the
combination of rewrite rules into different strategies. This flexibility in combining
rules does not restrict the efficient implementation of pattern matching. When
combining rules in a choice, as in the examples above, the rules are not tried one
by one. Instead a pattern match optimization compiles the rule selection into a
matching automaton which folds left-hand sides with the same root constructor
into a single condition (and recursively for subpatterns).

4 Complex Instruction Sets

In RISC instruction sets complex memory addressing modes are restricted to
load and store operations. In complex instruction set (CISC) machines, many
instructions can use the full range of addressing modes to read their operands
directly from memory using base and index registers and constant offsets from
these. Some machines also have heterogeneous register sets such that not all
instructions can work with all registers, requiring values to be moved between
registers.

For such machines maximal munch is not adequate. Code generators in pro-
duction compilers use a dynamic programming approach to compute the code
sequence with the least cost. To illustrate rewriting with dynamic programming
we define the small CISC-like instruction set in Figure 8. In contrast to the
RISC instruction set there are no special load and store operations. Instead
each instruction can use all addressing modes and thus load and store values

module CISC

signature

sorts Reg Addr Instr

constructors

TEMP : String -> Reg IMM : Int -> Addr

REG : String -> Reg REGA : Reg -> Addr

NONE : Reg ADDR : Reg * Reg * Int * Int -> Addr

R : Reg -> Reg ADD : Addr * Addr * Addr -> Instr

MOVEM : Addr * Addr -> Instr

Fig. 8. Constructors for a subset of the instructions of a CISC machine
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MOVEM 4[FP] 8[B,C] # C1=1 C2=1 C3=0 C4=0 C5=0 C6=0 C7=0 cost=1

ADD r B C # C1=1 C2=1 C3=0 C4=0 C5=0 C6=0 C7=2 cost=2

MOVEM 4[FP] 8[r]

ADD n FP $4 # C1=1 C2=1 C3=1 C4=1 C5=3 C6=3 C7=4 cost=6

ADD e B C

ADD l e $8

MOVEM [n] [l]

Fig. 9. Lowest cost selections based on different cost assignments

to memory. The ADDR(r1,r2,scale,off) addressing mode indicates a value in
memory at address r1 + (r2*scale) + off, where r1 is a base register, r2 an
index register, and scale and off constants.

Figure 10 defines instruction selection rules for this instruction set from the
intermediate representation of Figure 1. Since each instruction can use all ad-
dressing modes, it is not desirable to define rules for each instruction parsing
each addressing mode. Instead addressing modes are selected separately. To en-
sure that tiles connect, each rule indicates the mode of its tile and the expected
modes of the leaves of the tile using the constructor l(mode,tile).

Again, this rule set is ambiguous. To indicate which rewrite should be used,
costs are assigned to rewrite rules corresponding to the operational cost of se-
lected instruction. Figure 11 assigns symbolic costs C1 to C7 to several of the
patterns of Figure 10. The goal now becomes to select the tree with lowest overall
cost. Figure 9 shows several lowest cost selections for different cost assignments
to these symbolic costs. This illustrates that instruction selection can no longer
be achieved by a fixed strategy.

5 Dynamic Programming

Maximal munch does not work since chain rules such as Select-LOAD can be
applied indefinitly. A straightforward solution would be to generate all solutions,
compute their cost, and take the cheapest solution. However, in Section 3 we
already saw that this leads to a combinatorial explosion in which subresults
are computed many times. In the case of the rules of Figure 10, the situation
is worse, since rules Select-REGA and Select-LOAD together lead to infinitly
many possibile rewrites.

The dynamic programming approach of [2,1] is similar to the all-tilings
strategy of Section 2, but instead of computing all possible rewrites in sequence,
we first compute all possible matches in one bottom-up pass over the tree, tab-
ulating the cheapest match for each node. This information can then be used to
perform the optimal rewrite sequence. Figure 13 presents the specification of a
generic dynamic programming strategy. Figure 12 shows an instantiation of this
strategy with the rules and costs of Figures 10 and 11, and a default cost of 0.
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module IR-to-CISC-Rules

imports CISC IR Dynamic-Programming

signature

constructors

a : Mode reg : Mode imm : Mode s : Mode

rules

Select-MOVEM :

MOVE(e1, e2) -> l(s, MOVEM(l(a, e1), l(a, e2)))

Select-ADDM :

MOVE(e1, BINOP(PLUS, e2, e3)) -> l(s,ADD(l(a,e1), l(a,e2), l(a,e3)))

Select-ADD :

BINOP(PLUS,e1,e2) -> l(reg,ADD(R(REGA(TEMP(<new>))),l(a,e1),l(a,e2)))

Select-imm :

CONST(i) -> l(imm, i)

Select-reg :

REG(r) -> l(reg, REG(r))

Select-reg’ :

TEMP(r) -> l(reg, TEMP(r))

Select-ABS :

MEM(i) -> l(a, ADDR(NONE,NONE,1,l(imm, i)))

Select-BASE :

MEM(r) -> l(a, ADDR(l(reg, r),NONE,1,0))

Select-BASEIMM :

MEM(BINOP(PLUS, e1, e2)) -> l(a, ADDR(l(reg,e1), NONE, 1, l(imm,e2)))

Select-BASEINDEX :

MEM(BINOP(PLUS, e1, e2)) -> l(a, ADDR(l(reg,e1), l(reg,e2), 1, 0))

Select-BASEINDEXIMM :

MEM(BINOP(PLUS, BINOP(PLUS, e1, e2), i)) ->

l(a, ADDR(l(reg, e1), l(reg, e2), 1, l(imm, i)))

Select-IMM :

r -> l(a, IMM(l(imm, r)))

Select-REGA :

r -> l(a, REGA(l(reg, r)))

Select-LOAD :

x -> l(reg, MOVEM(R(REGA(TEMP(<new>))), l(a, x)))

Fig. 10. Instruction selection rules mapping IR trees to CISC instructions.
module CISC-Costs

imports CISC

rules

CiscCost : ADD(x, y, z) -> C1

CiscCost : MOVEM(x, y) -> C2

CiscCost : ADDR(NONE, y, 1, 0) -> C3 where <not(NONE)> y

CiscCost : ADDR(x, NONE, 1, 0) -> C4 where <not(NONE)> x

CiscCost : ADDR(NONE, y, 1, i) -> C5 where <not(NONE)> y; <not(0)> i

CiscCost : ADDR(x, NONE, 1, i) -> C6 where <not(NONE)> x; <not(0)> i

CiscCost : ADDR(x, y, 1, i) -> C7 where <not(NONE)> x; <not(NONE)> y

Fig. 11. Instruction costs
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5.1 Optimum Tiling

The dynamic programming strategy is implemented by optimum-tiling, which
is parameterized with a cost computation cost, a set of normal rules rs, and a
set of chain rules is. The strategy consists of a bottomup traversal followed by
a topdown traversal. During the bottomup traversal, the strategy match-tile
finds out which rules are applicable and which one is the cheapest. This is ex-
pressed by defining a dynamic rewrite rule BestTile for each subtree t, which
rewrites t tagged with a mode m as l(m,t) to the corresponding instruction tree.
These dynamic rules are then applied in a topdown traversal over the tree. In
other words, this corresponds to maximal-munch where the rule to be used is
determined dynamically instead of statically and can be different at each node.

5.2 Match Tile

Strategy match-tile first creates a pair of the subject term and the application
of the rules to the subject term. If one of the rules succeeds, it is registered by
register-match. Then fail forces backtracking to another rule, until no more
rules match. After applying the normal rules, the closure of the chain rules is
computed by repeating the same procedure until no more chain rules apply. The
repetition is necessary since one chain rule application can enable another one.
This process terminates since register-match only succeeds if the cost of the
match is lower than the cost of all previous matches.

5.3 Register Match

Register-match is the core of the dynamic programming strategy. It gets a pair
of a subject tree and the result of applying a rule to it, which should be a tile
tagged with a mode. ComputeCost returns the cumulative cost of the tile and the
costs of the trees at the leafs of the tile. If this cost is less than the BestCost
so far for the tree in this mode, the match is registered by generating new
dynamic rules for BestCost and BestTile rewriting the l(mode,tree) term to
the computed cost and the given tile. This overrides any previously generated
rules for l(mode,tree). Thus, the best result per mode is computed for each
node in a bottomup fashion; suboptimal results are discarded.

Dynamic rewrite rules [9] are just like ordinary rules, except that they inherit
the values of any of their variables that are bound in their definition context.
Thus the definitions of the rule BestCost inherits from its context the values of
the variables mode, tree, and cost. A rule specific for these values is generated,
which may exist next to other BestCost rules, except if the values for mode and
tree are the same. In that case the old rule is overridden.

5.4 Compute Cost

The cost of a match is determined by adding the cost of the tile itself as pro-
vided by the parameter strategy cost and the BestCosts of the leafs of the tile.
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module IR-to-CISC

imports lib IR-to-CISC-Rules CISC-Costs Dynamic-Programming

strategies

cisc-select =

optimum-tiling(CiscCost <+ !0, cisc-tiles, cisc-injections, !s)

cisc-tiles =

Select-ADDM ++ Select-MOVEM ++ Select-ADD ++ Select-imm

++ Select-reg ++ Select-reg’ ++ Select-ABS ++ Select-BASE

++ Select-BASEINDEX ++ Select-BASEIMM ++ Select-BASEINDEXIMM

cisc-injections =

Select-LOAD + Select-IMM + Select-REGA

Fig. 12. Instantiation of the dynamic programming algorithm

module Dynamic-Programming

imports lib dynamic-rules

signature

constructors

l : Mode * a -> a

strategies

optimum-tiling(cost, rs, is, rootmode) =

{| BestTile, BestCost :

bottomup(match-tile(cost, rs, is));

!l(<rootmode>, <id>);

topdown(try(BestTile))

|}

match-tile(cost, rs, is) =

try( test(!(<id>, <rs>); register-match(cost); fail));

repeat(test(!(<id>, <is>); register-match(cost)))

register-match(cost) =

?(tree, l(mode, tile));

where(

<ComputeCost(cost)> tile => cost

; <lt-inf> (cost, <BestCost <+ !Infinite> l(mode, tree))

; rules(

BestCost : l(mode, tree) -> cost

BestTile : l(mode, tree) -> tile

)

)

ComputeCost(cost) = where(cost => tile-cost)

; collect(?l(_,_)); foldr(!tile-cost, add, BestCost)

Fig. 13. Dynamic programming algorithm for computing an optimum tiling.
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The leafs are obtained by collecting all outermost subterms matching l( , )
from the tile. For example, the tile ADDR(l(reg,e1), NONE, 1, l(imm,e2))
has cost C6 and leafs [l(reg,e1),l(imm,e2)]. Thus the fold over this list pro-
duces <add>(<BestCost>l(reg,e1), <add>(<BestCost>l(imm,e2), C6)). If
BestCost fails for some leaf of a tile, this indicates that no tile was found for
the corresponding tree with the mode needed by this tile.

6 Discussion

The instruction selection techniques in this paper were developed as part of a
project building a complete Tiger compiler [3] using rewriting techniques. The
generic strategies are part of the Stratego Standard Library, which contains many
more generic strategies. The examples in this paper are written in Stratego and
have been tested with release 0.7 of the Stratego Compiler1.

The maximal munch algorithm was directly inspired by [3]. However, our
separation of selection rules and code emission makes the rules independent of
the strategy to be used. The dynamic programming algorithm is based on the
ideas of [2,1]. These ideas have been used in several systems including TWIG [1],
BEG [5], and BURG [8]. The main differences between these systems is the pat-
tern matching algorithm used and the amount of computation done at generator
generation time. BURG [8] is based on bottom-up rewriting (BURS) theory and
performs all cost computations at generator generation time, whereas our im-
plementation does all cost computations at code generation time. Furthermore,
BURG uses bottom-up pattern matching [6], an efficient matching algorithm
that does not reexamine subterms. This is achieved by normalizing patterns to
shallow patterns and introducing new modes.

We have not yet performed comparative benchmarks, but our implementation
will undoubtely be much slower than the highly optimized BURG code genera-
tors. For a list of IR trees of 9200 nodes, the maximal-munch strategy took 0.03
seconds to produce a (RISC) instruction tree of 11,100 nodes (2100 instructions),
while the optimum-tiling dynamic programming strategy took 1.96 seconds to
produce a (CISC) instruction tree of 15,000 nodes (1000 instructions). We ex-
pect to improve the performance considerably by applying specialization and
fusion in the style of [7], where an optimization for specialization of the generic
innermost strategy is presented. A possible optimization is the normalization
of rule left-hand sides in order to achieve better pattern matching.

7 Conclusion

In this paper we have shown the complete code of several instruction selection al-
gorithms. Creating a complete code generator only requires more rules, not more
implementation. This is clear evidence of the expressivity of the specification of
program transformations with rewrite rules and rewriting strategies. Instead of
1 http://www.stratego-language.org
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hardwiring the strategy in the rewrite engine, the programmer can define the
most appropriate strategy for the task at hand. For example, one could start
with a simple maximal-munch strategy for a code generator and only switch
to dynamic programming when it is really needed. Furthermore, programmable
strategies enable the combination of several transformations each using differ-
ent strategies. Much of the expressivity of strategies is due to the ability of
capturing generic schemas with generic traversal operators. Finally, the incorpo-
ration of dynamic programming techniques provides new opportunities for the
specification of other kinds of transformations, and poses new opportunities for
the optimization of strategies. In particular, it would be interesting to general-
ize tabulation techniques from code generators to more general transformation
strategies.
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A Code Emission

After covering the IR tree with instructions, the program is still in tree shape.
Code emission linearizes the tree into a list of instructions. For example, for the
tiling in Figure 6 we get the code sequence of Figure 4.

Code emission is simply a matter of putting the nodes of the instruction
tree in post-order. That is, collect each node and put the nodes collected from
the direct subterms before it, and replace direct subterms with result register
in which they leave their value. Figure 14 presents the complete specification of
code emission for RISC instructions.

A.1 Emit

The Emit strategy recognizes which subtrees correspond to instructions by means
of the non-deterministic choice (the operator + ) between the instruction pat-
terns. The instructions are recognized and transformed by means of congruence
operators. For each n-ary constructor C declared in a signature, a corresponding
congruence operator C(s1,...,sn) is defined, which transforms a C(t1,...,tn)
term into C(<s1>t1,...,<sn>tn), i.e., applying the si strategies to the corre-
sponding subterms of the constructor application. The congruence fails when
applied to term constructed with any other constructor.

The reg transformation is applied to the direct subterms of an instruction
to replace a complete instruction tree with just the register in which it leaves
its result. The definition of reg leaves REG and TEMP nodes alone. An R node
is reduced to its argument using a match and project operator. A match and
project operator ?C(...,<s>,...) matches the subject term against the pat-
tern, and at the position of <s> the transformation s is applied. If this succeeds
the result term is the result of the transformation. For example, ?R(<id>) ap-
plied to R(TEMP("x_0")) is TEMP("x_0"). Any other node is expected to be an
instruction with an R( ) term as one of its argument; the register containing the
intermediate result. The construction op#(xs) generically deconstructs a term
into its constructor op and the list of its direct subterms xs. Put together, the
strategy LOADI(reg,reg,id) turns the instruction tree

module RISC-Code-Emission

imports RISC

strategies

emit-code = postorder-collect(Emit)

Emit = ADD(reg, reg, reg) + ADDI(reg, reg, id)

+ LOADC(reg, id) + LOAD(reg, reg) + LOADI(reg, reg, id)

+ STORE(reg, reg) + STOREI(reg, reg, id)

reg = REG(id) + TEMP(id) + ?R(<id>) <+ ?op#(<fetch(?R(r)); !r>)

Fig. 14. Code emission rules and strategy

16



LOADI(R(TEMP("x_0")),ADD(R(TEMP("y_0")),TEMP("B"),TEMP("C")),8)

into the instruction

LOADI(TEMP("x_0"),TEMP("y_0"),8)

A.2 Post-Order Collect

The emit-code strategy flattens a tree by collecting all subterms for which
Emit succeeds and putting them in post-order. This tree flattening process can
be expressed as a generic transformation strategy for flattening arbitrary tree
structures. The strategy postorder-collect is part of the Stratego Standard
Library and is defined as

postorder-collect(s) = postorder-collect(s, ![])
postorder-collect(s, acc) =
where((s => y; ![y | <acc>] <+ acc) => ys);
crush(!ys, \ (x, xs) -> <postorder-collect(s, !xs)> x \ )

The first line defines postorder-collect/1 in terms of postorder-collect/2
passing as extra parameter the transformation that builds the empty list, which
is the way to pass a term to a strategy in Stratego. The second definition tries to
apply the parameter strategy s to the subject tree. If that succeeds it inserts it
in the accumulation list acc, otherwise nothing is added to the list. Subsequently
the subterms of the subject tree are collected recursively by means of a crush. In
general, crush(zero, plus) generically deconstructs a constructor application
C(t1,...,tn) into <plus>(t1,...<plus>(tn, <zero>)), i.e., performs a fold
over the direct subterms of the node.
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