REX: Secure, Extensible Remote Execution

Michael Kaminsky, Eric Peterson, Daniel B. Giffin,
Kevin Fu, David Maziéres, M. Frans Kaashoek

MIT Computer Science and Artificial Intelligence Laboratory,
NYU Department of Computer Science

kaminsky@csail.mit.edu , ericp@csail.mit.edu , dbg@cs.nyu.edu
fubob@csail.mit.edu , dm@cs.nyu.edu , kaashoek@csail.mit.edu
Abstract tem forwarding, facilities for copying files back and forth,

The ubiquitous SSH package has demonstrated the %}{ptographlc user authentication, mtegra}tmn with net-
ork file systems, transfer of user credentials across ma-

portance of secure remote login and execution. As remgﬁe .
: . . . chines, pseudo-terminals, and more. Many of these fea-
execution tools grow in popularity, users require new fe{a-) .
. X e ... tures require changes to the remote login protocol, for
tures and extensions, which are difficult to add to existing .
; : R v?mch developers add new message types.
systems. REX is a remote execution utility with a nove
architecture specifically designed for extensibility as well Moreover, many users want other features that are not
as security and transparent connection persistence in)fk available: limitations on the amount of code sub-
face of network complexities such as NAT and dynan']j@Ct to remote epr0|ts, convenient trust management p0|l-
IP addresses. To achieve extensibility, REX bases mu§des, transparent access to servers behind network address
of its functionality on a single new abstractioremulated franslation (NAT), and support for long-running remote
file descriptor passing across machindghis abstraction 10gin sessions when the clientand server both change their
is powerful enough for users to extend REX's functional® addresses. The challenge in designing and building
ity in many ways without changing the core software G remote execution tool is to address this diverse set of
protocol. needs in a single, simple, extensible framework.
REX addresses security in two ways. First, the im- This paper introduces a new remote login and execution
plementation internally leverages file descriptor passinglity called REX, which has three main goals: exten-
to split the server into several smaller programs, redugibility, security, and transparent connection persistence
ing both privileged and remotely exploitable code. Sedespite NAT and dynamic IP addresses. The main contri-
ond, REX selectively delegates authority to processes rigotion of REX is its architecture centered arodite de-
ning on remote machines that need to access othergeriptor passingboth as an internal implementation tech-
sources. The delegation mechanism lets users incremgigue and as an external interface highly amenable to ex-
tally construct trust policies for remote machines. Finallggnsions.

REX provides mechanisms for accessing servers With_ouExtensibility. REX’s approach to extensibility is for
globally routable P addresses, and for resuming sessiglscore system and protocol to provide the simplest possi-
when a TCP connection aborts or an endpoint’s IP addrggs nterface on which external utilities can implement ad-
changes. Measurements of the system demonstrate {aaf-e features like remote pseudo-terminal access, port
REX’s architecture does not come at the cost of perfqgyarding, and authentication delegation. This interface

mance. consists principally of file descriptor passing: a process
on one machine can effectively transfer a file descriptor to
1 Introduction a process on another machine. In reality, REX emulates
this operation by receiving the descriptor on one machine,
Remote login and execution are network facilities thpaissing a new socket to the recipient on the other machine,
many people need for their day-to-day computing. Thd subsequently relaying data back and forth between the
concept of remote login is simple: local input is fed to descriptor and new socket over a cryptographically pro-
program on a remote machine, and the program’s outpetted TCP connection. REX does not care if a passed file
is sent back to the local terminal. In practice, howevetescriptor is the master side of a pseudo-terminal, a con-
modern remote login tools have become quite complexnection from an X-windows client, a forwarded authenti-
The popular SSH [38] program demonstrates that useedion agent connection, or some as-yet-unanticipated fu-
expect features such as TCP port and X Window Sytsire extension.

mailto:kaminsky@csail.mit.edu
mailto:ericp@csail.mit.edu
mailto:dbg@cs.nyu.edu
mailto:fubob@csail.mit.edu
mailto:dm@cs.nyu.edu
mailto:kaashoek@csail.mit.edu

Security. REX was designed from the ground up tof code (not counting general-purpose crypto and Remote
minimize both the amount of code that runs with sup@rocedure Call libraries). REX is in daily use, it runs on
ruser privileges and the amount of code that deals diredtlnix, and the source code is freely available.
with incoming network connections (which presents the The rest of the paper is structured as follows. Section 2
greatest risk of being remotely exploitable). The RE¥escribes REX’s architecture, and Sections 3, 4, and 5 de-
server is split into two components: a small trusted prezil the main benefits of this architecture: extensibility,
gram, rexd, and a slightly larger, unprivileged, per-usesecurity, and transparency. Section 6 gives an evaluation
programproxy. Remote clients can communicate onlgf the implementation in terms of code size and perfor-
with rexd until they prove that they are acting on behalhance. Finally we discuss related work, primarily regard-
of an authorized usePRroxy, in turn, actually implements ing remote execution, and conclude.
almost the entirety of what one would consider remote
execution functionality. This separation of functions and
privileges is possible becaussxduses local file descrip-2 Architecture
tor passing to hand off incoming connectiongtoxy.

The latest versions of OpenSSH [21] have moved inREX is designed to work with the Self-certifying File Sys-
similar direction by embracing privilege separation [24em (SFS), a secure, global network file system. SFS
26]. The SSH protocol, however, was not designed to farovides REX’s user and server authentication facilities.
cilitate such an architecture, and the complexity of the ifREX also shares SFS's RPC compiler and library, which
plementation reflects this fact. For example, in one stgggpmote security by offering a concisely-specifiable com-
SSH must extract the memory heap from a process andnication interface between local and remote com-
essentially recreate it in another process’s address spao@ents, and by parsing messages with mechanically-
Moreover, even the least privileged, “jailed,” SSH pragenerated code. Further, the use of local file descriptor
cesses still require the potentially dangerous ability to sigassing allows REX to be broken into small functional
with the server’s secret key. units, minimizing the amount of privileged code.

A second security goal of REX is to provide precise The REX architecture offers extensibility through a
delegation of authority to processes running on remdi@mmunication abstraction that connects remote code (in-
machines. Delegation of authority allows a remote préluding arbitrary user programs) through the familiar in-
cess to access and authenticate itself to remote resouri@#ace of file descriptors. These pieces of code are called
However, a user might trust the remote machine less tHaadules REX groups file descriptors intchannels and
the local one. To address this problem, REX can pronftannels intsessionsA sessiorcorresponds to all cryp-
users to authorize remote accesses on a case-by-caséogsaphically protected communication over a single TCP
sis; by optionally instructing the agent to allow similagonnection between a REX client and a particular server.

accesses in the future, users can build trust policies indrér each pair of communicating modules, there exists a
mentally. channelwithin some session. Each channel can contain

Transparent Connection Persistence REX provides an arbitrary number ofile descriptorpairs, over which
medules may send data or more file descriptors.

transparent connection persistence in the face of co i)

plex network configurations. The prevalence of network S€ctions 2.1 and 2.2 provide background on user au-

address translation (NAT) makes it hard to run g|ol§henpcat|on and local and rfemote file descrlptor_ passing.

ally accessible servers on many machines, while dynamgctions 2.3 and 2.4 describe how REX establishes new

cally assigned IP addresses can disrupt long-running st&ssions and how the channel abstraction is used to con-

sions. REX lets users transparently connect to rem&@ct 'modules. Flnglly, this .sectlon concludes with a dis-

login servers behind NAT boxes using either an externaffyySSion of connection caching.

addressable proxy server or DNS SRV records [12] (in

conj_unctlon Wl_th static TC_P port mapp_lng). REX’s aut 51 User Authentication in SES

matic connection resumption allows clients and servers o

change IP addresses during the course of a connectionfhe key SFS subsystem that REX leverages is the user
We have built REX as part of the SFS [20] compututhentication infrastructure, which consists of two pro-

ing environment. REX currently offers modules that haigrams. The first is a per-user agent processagent

dle pseudo-terminal support, TCP port forwarding, X2hich runs on the client machine. The agent stores a

forwarding with cookie authentication, and Unix-domainser’s private key and signs authentication requests on his

socket forwarding. REX adds only two small pieces difehalf. The second program is an authentication server,

privileged code to the system. One of these, the pseudtsauthdwhich runs on the server machine. The authen-

terminal daemon, is only 400 lines of code and nevgcation server verifies the signatures on authentication re-

touches an Internet socket; it is therefore unlikely to lmpiests and then maps user public keys to local Unix ac-

remotely exploitable. The otherexd is only 500 lines counts based on a database of registered SFS users.

2.2 File descriptor passing Mazieres et al. [20] describe several mechanisms
File d . ical handl hich through which the client can obtain the server’s key. By
lle descriptors are numerical handles which name 88fault, REX, like SSH, maintains a cache of server public
opened f_|Ie, s_oc_ket, device, or othe_r file-like resou_rggeys that it has already seen. REX, however, avoids pos-
Most I/O in Unix is performed by reading from and writj e 11,ain-the-middle attacks when contacting a server

ing to file descriptors. Unix also provides a facility fo'for the first time by using the Secure Remote Password
passing a file descriptor to another process through E@.PRP) protocol [35]

sendmsgndrecvmsgsystem calls on Unix-domain sock- Next, thesfsagenauthenticates its user texd (Step 3).

ets [23]. The agent signs an authentication request, which it passes

REX uses local file descriptor passing between dz1‘3'the server through the secure connecti@exdpasses

mons, particularly on the server. This mechanism makt'ﬁ% authentication request to the authentication sester,

It easy to S.p."t functionality "’.‘t.a connection endp_omt b%’authd which verifies the signature and identifies the user
tween a privileged and unprivileged process, typically ¥naps the user's public key to a local account).

handing the connection from the privileged to the unpriv- nce the user is authenticatedxd which runs with

ileged process after some initialization phase. The use Qb eruser privileges, spawns a new process cal
local file descriptor pa:'ssing as It relates to secunity is dlﬁhich runs with the F’Jrivileges of the local user identified
cussed further in Section 4. above (Step 4)Rexduses file descriptor passing to hand

RE_X also introduce; the emulation of.file descript he secure connection froxy, which processes remote
passing between machines. This mechanism allows MAN cution requests from the user (Step 5). Sfeagent

extensions such as port forwarding and pseudo-termi intains a connection fwroxyin order to keep this mas-

aIIocat|o_n to be llmplemen'geq_ outside of the core SySt?{Er REX session alive; once the agent closes its connection
thereby increasing extensibility. The use of file descrlpd proxy (provided no other clients are still connected),

tor passing over the network is described in more detailépoxy will exit and rexd will delete the master session.

Section 3. The master REX session is the basis for subsequent ses-
sions between this user and server.
2.3 Sessions

Figures 1 and 2 show how REX establishes a session B&-2 Stage |l

tvyeen a client machine (left) and a server (right). Boxer% run a program on the server, thex client notifies the

W'th agray bac_kground. are SFS programs that REX usg; er'ssfsagenthat it wants to create a new session to the

while boxes with a white background are part of REX. o carver (Figure 2, Step 1)Sfsagentooks up the

Boxes with a filled upper-right corner are programs th 6rresponding master REX session and hasgsession

run with superuser privileges. (The SFS agent is h Bys for a new session to the saprexy. Rexthen con-

gray, half-white b_ecause even though i,t was part of t Bcts torexd (Step 2). Rexdchecks thatex indeed pos-

original SFS architecture, we extended it to support R@ésses appropriate keys, and if so hands the connection off

as des_cnbed below.) . to proxy through file descriptor passing (Step 3). Finally,
Setting up a REX session has two stages. In Stage |, Fgfasksproxyto spawn a program, sdgin/ls , with a

client establishes a secure, authenticated connection toctgle[ain number of file descriptors (Step 4). Rex then me-

server. We call this initial connection the "master” REXjiates the exchange of data between these file descriptors
session. In Stage I, the client creates new REX SesSIoNS, 4 component on the client side witorgnnel

based on the master session, to run programs on the server.

2.4 Channels
2.3.1 Stagel

) o The REX channel abstraction allows a pair of modules on
The user invokes theex client” in order to start & Néw gigarent machines to communicate as if they were run-
REX session. Firstex contacts the user’s agent and aslfﬁng on the same machine, connected by one or more
it to establish a session to the desired server (Figure jLiy_qomain sockets. When the client module writes data
Step 1). In Step 2, thefsagenuses the server's publicy, 4 fije descriptorrex encapsulates that data as an RPC
key to establish a Z}e}cure connection to ived Process 5 sends it teproxy, which in turn unpacks the data and
running on the server. writes it to the appropriate file descriptor. The server mod-

1This paper will use REX (capital letters) to refer to the remote eJt'-le_ can then re_ad_ the data on its corre_spondlng file de-
ecution facility as a whole anex (italicized lowercase) to refer to the SCriptor. Proxy similarly relays any data it reads back to
client program that the user invokes to start a REX session. rex.

2Since the SFS file server, authentication server,rard all listen The client creates channels through an RPC that spec-
on the same TCP port, connection setup by default also goes throLﬁ;h

an sfssd“meta-server.” Sfssddemultiplexes incoming connections and!€S the name of the server mOd_UIe to run, a set of
hands them off to the appropriate daemon using file descriptor passigpmmand line arguments and environment variables to

o

[user authentication]

0 © T

rex

spawns

Figure 1: Setting up a REX session (Stage 1)

I sfsagent

¢

[YWAY,
®

I rex

spawns

A

Figure 2: Setting up a REX session (Stage Il). Gray lines represent connections that were established during Stage |.

set, and the number file descriptors the spawned modoéetions to the same machine can bypass the public-key
should inherit. (If fewer than three file descriptors argep and immediately begin encrypting the connection us-
specified, standard input, standard output, and possilblg symmetric cryptography.
standard error of the spawned process will be the sameqr an interactive remote terminal session, the extra
socket.) Depending on the chanrrel can either redirect jme required for the public-key cryptography might go
/O to alocal module, or else relay data between the chapmoticed, but for batched remote execution that might
nel file descriptors and its own standard input, output, aplolve tens or even hundreds of logins, the delay is ob-
error. servable. Connection caching offers an added benefit; if
Channels are the mechanism through which REX effiz yser's agent was forwarded, that forwarding can re-
ulates file descriptor passing over the network. Whemngin in place even after the user logs out, allowing him
module passes a file descriptorrx, rex notifiesproxy ig |eave programs running that require use of thesfss
through an RPCProxy then creates a new Unix-domaimygent A utility sfskeylets the user list and manage open
socket pair, passes one end to the local module, and allgnnections.

cates a new file descriptor number within the channel forOnce the master session has been establishedesthe

the other end. Conversely, when a module passes a file . i
:) -~ __cliént can create subsequent secure connections (sessions)
descriptor toproxy, proxy allocates a new file descriptor,

number for it within the appropriate channel and notifié[g the same server using the following protocol.' Fireg,
. - contacts thesfsagentand requests a new session. The
rex, which similarly passes one end of a hew socket pair

to the local module. As Section 3 demonstrates in det apent computes the values shown in Figure 3 based on

this emulated file descriptor passing is the foundationgﬁx)ﬁzaeggi?;onK:g(lz?lfefozfaig dr;eﬁtlo dnargzatt\tlwv::ﬁi-
REX’s extensibility. gp Yy Cryptography g9

tial connection. The&essionKeyare the symmetric keys
. . that therex client uses to encrypt its connectiongmxy.
2.5 Connection caching They are computed as the HMAC-SHA-1 [7, 17] of a se-

The REX protocol naturally lends itself toonnection duence number keyed by theMasterSessionkey The
caching[6, 10]. Becauseex uses thesfsagento estab- agent g(_anerates a unigue sequence number for egch REX
lish a master session witlexdproxy first, the sfsagent connection to prevent an adversary from replaying old
can remember (maintain) that connection and use it to §&¥X sessions. Th8essionlDs a SHA-1 [7] hash of the

up subsequent REX sessions quickly. The initial REXeSSionKes; and theMasterSessionIDs the SessionID
connection to a remote machine is set up using publibere the sequence number is 0.

key cryptography. Once this connection is established,Once thesfsagentcomputes these values, it returns
REX uses symmetric cryptography to secure communi¢hem to therex client. Rexmakes an insecure connec-
tion over the untrusted network. Subsequent REX caiivn to rexd and sends the sequence number, ees-

SessionKeySC = HMAC-SHA-1(MasterSessionKeySiQ

SessionKeyGS = HMAC-SHA-1(MasterSessionKeyCi$

Sessionlp = SHA-1(SessionKeySCSessionKeyGH
MasterSessionlD = Sessionllg

Figure 3: Sfsagent and rexd use the MasterSessionKeys and sequence number (i) to compute new SessionKeys.

terSessionlDand theSessionID Session IDs can safely Ttydruns with only the privileges of the user who wants
be sent over an unencrypted connection because adaef-TY. The program has two tasks. First, it obtains a
saries cannot derive session keys from thé&eaxdlooks TTY from a separate daemon running on the server called
up the appropriate cached connection based oMidie ptyd Ptyd runs with superuser privileges and is respon-
terSessionID Then,rexd computes thé&SessionKeyand sible only for allocating new TTYs and recording TTY
the SessionlIDfor the new REX session (as in Figure 3)isage in the systemtmp file. The two processestyd
based on the sequence number that it just received andathe ptyd communicate via RPC. Wheptyd receives
MasterSessionKeythat it knows from the initial connec-a request for a TTY, it uses file descriptor passing plus
tion by thesfsagent Rexdverifies that the newly com-an RPC reply to return the master and slave sides of the
puted SessionlDmatches the one received from thex TTY. Ttyd connects tgtyd with suidconnect , SFS’s
client. If they matchrexd passes the connectionpooxy authenticated IPC mechanism (described further in Sec-
along with the newSessionKes: Finally,rex andproxy tion 3.4). This mechanism lefstyd securely track and
both begin securing (encryption and message authentieord which users own which TT¥s.After receiving
tion code) the connection. the TTY, ttyd keeps its connection open fyd Thus,
After rex and proxy establish a secure REX sessionyhenttyd exits, ptyd detects the event by an end-of-file.
therex client can create a new REX channel as describBtyd then cleans up device ownership anmghp entries
above. Proxy (and possibly alseex) will spawn the ap- for any TTYs belonging to the terminatéiyd.

propriate modules which can now communicate securelyoncettyd receives a newly allocated TTY, its second

same way, allowing REX to rapidly execute processes @ yser’s shell). It spawns the process with the slave side

the server. of the TTY as its standard file descriptors and controlling
terminal. Thenttyd sends the file descriptor of the TTY’s
3 Extensibility master side back to threx client via the REX channel. On

the client machinagex copies data back and forth between

One of the main design goals for REX is extensibilit his copy of the TTY’s master file descriptor and the local
gﬁlinal (e.g., thetermin which rexwas started).

SSH has demonstrated that users want more features
just the ability to execute programs on a remote machineRexandttyd also implement terminal device behavior
TTY support, X11 forwarding, port forwarding, and agerihat cannot be expressed through the Unix-domain socket
forwarding, for example, are critical parts of today’s redbstraction. For example, typically when a user resizes
mote execution tool. REX offers these features and agaxterm the application on the slave side of the pseudo-
provides users with an interface to add new ones. REXasminal receives &IGWINCHsignal and reads the new
extensibility stems primarily from a single abstractionwindow size with théoctl system call.

the REX channel’s ablllty to emulate file descriptor pPass-|n REX, when a user resizes atermon the client ma-
ing over the network. None of the features described éﬂine' the program running on the remote machine needs
this section required any changes to the REX protocol.tg be notified. Theex client catches th&IGWINCHsig-
nal, reads the new terminal dimensions throughaatl,
3.1 TTY Support and sends the new window size over the channel using file
descriptor 0. Upon receiving the window resize message,
REX provides pseudo-terminal support to interactig/d updates the server side pseudo-terminal through an
login sessions using the channel abstraction and file ¢tsetl.
scriptor passing as follows. Thex client tells proxy to
launch a module callettyd, which takes as an argument

the name of the actual program that the user wants to run, Uike traditional remote login daemongityd with its single
sSystem-wide daemon architecture, could easily defend against TTY-

Typically, for remote login, the argument ttyd is the gyhaustion attacks by malicious users. Currently, however, this feature
user’s shell. is not implemented.

3.2 Forwarding X11 Connections port 8888 on the client machine will effectively be con-

) , . nected to the web proxy listening on port 3128 of the
REX also supports X11 connection forwarding usingarer machine.

channels and file descriptor passindrex tells proxy

to run a module calledsten W.hiCh finds an avail_ablea plies to Unix-domain sockets as well as TCP sockets.
X dlsplay on the server and _I|stens for_ conNections {§e ,seful example is forwarding an SSH agent during
that display on a Un|_x—doma|r.1.socket n Fhe directory yomote login session. Thex client command syntax
/tmp/.X11-unix . Listen notifies theex client of the ¢ imijar to the port forwarding example, but reversed:
display it is listening on by writing the display numbert(r)ex -m "moduled connect $SSH AUTH SOCK"

file descriptor 0. "listen -u /tmp/ssh-agent-sock" host 4

Based on this remote display numhes generates the Here, the *u” flag to the listen module tells it .to

appropriatddISPLAY environment variable that needs tq,,t for connections on a Unix-domain socket called
be set in any X programs that are to be run. Ne&k ¢qn agent.sock . Upon receiving a connection from
generates a new (faké)IT-MAGIC-COOKIE-1 for X .4 of the SSH programs (e.gsh , scp , or ssh-add)

authentication. It sets that cookie on the server by haigen passes the connection's file descriptor to the client.
ing proxyrun thexauthprogram. When an X client con-re moqyled/connectombination connects the passed
nects to the Unix-domain socket on the server,liten e gescriptor to the Unix-domain socket named by the
program passes the accepted file descriptor over the chaizi - onment variabl&SH AUTH SOCHKuvhich is where

nel torex, which connects it to the local X server (i.e., ithe real SSH agent is listening. In the remote login ses-

copies data between the received file descriptor and the., o the server. the user also needs t&s# AUTH

local X server’s file descriptor)Rexalso substitutes the g5 kig pe /tmplssh-agent-sock _ We have writ-

real cookie (belonging to the local X server) for the fak@, 5 shell-script wrapper that hides these details of setting
Oone. up SSH agent forwarding.

SSH agent forwarding. REX’s file descriptor passing

3.3 Forwarding Arbitrary Connections 3.4 Forwarding the SFS agent

REX has a generic channel interface_ that allows US&{fen first starting up, thefsagenprogram connects to
to connect two modules from thex client command- e |ocal SFS daemon to register itself using authenticated
line without adding any additional codeRexcreates a |pc. sFs's mechanism for authenticated, intra-machine
channel that connects the standard file descriptors of {B@ makes use of a 120-line setgid programidconnect
server module program to a user-specified client modwijconnectonnects to a protected, named Unix-domain
program. Unlike the channels described above,réxe ¢qcyet, sends the user's credentials to the listening pro-
clientitself does not act as the client module. This genefigss and then passes the connection back to the invoking
mechanism allows REX users to easily build eXte”SiOBFbgram? Thoughsuidconnecpredates REX, REX's file
such as TCP port forwarding and even SSH agent fefsscrintor passing was sufficient to implement SFS agent
warding.)) ~ forwarding with no extra code on the server. Simply run-
TCP port forwarding. Port forwarding essentially njng suidconnectn a REX channel causes the necessary
makes connections to a port on one machine appear (qiRegescriptor to be passed back over the network to the
connections to a different port on another machine. Fé’éent on a different machine.

example, a wireless network user concerned about eavegyce thesfsagenis available on the remote machine
dropping might want to forward TCP port 8888 on higye yser can access it using RPC. All of the user's con-
laptop securely to port 3128 of a remote machine runnifgyation is stored in one place; requests are always for-

a web proxy. REX provides such functionality througfyarded back to the agent, so the user does not see different
three short utility programslisten moduledand con- panavior on different machines.

nect In this case, the appropriatex client invocation

is: rex -m "listen 8888" "moduled connect)]]
localhost:3128" host . 3.5 File system integration

Rexspawns thdistgn program, which waits for con- gne of the main motivations for building REX was to pro-
nections to port 8888; upon receiving a cONNeCti®®eN ;ije 5 remote execution tool that was integrated tightly

passes the accepted file descriptor over the channel. A& ihe SES file system. When a user logs into a remote
moduledmodule on the server is a wrapper program that

reads a file descriptor from its standard input and spawns'when possiblelisten rejects Unix-domain connections from
connectwith the received file descriptor asnnecs stan- other user IDs (through permission bitgtpeereid or SO_PEERCRED

. ioctls). As this doesn't work for all operating systems, in practice we
dard Input and ogtputConnec'tconnects to port :,3128 Onhide forwarded agent sockets in protected subdirectoriésngf .
the remote machine and copies data between its standargepeereidwhen available, is used to double-chekidconneds

input/output and the port. A web browser connecting teimed credentials.

machine, he should see the same file systems as onsihgply type their passwords. This is both less convenient
local machine. REX achieves this behavior by forwardnd less secure, as an untrusted macBirméll now not

ing the sfsagentwhich maintains a per-user view of thenly be able to log int@\, it will learn the user’s password!
/sfs directory. Additionally, because the agent handles To address this dilemma, REX and tfsagensupport

all of the configurable aspects of a user’s environmentselective signing. Selective signing offers a convenient
server key management, user authentication, revocatiomay to build up trust policies incrementally without sac-
the remote login session acts the same as the local aificing security. During remote login, REX remembers
SSH differs from this architecture in that an SSH userthe machines to which it has forwarded the agent. In the
environment might depend on the contents of .Bgh remote login session, when the user involesagain and
directory, which might be different between the local antteds to authenticate to another server sfsagentwill
remote machines. run a user-specifieconfirmation programThis program,
which could be a simple text message or a graphical pop-
up dialog box, displays the name of the machine origi-
nating the authentication request, the machine to which

The REX architecture provides two main security benH1® USer is trying to authenticate, the service being re-
fits. First, REX minimizes the code that a remote attack@ested (€.g., REX or file system) and the key with which

can exploit. Second, REX allows users to configure aHfi agent is about to sign. The user's agent knows about
manage trust policies during a remote login session. all active REX sessions and forwarded agent connections,

so the remote machine cannot lie about its own identity.
Moreover, because signed authentication requests contain
the name and public key of the server being accessed, as
In recent years, remote exploits have become a major cetell as the particular service, the agent always knows ex-
cern for software developers. Buffer overruns and oth&etly what it is authorizing.
bugs have led to serious system security compromisesWith this information, the user can choose whether or
REX attempts to mitigate this problem by minimizing theot to sign the request. Thus, users can decide case-by-
amount of remotely exploitable code. REX also attemptase whether to let their agents sign requests from a par-
to protect against local exploits by minimizing the amoutitular machine, depending on the degree to which they
of code that runs with superuser privileges. REX offetaust that machine. The modularity of the agent archi-
protection against both types of exploits through the RBE¥cture allows users to plug-in arbitrary confirmation pro-
architecture’s use of local file descriptor passing. grams. Currently, SFS comes with a GUI program (see
In REX, only rexd listens for and accepts connectionBigure 4) that displays the current authentication request
from remote clientsRexdruns with superuser privilegesand the key with which the agent is about to sign it. The
in order to authenticate the user (\a&sauthd and then user has five options: to reject the request; to accept (sign)
spawnproxy as that userRexduses local file descriptorit; to sign it and automatically sign all similar requests in
passing to pass the client connectiomptoxy. the future; to sign it and all similar requests where the
REX also tries to avoid local superuser exploits. Feerver being accessed is in the same DNS domain as the
example, the privilegegtyd daemon allocates pseudogiven server; and to sign it and all subsequent requests
terminals and passes them, using local file descriptor passm the same client, regardless of the server being ac-
ing, tottydwhich runs with the privileges of a normal usercessed.
These privileged programs are small and perform only a
single task, allowing easy auditing. Not counting general-
purpose RPC and crypto libraries from SE&dis about © Iransparency
500 lines of code angtydis about 400 lines.

4 Security

4.1 Minimizing exploitable code

Due to the limited size of the IPv4 address space, ma-
chines often do not have static, globally routable network
addresses. When an organization has more computers
One particularly difficult issue with remote login is théhan IP addresses, it must typically resort to Network Ad-
problem of accurately reflecting users’ trust in the varioukess Translation, or NAT. With NAT, machines have pri-
machines they log into. For example, a user may use loeate [25] (not globally routable) IP addresses on the local
machineA to log into remote machinB, and then login network, and a gateway re-writes the source address of
from that session oB back toA. Many utilities support any outgoing packets to be globally routable. The gate-
credential forwarding to allow password-free login fromvay then inverts this translation on any incoming packets,
B back to A—but the user may not trust machifeas so it can deliver them to the right port on the appropriate
much as machind. For this reason, other systems oftelocal machine.

disable credential forwarding by default, but the result of While NAT gateways let clients with private IP ad-
that is even worse. Users logging frarback intoAwill dresses connect normally to external machines, they have

4.2 Managing trust policies

*kkkk SFS Authentication Request ki

REQUEST FROM: bard.lcs.mit.edu

TO ACCESS: amsterdam.lcs.mit.edu
WITH SERVICE: SFS File System

USING KEY: kaminsky@pdos.lcs.mit.edu

rOptions
® Reject the authentication request
Accept the authentication request

Accept and allow future authentication requests
from bard.lcs.mit.edu
to amsterdam.lcs mit.edu

Accept and allow future authentication requests
from bard.lcs.mit.edu
to any host matching *.lcs.mit.edu

Accept and allow all future authentication requests
from bard.lcs.mit.edu
to any host

Figure 4: A GUI confirmation program

no analogous way of transparently supporting incomiagldresses and even TCP ports, so that clients can con-
connections to local servers. The reason is that maosict transparently to arbitrarily many servers behind a
servers listen on well-known TCP or UDP ports. INAT gateway with a single globally-routable IP address.
the number of servers exceeds the number of globallgcond, REX supports transparent resumption of aborted
routable IP addresses available, multiple server machiff&sP connections [28, 39], so that a session need not be
must share the same IP address, requiring some fornrasftarted after a change of IP address or NAT state flush.
application-specific demultiplexing.

A related problem is that of dropped TCP connectior\ﬁ.
Sometimes the only globally-routable IP address available
to a machine (or network of machines) is temporarily aghe SFS framework, into which REX fits, provides two
signed and periodically changes. Also, laptops usuadgiutions for configuring servers behind NATs. The first
need to change IP addresses when transported betwggitoach, which we call address sharing, is to assign each
buildings. If one end of a TCP connection changes iigternal SFS server a unique TCP port number. Most NAT
IP address, the entire connection must be aborted. N@ateways can be Conﬁgured to have static mappings of ex-
is another source of aborted TCP connections. Becaus@al port numbers to private addresses and port numbers.
NAT gateways must keep state for every active TCP carpr instance, TCP port 600 on the external IP address
nection, they can prematurely terminate a TCP connectigiiyht always be translated to TCP port 4 of internal IP
when rebooted or when purging state entries for other re@dressA, while external port 601 is always mapped to
sons. Some NAT implementations (notably some cheggrt 4 on internal addres
home routers optimized for web browsing) aggressively Though SFS servers by default listen on TCP port 4,
terminate TCP connections after only a few minutes gf gifferent port number can be specified with DNS
idle time. SRV [12] records. Each SRV record maps an SFS server

Dropped TCP connections are particularly annoyingame and service to a server hostname (i.e., the name
with traditional remote login tools, as they cause the usegisthe globally-routable IP address), a port number, and
entire session to be aborted. Sessions may abort atsome priority information (so that multiple SRV records
opportune times, when users are in the middle of editisgn be used for load balancing). In this way, the NAT ad-
files. Moreover all state associated with a dropped sessifinistrator can configure an external TCP port for each
is typically lost, including GUI windows forwarded frominternal SFS machine, and publish port numbers through
the remote machine. DNS. External clients will then transparently connect to

Several design features allow REX to operate transptre appropriate port of the external address.
ently through NATs and without fixed IP addresses. First,A second approach, which we call port sharing, re-
the SFS connection protocol allows servers to sharedgires only a single external TCP port number for all in-

Address and port sharing

ternal servers. All SFS protocols, including REX, begitors: the size of the kernel's TCP send buffer and replies
with a CONNECT RPC in which the client specifies thio RPCs in the other direction.

desired self-certifying server name and service type (e.g.,

REX, file system, or authentication server). SFS’s “meta-One issue introduced by session resumption is the po-
server” programsfssd can proxy TCP traffic to different tential to leave stale proxies aroundréx processes are
internal IP addresses based on the contents of the initeximinated. REX employs several techniques to reduce
CONNECT RPC. Port sharing witsfssdis similar to us- the incidence of stale proxies. First, eaekclient main-

ing the HTTPHost header with an HTTP proxy. tains a connection to the user’s agent. If a resumable

One advantage of port sharing is tiséésdcan be con- process dies (for instance because the user terminates it
figured to proxy certain services for a given internal serveith the Unix “kill -9 " command), the agent detects
but not others (e.g., exporting an SFS file server but dibis fact by an end-of-file, and informs the remote proxy
allowing remote logins to it through REX). A securitythat the particular session can be garbage-collected.
conscious gateway administrator therefore has better con-
trol over what services are being made externally avail-Second, each agent has a unique identifier, based on the
able. The disadvantage of port sharing is that its user-leuger’s login name and the name of the machine it is run-
TCP proxying consumes more CPU time and adds mavi@g on. The agent's identity is supplied as a command
latency than typical in-kernel NAT implementations. line option toproxy (which, in particular, makes it visi-

A final issue with NATs is that, for efficiency rea-ble through the Unixps command). Wheneveproxy is
sons, machines on the internal network should connétnched with a particular agent identity, it informs any
to each other without going through the NAT gatewapreviousproxy running with the same identity though a
The best way to achieve this goal is to run a split DN&xmed Unix-domain socket ifimp , and the previous
server, which for the same hostname serves internal aebxy then considers all sessions non-resumable. In the
dresses to internal clients and external addresses to ex@eent that the agent ungracefully exits (for example, the
nal clients. BIND and several other popular DNS serveghient crashes and reboots), this mechanism causes the old
support such functionality, but a number of users on theoxy to exit the next time the user logs into the same
SFS mailing list have complained of the complexity dferver.
configuring DNS servers. Therefore, if split DNS is not
available, DNS records can be set to point to the ex-Session resumption works transparently even when the
ternal IP address and internal machines can use a $#ver changes IP address, so long as the server publishes

letc/sfs/sfs_hosts to override DNS with inter- its current address through DNS (e.g., using some sort
nal addresses. This file’s syntax is a superset of tra@f-dynamic DNS scheme likdyndns.org). However,

tional /etc/hosts , extended to allow port numbers tghere are some subtleties to making this work properly
be specified. because of the fact that DNS can also be used for load

balancing—for instance, a hostname Idialup.mit.
edu might actually point to a pool of login servers. In
such cases, when a client changes IP address, it must
When a TCP connection aborts, REX provides the abiesume its REX session to the same dialup server. To
ity to resume the session over a new TCP connection.dehieve this, REX revalidates all DNS information when
order not to increase the amount of trusted or remotely @geonnecting, and chooses the same DNS records as for
ploitable code, this functionality is implemented entirelghe initial connection if still available. More precisely,
in proxy, with no changes required texd To resume an when the original connection used an SRV record, if the
aborted TCP connection, the client first attacheprtxy particular hostname and port chosen the first time are still
throughrexd, using a new sequence number. It then issusilable, reconnection uses them again. For a given host-
a RESUME RPC, supplying the sequence number of thame, if the particular IP address initially used is still
old session. This RPC causes fitexyto delete the state available, reconnection again re-uses it.
of the current session and replace it with that of the old
session. We note that the level of indirection provided by SRV
REX uses a bi-directional RPC protocol. Any input teecords allows the location of an entire network of servers
rex prompts it to send an RPC poxy, and similarly any behind a NAT gateway to be updated with the change of
program output tgroxy results in an RPC toex. For a a single DNS A (address) record. For example, Figure 5
resumable connectiomex and proxy each keep a replayshows an example of SRV records for four SFS servers
cache of recently transmitted RPCs replies. Resumptiarthe static DNS domaimydomain.org , located be-
then just consists of replaying all unanswered RPCs. Hind a NAT gateway callednynat.dyndns.org . If
order to determine when something can be evicted frahe gateway’s external address changes, only the DNS
the replay cache, the RPC code conservatively determinesord ofmynat.dyndns.org needs to be updated—
when the other side has received a reply based on two fdemydomain.org domain can remain unchanged.

5.2 Session resumption

; SERVICE/NAME PRIO/WGHT PORT SERVER
_sfs._tcp.server-a.mydomain.org. SRV 1 600 mynat.dyndns.org.
_sfs._tcp.server-b.mydomain.org. SRV 1 601 mynat.dyndns.org.
_sfs._tcp.dialup.mydomain.org. SRV 1 602 mynat.dyndns.org.
_sfs._tcp.dialup.mydomain.org. SRV 1 603 mynat.dyndns.org.

oo oo

Figure 5: An example of DNS SRV for four SFS servers on different TCP ports of mynat.dyndns.org . Such
configurations are useful when mynat.dyndns.org is a NAT gateway, forwarding different TCP ports to different
internal server machines. The priority and weight columns affect load balancing across duplicate records. The values
are meaningless for server-a and server-b , and for dialup result in uniform distribution of connections across
TCP ports 602 and 603 of mynat.dyndns.org

6 Evaluation sisted of a 1.1 GHz AMD Athlon with 768 MB of RAM.

A 100 Mbit, switched Ethernet with a 58sec round-trip
First, this section quantifies REX’'s extensible architetime connected the client and server. Each machine had a
ture in terms of code size. Second, we compare the pen0 Mbit Ethernet card.
formance of REX with the OpenSSH [21] implementa- We configured REX and SSH to use cryptographic sys-
tion of SSH protocol version 2 [37]. The measuremengms of similar performance. For authentication and for-
demonstrate that the extensibility gained from file descriward secrecy, SFS uses the Rabin-Williams cryptosys-

tor passing comes at little or no cost. tem [33] with 1,024-bit keys. SSH uses RSA with 1,024-
bit keys for authentication and Diffie-Hellman with 768-
6.1 Code size bit ephemeral keys for forward secrecy. We configured

. _ _ _ SSH and SFS to use the ARC4 [14] cipher for confi-
REX has a simple and extensible design. Its wire pro@entiality. For integrity, SFS uses a SHA-1-based mes-
col specification is only 230 lines of Sun XDR code [29kage authentication code while SSH uses HMAC-SHA-

REX has two component programs that run with en-[7, 17]. Our SSH server had the privilege separation
hanced privilegesRexdreceives incoming REX conneceature [24] enabled.

tions and adds only 500 lines of trusted code to the sys-

tem (not counting the general-purpose RPC and crypto li- .

braries from the SFS toolkit [19]Ptyd allocates pseudo—é'z‘1 Remote login

terminals to users that have successfully authenticated gnsl compare the performance of establishing a remote

is about 400 lines of code. _ login using REX and SSH. We expect both SSH and
Proxyruns with the privileges of the authenticated useREX to perform similarly, except that REX should have

and is just over 1000 lines of code; thex client is about a lower latency for subsequent logins because of connec-
2,350 lines. Extensions to thgfsagentfor connection tion caching.

caching constitute less than 900 lines of code.

Modules that extend REX's functionality are also Average | Minimum
small. Thelisten moduled andconnectmodules are ap- Protocol Latency| Latency
proximately 250, 30, and 375 lines of code, respectively. SSH 121 msec| 120 msec
Ttydis under 260 lines. REX (initial login) 51 msec| 50 msec

If REX were to gain a sizable user base, we could ex- REX (subsequent logins) 21 msec| 20 msec

pect the code size to grow because of demands for features
and interoperability. The code growth, however, would Table 1: Latency of SSH and REX logins

take place in untrusted components suctpaxy or in

new external modules (likely also untrusted). Because offable 1 reports the average and minimum latencies of
the extensibility, well-defined interfaces, and the use 00 remote logins in wall clock time. In each experiment,

file descriptor passing, the trusted components can reméi log in, run/bin/ftrue , and then immediately log
small and manageable. out. The user’s home directory is on a local file system.

For both REX and SSH, we disable agent forwarding,
6.2 Performance pseudo-tty allocation, and X forwarding.

The results demonstrate that an initial REX login is
We measured the performance of REX and OpenSSliyhtly faster than an SSH login. In both cases, much of
3.8p1 [21] on two machines running Debian with a Linuthe time is attributable to the computational cost of mod-
2.4 kernel. The client machine consisted of a 2 GHz Pariar exponentiations. An initial REX connection requires
tium 4 with 512 MB of RAM. The server machine coniwo concurrent 1,024-bit Rabin decryptions—one by the

10

client for forward secrecy, one by the server to authed- Related Work
ticate itself—followed by a 1,024-bit Rabin signature on

the client to authenticate the user. All three operatioB$, eral tools exist for secure remote login and execu-
use the Chinese Remainder Theorem to speed up Modylay This section focuses primarily on those tools but

exponentiation. concludes with a discussion of agents and file descriptor
An SSH login performs a 768-bit Diffie-Hellman keypassing.

exchange—requiring two 768-bit modular exponentia-

tions by each party—followed by a 1,024-bit RSA sig-

nature for server authentication and a 1,024-bit RSA sig-

nature for user authentication. The Diffie-Hellman expc?—-1 SSH

nentiations cannot be Chinese Remaindered, and thus are

each more than 50% slower than a 1,024-bit Rabin d&SH [38] is the de-facto standard for secure remote exe-

cryption. The RSA operations cost the same as Rabin >ion and login. SSH is decentralized: one needs only

erations. local superuser privileges to run the SSH server daemon,
. : . and one does not need to obtain server certificates or oth-
The cost of public key operations has no bearing on . . . o .
. erwise register with any sort of realm administrator in or-
subsequent logins to the same REX server, as connec-
. . . . er to connect to the SSH server. SSH also offers several
tion caching requires only symmetric cryptography. Were L . .
. ; : modes of user authentication. For example, it has optional
SSH to implement connection caching, we would expect . .
L)) support for Kerberos [30], allowing password-free login

performance similar to REX’s on subsequent logins.

plus ticket and AFS [13] token forwarding.

SSH was the main inspiration for REX, as we needed
an SSH-like tool that could work with SFS. Though we
6.2.2 Port forwarding throughput could have extended SSH for the task, we decided to build
REX from scratch for several reasons. First, we believed a

Both SSH and REX can forward ports and X11 conne@€Sign based on file descriptor passing would simplify im-
tions. To demonstrate that REX performs just as well glementation, improve security, and increase extensibility.

SSH, we measure the throughput of a forwarded TCP pbfiveraging SFS's RPC compiler and library further re-
with NetPipe [27]. NetPipe streams data using a variefy/ced the amount of new code needed. We also wished to

of block sizes to find peak throughput. take advantage of SFS’s infrastructure for user and server
authentication, particularly its use of SRP to sidestep po-
tential man-in-the-middle attacks. Finally, as commonly

Protocol| Throughput| Latency configured, SSH servers read files in users’ home direc-
TCP 87.1 Mbit/sec| 59 usec tories before authenticating them, which is inconvenient
SSH 86.2 Mbit/sec| 147 usec when the home directories themselves reside on SFS.
REX 86.0 Mbit/sec| 197 usec Aside from file descriptor passing and integration with

SFS, REX offers several features not presently available
in SSH. REX'’s connection caching improves connection
latency. Connection resumption and support for NATs al-
We first measure the throughput of an ordinary, inskyw REX to operate transparently over a wider variety of

cure TCP connection. Table 2 shows that the maximumtwork configurations. Selective signing improves se-
TCP throughput is 87.1 Mbit/sec. The round-trip latenaurity in mixed-trust environments and saves users from
represents the time to send one byte of data from typing their passwords unnecessarily. Conversely, SSH
client to the server, and receive acknowledgment. Neptpvides features not present in REX, notably compatibil-
we measure the throughput of a forwarded port over éy-with other user-authentication standards.

tablished SSH and REX connections. Table 2 shows tha{y,e pelieve many of the ideas in REX are applicable

file descriptor passing in REX does not noticeably redug® ssH and other remote login tools, and hope that SSH
throughput. and REX can increasingly adopt each other's features.

We attribute the additional latency of ports forwardellor example, as part of the privilege separation code in
through REX to the fact that data must be propagat€henSSH [21], the OpenSSH server internally handles
through bothproxy and connecton the server, incurring pseudo-terminals with file descriptor passing. Though file
an extra context switch in each directionrdk andproxy descriptor passing is part of the source code, it is not part
provided a way to “fuse” two file descriptors, we couldf the protocol. Generalizing the idea cleanly to pass file
eliminate the inefficiency. Note, however, that over anglescriptors for other purposes would require modification
thing but a local area network, actual propagation tinte the SSH protocol, which we hope people will consider
would dwarf the cost of these context switches. in future revisions.

Table 2: Throughput and latency of TCP port forwarding

11

7.2 Kerberos TCP. The system defended against vulnerabilities cre-

) , L ated by hostname-based authentication and source address
Kerberos [30] is a centralized authentication SySteéBoofing. Securdogin used a modular approach to pro-

which includes remote login and execution utilities. 54 5 flexible security policy. Like REX, securgin
provides a unified way of naming, authenticating, and ayse small, well-defined module interfaces. REX uses a
thorizing principals. Kerberos organizes users and Mase e TCP-based RPC layer implemented by SFS; secure

chines into realms. Joining an existing realm (i.e., Setti'?l%gin used a secure network layer between TCP and IP,
up a server) requires permission from and coordinatigl}n”‘,ﬂr to IPSec [15].

with that realm’s trusted administrator. In part because
Kerberos is based on shared-secret cryptography, creatin

a new realm is not a simple task and requires administ?ag Agents

tive permission to interoperate with existing realms. \yhile REX is not the first remote execution tool to em-
Kerberized remote login is based on this centralized &foy user agents, it makes far more extensive use of its
chitecture, and therefore requires a trusted third party &4ent than other systems. The SSH agent, for example, is
client-server authentication. REX and SFS both suppeHpable of authenticating users to servers. For other tasks
third-party authentication, but do not require it, and i§,ch as server authentication, however, SSH relies on con-
practice they are often used without it. The AFS [13] f”ﬁguration files (e.g.known_hosts) in users’ home di-
system uses Kerberos for authentication, and Kerberizggtories. When users have different home directories on
remote login can authenticate users to the file system Bfiferent machines, they see inconsistent behavior for the
fore logging them in. REX provides similar support fosame command, depending on where it is run. By con-

the SFS file system. trast, encapsulating all state behind an RPC agent inter-
face allows a user’s configuration to be propagated from

7.3 Globus machine to machine simply by forwarding an RPC con-
nection.

The Globus [8] Project provides a Grid metacomput- Another significant difference between the REX and
ing infrastructure that supports remote execution and jgisH agents is that the SSH agent returns authentication
submission through a resource allocation manager callgguests that are not cryptographically bound to the iden-
GRAM [5] and access to global storage resources throug of the server to which they are authorizing access. As
GASS [1]. Globus was designed to provide a uniforg result, a remote SSH client could lie to the local agent
interface to distributed, remote resources, so individuglout what server it is trying to log into. Concurrently
client users do not need to know the specific mechanisgifd indepently of REX, the SSH agent added support for
that local resource managers employ. By default, GRAMsimple confirmation dialog feature, but the SSH agent is
and GASS provide simple output redirection to a local talinable to build up any meaningful policies or even tell the
minal for programs running on a remote machine. Toalger exactly what is being authorized.
built on top of Globus can offer features such as pseudoRecently, the security architecture for the Plan 9 system
terminals, X11 forwarding and TCP port forwarding [11jas been redesigned [4]. The new Plan 9 architecture has
These features, however, seem to be built into the sgfi agentfactotum which is similar to the SSH and SFS
ware and protocol whereas REX provides the same @gents but is implemented as a file server.
tenSIbI|Ity and Security (priVilege Separation) through file The Taos Operating System [18, 34] and the Echo
descriptor passing. file system [2] also have notions of an authentication
The Grid Security Infrastructure (GSI) [3, 9] provideggent. Unlike SFS, they both implement the agent as

security and authentication to Grid-based services. Gipi Operating-system component rather than as a user-
is based on X509 [36] public-key certificates and théntrolled program.

SSL/TLS protocols [6]. Recent extensions to GSI add
support for proxy certificates [32], which allow an entit}7
to delegate an arbitrary subset of its privileges. A new
GSl-enabled version of SSH can use these proxy certfia alternative to file descriptor passing is file namespace
cates to provide limited delegation to applications runnigssing, as is done in Plan 9 [22]. Plan 9's CPU com-
on the remote machine, similar to REX’s selective signingand can replicate parts of the file namespace of one
mechanism. machine on another. When combined with device file
systems likedev/fd , this mechanism effectively sub-
sumes file descriptor passing. Moreover, because so much
of Plan 9’s functionality (including the windowing sys-
Before SSH, researchers explored other options for sectem) is implemented as a file system, CPU allows most
remote login [16, 31]. Kim et al. [16] implemented a setypes of remote resource to be accessed transparently. Un-
cure rlogin environment using a security layer beneafloertunately, Unix device and file system semantics are not

6 File descriptor passing

7.4 Secure rlogin

12

amenable to such an approach, which is one of the reasgsisK. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin,
tools like SSH have developed so many different, ad hoc W Smith, and S. Tuecke. A resource management architecture for
mechanisms for handling different types of resources.

8

Conclusions [6]

REX provides secure remote login and execution in the

tradition of SSH. REX offers a new architecture with[7

three main goals—extensibility, security, and transpar-
ent connection persistence in the absence of global rout-

ing.

passing between machines, allows users to add new func-

REX’s extensibility, based on emulated file descriptoﬁB]

tions to REX without changing the protocol. REX’s secu-
rity benefits are a limited amount of exploitable code and &
convenient mechanism for building trust policies. Finally,
REX provides transparent operation in today’s complex

IPs.

network configurations, which include NAT and dynami[c10

The current REX implementation demonstrates that the
REX architecture is viable. We hope that the new ideH3]
upon which REX is built will find wider applicability in 12
other systems. REX is available as part of the SFS dis{ri—
bution (ttp://www.fs.net/).

9

We thank our shepherd Werner Vogels and the anonymous

(13]
Acknowledgments

reviewers for their comments and feedback. Niels Provos
provided helpful feedback on an early draft of the p&“

per.

This research was supported by the DARPA Com-

posable High Assurance Trusted Systems program (BAA
#01-24) under contract #N66001-01-1-8927, and by the
National Science Foundation under Cooperative Agré%S-]
ment No. ANI-0225660 (as part of the IRIS project).

Michael Kaminsky was partially supported by a Nation&l6]

Science Foundation Graduate Research Fellowship, and

David Maziéres by an Alfred P. Sloan Research Fellow-
ship.

(17]

References

metacomputing systems. Proceedings of the IPPS/SPDP '98
Workshop on Job Scheduling Strategies for Parallel Processing
pages 62—-82, 1998.

T. Dierks and C. Allen. The TLS Protocol, Version 1.0. RFC 2246,
Network Working Group, January 1999.

1 FIPS 180-1. Secure Hash StandardU.S. Department of Com-

merce/N.I.S.T., National Technical Information Service, Spring-
field, VA, April 1995.

I. Foster and C. Kesselman. Globus: A metacomputing infrastruc-
ture toolkit. Intl J. Supercomputer Application41(2):115-128,
1997.

I. Foster, C. Kesselman, G. Tsudik, and S. Tuecke. A security ar-
chitecture for computational grids. Rroceedings of the 5th ACM
Conference on Computer and Communications Security Confer-
ence pages 83-92, San Francisco, CA, November 1998.

] fsh — Fast remote command execution. http://www.

lysator.liu.se/fsh/
glogin. http://www.gup.uni-linz.ac.at/glogin/

A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for specifying
the location of services (DNS SRV). RFC 2782, Network Working
Group, February 2000.

John H. Howard, Michael L. Kazar, Sherri G. Menees,
David A. Nichols, M. Satyanarayanan, Robert N. Sidebotham, and
Michael J. West. Scale and performance in a distributed file sys-
tem. ACM Transactions on Computer SysteB(4):51-81, Febru-
ary 1988.

Kalle Kaukonen and Rodney Thayer. A stream cipher encryp-
tion algorithm “arcfour”. Internet draft (draft-kaukonen-cipher-
arcfour-03.txt), Network Working Group, July 1999. Work in
progress.

S. Kent and R. Atkinson. Security architecture for the internet
protocol. RFC 2401, Network Working Group, November 1998.

Gene Kim, Hilarie Orman, and Sean O’Malley. Implementing a
secure rlogin environment: A case study of using a secure network
layer protocol. InProceedings of the 5th USENIX Security Sym-
posium pages 65-74, Salt Lake City, UT, June 1995.

Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-
hashing for message authentication. RFC 2104, Network Working
Group, February 1997.

[1] Joseph Bester, lan Foster, Carl Kesselman, Jean Tedesco, [@8 Butler Lampson, Martin Abadi, Michael Burrows, and Edward P.

(2]

(3]

(4]

Steven Tuecke. GASS: A data movement and access service for
wide area computing systems. Mroceedings of the Sixth Work-
shop on Input/Output in Parallel and Distributed Systeipages
78-88, Atlanta, GA, May 1999.

(19]
Andrew D. Birrell, Andy Hisgen, Chuck Jerian, Timothy Mann,
and Garret Swart. The Echo distributed file system. Techni-
cal Report 111, Digital Systems Research Center, Palo Alto, CR0]
September 1993.

R. Butler, D. Engert, |. Foster, C. Kesselman, S. Tuecke, J. Volmer,
and V. Welch. A national-scale authentication infrastructlE&E
Computer 33(12):60-66, 2000. [21]
Russ Cox, Eric Grosse, Rob Pike, Dave Presotto, and Sean QU&#]
lan. Security in Plan 9. IRroceedings of the 11th USENIX Secu-
rity SymposiumSan Francisco, CA, August 2002.

13

Wobber. Authentication in distributed systems: Theory and prac-
tice. ACM Transactions on Computer Systerti§(4):265-310,
1992.

David Maziéres. A toolkit for user-level file systems. Rroceed-
ings of the 2001 USENDpages 261-274. USENIX, June 2001.

David Mazieres, Michael Kaminsky, M. Frans Kaashoek, and Em-
mett Witchel. Separating key management from file system secu-
rity. In Proceedings of the 17th ACM Symposium on Operating
Systems Principlepages 124-139, Kiawa Island, SC, 1999.

OpenSSHhttp://www.openssh.com/
Rob Pike, Dave Presotto, Ken Thompson, Howard Trickey, and

Phil Winterbottom. The use of name spaces in plan ACM
SIGOPS Operating System Revji@#(2):72—-76, Apr 1993.

http://www.fs.net/
http://www.lysator.liu.se/fsh/
http://www.lysator.liu.se/fsh/
http://www.gup.uni-linz.ac.at/glogin/
http://www.openssh.com/

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32

(33]

[34]

(35]

(36]

(37

(38]

[39]

Dave Presotto and Dennis Ritchie. Interprocess communication
in the eighth edition UNIX system. IRroceedings of the 1985
Summer USENIX Conferendeortland, OR, 1985.

Niels Provos, Markus Friedl, and Peter Honeyman. Preventing
Privilege Escalation. liProceedings of the 12th USENIX Security
SymposiumWashington, DC, August 2003.

Y. Rekhter, B. Moskowitz, D. Karrenberg, G. J. de Groot, and
E. Lear. Address allocation for private internets. RFC 1918, Net-
work Working Group, February 1996.

Jerome Saltzer. Protection and control of information in multics.
Communications of the ACM7(7):388-402, July 1974.

Q. Snell, A. Mikler, and J. Gustafson. Netpipe: A network protocol
independent performace evaluator.RAroceedings of the IASTED
International Conference on Intelligent Information Management
and Systemslune 1996.

Alex C. SnoerenA Session-Based Architecture for Internet Mobil-
ity. PhD thesis, Massachusetts Institute of Technology, December
2002.

R. Srinivasan. XDR: External data representation standard. RFC
1832, Network Working Group, August 1995.

J. G. Steiner, B. C. Neuman, and J. I. Schiller. Kerberos: An au-
thentication service for open network systems.Pceedings of
the Winter 1988 USENpages 191-202, Dallas, TX, February
1988. USENIX.

David Vincenzetti, Stefano Taino, and Fabio Bolognesi. Stel: Se-
cure telnet. InProceedings of the 5th USENIX Security Sympo-
sium pages 75-84, Salt Lake City, UT, June 1995.

V. Welch, I. Foster, C. Kesselman, O. Mulmo, S. Tuecke L. Pearl-
man, J. Gawor, S. Meder, and F. Siebenlist. X.509 proxy certifi-
cates for dynamic delegation. Proceedings of the 3rd Annual
PKI R&D Workshop April 2004.

Hugh C. Williams. A modification of the RSA public-key encryp-
tion procedure.lEEE Transactions on Information Theof-26
(6):726-729, November 1980.

Edward P. Wobber, Martin Abadi, Michael Burrows, and Butler
Lampson. Authentication in the Taos operating systeACM
Transactions on Computer Systerh3(1):3-32, 1994.

Thomas Wu. The secure remote password protocoPrateed-
ings of the 1998 Internet Society Network and Distributed System
Security Symposiurpages 97-111, San Diego, CA, March 1998.

X.509. Recommendation X.509: The Directory Authentication
Framework ITU-T (formerly CCITT) Information technology
Open Systems Interconnection, December 1988.

T. Ylénen and D. Moffat (Ed.). SSH Transport Layer Protocol.
Internet draft (draft-ietf-secsh-transport-17.txt), Network Working
Group, October 2003. Work in progress.

Tatu Ylonen. SSH — secure login connections over the Internet. In
Proceedings of the 6th USENIX Security Sympospages 37-42,
San Jose, CA, July 1996.

Victor C. Zandy and Barton P. Miller. Reliable network connec-
tions. InProceedings of the 8th Annual International Conference
on Mobile Computing and Networkingpages 95-106, Atlanta,
GA, September 2002.

14

	Introduction
	Architecture
	User Authentication in SFS
	File descriptor passing
	Sessions
	Stage I
	Stage II

	Channels
	Connection caching

	Extensibility
	TTY Support
	Forwarding X11 Connections
	Forwarding Arbitrary Connections
	Forwarding the SFS agent
	File system integration

	Security
	Minimizing exploitable code
	Managing trust policies

	Transparency
	Address and port sharing
	Session resumption

	Evaluation
	Code size
	Performance
	Remote login
	Port forwarding throughput

	Related Work
	SSH
	Kerberos
	Globus
	Secure rlogin
	Agents
	File descriptor passing

	Conclusions
	Acknowledgments

