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Abstract—Constraints in form regular expressions over
strings are ubiquitous. They occur often in programming
languages like Perl and C#, in SQL in form of LIKE expres-
sions, and in web applications. Providing support for regular
expression constraints in program analysis and testing has
several useful applications. We introduce a method and a tool
called Rex, for symbolically expressing and analyzing regular
expression constraints. Rex is implemented using the SMT
solver Z3, and we provide experimental evaluation of Rex.
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I. INTRODUCTION

Regular expressions are used in a large variety of ap-
plications to express validity constraints on strings. The
original motivation for this work comes from two particular
applications. One is the support for regular expression con-
straints over strings in the context of program analysis and
parameterized unit testing of code [1], [2]. The other one
is the support for like-patterns in the context of symbolic
analysis of database queries [3], where like-patterns are
special kinds of regular expressions that are common in SQL
select-statements.

Many languages such as C# and Java support strings as a
built-in algebraic datatype: strings are treated as immutable
values (unlike arrays for example), and are associated with
purely functional operations over them. For analysis it is
therefore useful to view strings as elements of a correspond-
ing sort. Here we define strings as lists of characters, where a
list of elements of a given sort is a built-in algebraic datatype
supported by the SMT solver Z3 [4] that we are using as
the underlying constraint solver. Characters are defined as
n-bitvectors of a fixed n ≥ 1, e.g. n = 16 for UTF-16
characters.

We translate (extended) regular expressions or regexes [5]
into a symbolic representation of finite automata called SFAs.
In an SFA, moves are labeled by formulas representing sets
of characters rather than individual characters. An SFA A is
translated into a set of (recursive) axioms that describe the
acceptance condition for the strings accepted by A and build
on the representation of strings as lists. This set of axioms is

asserted to the SMT solver as the theory Th(A) of A. The
correctness of the axiomatization is stated in Theorem 1.

We revisit several classical algorithms for finite automata
and describe the corresponding algorithms for SFAs. The
key modification to the classical versions is the use of satis-
fiability checking of constraints over characters (bitvectors)
in order to keep the SFAs “clean” (avoiding unsatisfiable
formulas as labels on moves). We evaluate the performance
of these algorithms based on our implementation called
Rex. We compare different equivalent axiomatizations of
language acceptors for a collection of sample regexes. In par-
ticular, when considering intersection constraints on regular
expressions, it turns out that using the theory of the product
of two SFAs is more efficient than using the conjunction of
the individual theories.

All the algorithms and the translations in the paper are
described formally and follow closely their implementation
in Rex. Rex is evaluated on a set of benchmarks that shows
an order of magnitude improvement compared to other
approaches that have so far been used in Pex for supporting
regex constraints [6].

The rest of the paper is structured as follows. In Section II
we introduce some definitions and revisit some basic notions
from logic that are used throughout the paper. Section III
introduces SFAs and describes the variations of the classical
algorithms on SFAs, that are used in Rex. Section IV
explains how SFAs are translated into the corresponding
axioms for the solver. Section V discusses a couple of key
aspects of the implementation of Rex. Section VI provides
some benchmarks regarding the implementation of Rex.
Section VII describes related work. Section VIII provides
some final remarks and some future work is mentioned in
Section IX.

II. PRELIMINARIES

We assume that the reader is familiar with classical
automata theory, we follow [7] in this regard. We also
assume elementary knowledge about logic and model theory,
our terminology is consistent with [8] in this regard.

We are working in a fixed multi-sorted universe U of
values. For each sort σ, Uσ is a separate subuniverse of U .
The basic sorts needed in this paper are the Boolean sort B,
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UB = {true, false}, and the sort of n-bitvectors, for a given
number n ≥ 1; an n-bitvector is essentially a vector of n
Booleans. We also need other sorts but they are introduced
at the point when they are used.

Characters are represented by n-bitvectors of a fixed
length n, assuming that the alphabet of all characters has
size 2n. For example, n = 7 (n = 8) for representing
the standard (extended) ASCII character set, and n = 16
for representing the UTF-16 encoding.1 We let C stand for
a fixed character sort for some fixed n, and the complete
alphabet is thus UC. Without loss of generality, assume for
example that n = 7 and that standard ASCII encoding is
used to represent the characters. Keeping this intuition in
mind, we write for example a to denote the character ‘a’.

There is a built-in (predefined) signature of function
symbols and a built-in theory (set of axioms) for those
symbols. Each function symbol f of arity n ≥ 0 has a
given domain sort σ0 × · · · × σn−1 and a given range
sort σ, f : σ0 × · · · × σn−1 → σ. For example, there is
a built-in relation or predicate (Boolean function) symbol
< : C × C → B that provides a strict total order of all the
characters. One can also declare fresh (new) uninterpreted
function symbols f of arity n ≥ 0, for a given domain sort
and a given range sort. Using model theoretic terminology,
these new symbols expand the signature.

Terms and formulas (or Boolean terms) are defined by
induction as usual and are assumed to be well-sorted. We
write FV (t) for the set of free variables in a term (or
formula) t. A term or formula without free variables is
closed. Let FC denote the set of all formulas without
uninterpreted function symbols and at most one fixed free
variable of sort C. Throughout the paper, we denote that
variable by χ. Given a formula ϕ ∈ FC, and a character
or term t of sort C, we write ϕ[t] for the formula where
each occurrence of χ is replaced by t. For example, if ϕ is
a < χ∧χ < d then FV (ϕ) = {χ} and ϕ[b] is the formula
a < b ∧ b < d.

A model is a mapping from function symbols to their
interpretations (values). The built-in function symbols have
the same interpretation in all models, keeping that in mind,
we may omit them from the model. A model M satisfies
a closed formula ϕ, written M |= ϕ, if M provides an
interpretation for all the uninterpreted function symbols in
ϕ that makes ϕ true. For example, let f : C → C be an
uninterpreted function symbol and c : C be an uninterpreted
constant. Let M be a model where cM (the interpretation of
c in M ) is a and fM is a function that maps all characters
to b. Then M |= a < f(c) but M �|= a < c.

A closed formula ϕ is satisfiable if it has a model. A
formula ϕ with FV (ϕ) = x̄ is satisfiable if its existential
closure ∃x̄ϕ is satisfiable. We write |=U ϕ, or |= ϕ, if ϕ is
valid (true in all models). Some examples: a < b∧b < d is

1Some Unicode encodings such as UTF-32, need more than 16 bits.

valid; a < χ∧χ < b is unsatisfiable because there exists no
character that is strictly greater that a and strictly smaller
than b; 0 < χ ∧ χ < 4 is satisfiable, e.g., let χ = 3.

III. SYMBOLIC FINITE AUTOMATA

We use a representation of finite automata where several
transitions from a source state to a target state are combined
into a single symbolic move. Formally, a collection of tran-
sitions (p, a1, q), . . . , (p, an, q) are represented by a single
(symbolic) move (p, ϕ, q) from p to q, where ϕ ∈ FC, such
that

[[ϕ]] = {a1, . . . , an},
where [[ϕ]] def= {a | a ∈ UC, |= ϕ[a]}. Let also

[[(p, ϕ, q)]] def= {(p, a, q) | a ∈ [[ϕ]]},
and, given a set Δ of moves, let

[[Δ]] def= {τ | δ ∈ Δ, τ ∈ [[δ]]}.
Note that [[(p, ϕ, q)]] = ∅ iff ϕ is unsatisfiable. Define also

Source((p, ϕ, q)) def= p,

Target((p, ϕ, q)) def= q,

Cond((p, ϕ, q)) def= ϕ.

For example, the move

(p,a ≤ χ ∧ χ ≤ z, q)

represents the set of all transitions (p, c, q) where c is a
character between a and z. Formally, we refer to such a
representation of a finite automata (FA) as follows.

Definition 1: A Symbolic Finite Automaton or SFA A is a
tuple (Q, q0, F,Δ), where Q is a finite set of states, q0 ∈ Q
the initial state, F ⊆ Q is the set of final states, and Δ :
Q×FC ×Q is the move relation.

We sometimes use A as a subscript to identify its compo-
nents. Just as with finite automata, it is often useful to add
epsilon moves to an SFA. Consider a special symbol ε that
is not in the background universe.

Definition 2: An SFA with epsilon moves or εSFA is a
tuple (Q, q0, F,Δ), where Q, q0 and F are as above, and
Δ : Q× (FC ∪ {ε})×Q.

The term SFA without the additional qualification allow-
ing epsilon moves implies that epsilon moves do not occur.
(Obviously, any SFA is also an εSFA.) Let [[(p, ε, q)]] def=
(p, ε, q). An εSFA A = (Q,Δ, q0, F ) denotes the finite
automaton [[A]] with epsilon moves, where

[[A]] def= (Q,UC, [[Δ]], q0, F ).

We write Δε
A for the set of all epsilon moves in ΔA and

Δ� ε
A for ΔA \ Δε

A.
Definition 3: An εSFA A is normalized if there are no

two distinct moves (p, ϕ1, q), (p, ϕ2, q) in Δ� ε
A.
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It is clear that for any εSFA A there is a normalized SFA
A′ such that [[A]] = [[A′]]: for all states p and q in QA, make
a disjunction ϕ of all the conditions of the moves from p
to q in Δ� ε

A and let (p, ϕ, q) be the single move in Δ� ε
A′ that

goes from p to q.
A move is satisfiable if its condition is satisfiable. Note

that unsatisfiable moves are clearly superfluous and can
always be omitted.

Definition 4: An εSFA A is clean if all moves in Δ� ε
A are

satisfiable.
Definition 5: An SFA A is deterministic, called DSFA, if

[[A]] is deterministic.
The following proposition follows easily from the defini-

tions and is used in characterizing DSFAs.
Proposition 1: The following statements are equivalent.

1) A is deterministic.
2) For any two moves (p, ϕ1, q1) and (p, ϕ2, q2) in ΔA,

if q1 �= q2 then ϕ1 ∧ ϕ2 is unsatisfiable.

Definition 6: The language (set of strings) accepted by
an SFA A, L(A), is the language accepted by the finite
automaton [[A]]. Two SFAs are equivalent if they accept the
same language.

Definition 7: A DSFA A is minimal if A is normalized,
clean, and [[A]] is minimal.

Note that if a DSFA A is minimal then it is unique up to
logical equivalence of conditions and renaming of states.

A. From regular expressions to εSFAs

We use [5] as the concrete language definition of reg-
ular expression patterns or regexes in this paper. Not all
constructs are supported. Advanced regular expression lan-
guages offer features that go beyond classical regular expres-
sions, e.g. with constructs such as “as few times as possible”-
quantifiers (see also Section IX). Regarding the supported
subset of regexes, besides a few extensions, the translation
from a regex to an εSFA follows very closely the standard
algorithm described in [7, Section 2.5] for converting a
standard regular expression into a finite automaton with
epsilon moves. For handling negations and character ranges,
the translation creates a corresponding formula in FC. A
sample regex and εSFA are shown in Figure 1.

B. Algorithms on SFAs

We revisit variations of standard algorithms on finite
automata to perform equivalence preserving transformations
on symbolic finite automata, and we also look at the product
construction in order to encode intersection constraints:

1) Epsilon elimination from εSFAs;
2) Determinization of SFAs;
3) Minimization of DSFAs.
4) Product of SFAs.

In Section IV SFAs are encoded as inputs to the SMT solver
in form of language acceptors. The above algorithms are

a)
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4
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#>=A&#<=F

#<D|#>H

Figure 1. a) Sample εSFA generated by Rex from the regex
([A-F]|[ˆD-H]){1,2}; b) equivalent SFA. The initial state is grey,
the epsilon moves are dashed. The symbol & is used for conjunction and
the symbol | is used for disjunction. The variable χ is denoted by #.

used in Section VI to evaluate their effect on the performance
of Rex under different equivalent encodings.

Note that all of the listed problems have a naive solution
by using the underlying finite automata algorithms, but
these algorithms often depend on the explicit (rather than
symbolic) use of the characters, and are impractical when
the alphabet is large, e.g., when it contains all the UTF-16
characters.

The algorithms are discussed next.
1) Epsilon elimination: The input to the algorithm is an

εSFA A and the output is an equivalent SFA B. We assume,
without loss of generality, that A is normalized. We reuse
the notion of the epsilon closure [7, Section 2.4] of a state
q in A, denoted here by εC(q).

(i) For all q ∈ QA compute εC(q) as the least subset
of QA such that q ∈ εC(q), and if q1 ∈ εC(q) and
(q1, ε, q2) ∈ ΔA then q2 ∈ εC(q).

(ii) Compute a partial map E from QA ×QA to FC such
that, for all (q, , r) ∈ Δ� ε

A,

E(q, r) =
∨

{ϕ | ∃p (p ∈ εC(q), (p, ϕ, r) ∈ Δ� ε
A)}.

(iii) View Dom(E) as a directed graph and eliminate all
edges and states that are not reachable from q0A.

(iv) Let B have the following components:

• QB = {p, q | (p, q) ∈ Dom(E)};
• q0B = q0A;
• FB = {q | q ∈ QB, εC(q) ∩ FA �= ∅};
• ΔB = {(p,E(p, q), q) | (p, q) ∈ Dom(E)}.

Step (iii) is not necessary but eliminates states and moves
that are redundant; often half of the original states are
redundant. The algorithm can be implemented in time linear
in the size of A. For example the epsilon closures can be
represented by shared linked lists. The result of applying
the algorithm to the εSFA in Figure 1(a) is illustrated if
Figure 1(b).

2) Determinization: The input to the algorithm is an SFA
A and the output is an equivalent DSFA B. We assume,
without loss of generality, that A is normalized. We use the
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following notations.

ΔA(q) def= {t | t ∈ ΔA,Source(t) = q}
ΔA(q) def= ∪{ΔA(q) | q ∈ q}

Target(t) def= ∪{Target(t) | t ∈ t}
It is convenient to describe the algorithm as a depth-first-
search algorithm using a stack S of B states as a frontier, a
set V of visited B states, and a set T of moves.

(i) Initially S = ({q0A}), V = {{q0A}}, and T = ∅.
(ii) If S is empty proceed to (iv) else pop q from S.

(iii) For each nonempty subset t of ΔA(q), let2

ϕt = (
∧
t∈t

Cond(t)) ∧ (
∧

t∈ΔA(q)\t
¬Cond(t))

If ϕt is satisfiable then

• add (q, ϕt,Target(t)) to T ;
• if Target(t) is not in V then add Target(t) to V

and push Target(t) to S.

Proceed to (ii).
(iv) Let B = (V, {q0A}, {q ∈ V | q ∩ FA �= ∅}, T ).

The satisfiability check of ϕt is performed for example with
an SMT solver and ensures that B is clean. Without that
check B may get cluttered with unsatisfiable moves and
states that are unreachable.

Given (q, ϕt1 ,Target(t1)) and (q, ϕt2 ,Target(t2)) in T
such that Target(t1) �= Target(t2), it follows immediately
that t1 �= t2 and thus ϕt1 ∧ ϕt2 is unsatisfiable because
there is at least one t ∈ ΔA(q) such that both Cond(t) and
¬Cond(t) are conjuncts in ϕt1∧ϕt2 . ThusB is deterministic
by Proposition 1.

3) Minimization: The input to the algorithm is a DSFA
A and the output is an equivalent minimal DSFA B. We
assume, without loss of generality, that A is normalized and
clean. In order for the algorithm to work correctly we also
need to assume that A is total, meaning that for all a ∈ UC

and all q ∈ QA there is a transition (q, a, p) in [[A]] for
some p ∈ QA. To make A total add a new “dead” state d
to it, add the move (d, true, d), and from each state q such
that ϕ =

∧
t∈ΔA(q) ¬Cond(t) is satisfiable, add the move

(q, ϕ, d).
(i) Initialize E to be the equivalence relation over QA

such that E(p, q) ⇔ p, q ∈ FA.
(ii) If there exists (p, q) in E such that there are moves

(p, ϕ, p1) and (q, ψ, q1) in ΔA where p1 �= q1 and
(p1, q1) /∈ E and ϕ ∧ ψ is satisfiable, then remove
(p, q) from E and repeat (ii).

(iii) Let B have the following components:

• QB is the set of E-classes {[q] | q ∈ QA};
• q0B is the E-class [q0A];
• FB is the set of E-classes {[q] | q ∈ FA};

2Note that the empty conjunction (
∧

t∈∅ . . .) is the same as true .

• ΔB is {([q], ϕ, [p]) | (q, ϕ, p) ∈ ΔA}.

(iv) Normalize B, and if B has a dead state (a state from
which no final state can be reached), eliminate all
moves to the dead state and eliminate the dead state
unless it is q0B .3

4) Product construction: The input to the algorithm are
two SFAs A and B and the output is an SFA C that is
the product of A and B, such that L(C) = L(A) ∩ L(B).
The algorithm is more or less standard, we are describing it
to pinpoint some aspects of it that are important when the
product construct is used below in Section VI.

As above, it is convenient to describe the algorithm as a
depth-first-search algorithm using a stack S of states of C
as a frontier, a set V of visited states, and a set T of moves.

(i) Initially S = (〈q0A, q0B〉), V = {〈q0A, q0B〉}, T = ∅.
(ii) If S is empty go to (iv) else pop 〈q1, q2〉 from S.

(iii) Iterate for each t1 ∈ ΔA(q1) and t2 ∈ ΔB(q2), let
ϕ = Cond(t1) ∧ Cond(t2), let p1 = Target(t1), and
let p2 = Target(t2). If ϕ is satisfiable then

– add (〈q1, q2〉, ϕ, 〈p1, p2〉) to T ;
– if 〈p1, p2〉 is not in V then add 〈p1, p2〉 to V and

push 〈p1, p2〉 to S.

Proceed to (ii).
(iv) Let C = (〈q0A, q0B〉, V, {q ∈ V | q ∈ FA × FB}, T ).
(v) Eliminate dead states from C (states from which no

final state is reachable).

Note that |QC | is at most |QA| ∗ |QB|. The satisfiability
check in (iii) is important. It prevents unnecessary explo-
ration of unreachable states, and may avoid a quadratic
blowup of QC , whereas (v) avoids introduction of useless
“dead end”-axioms in the symbolic language acceptor.

IV. SYMBOLIC LANGUAGE ACCEPTORS

In addition to a quantifier free goal formula ψ that is
provided to an SMT solver and for which proof of (or
absence of) satisfiability is sought, one can also assert
additional universally quantified axioms to the solver. We
use axioms to encode language acceptors for εSFAs. We
are using the programmatic API of the SMT solver Z3 [4],
[9] in Rex. The description below follows closely the use
of Z3 (although using a more mathematical notation) and is
intended to be self-contained.

A. On axioms in SMT solvers

During proof search, axioms are triggered by matching
subexpressions in the goal. In Rex, we use particular kinds
of axioms that are equivalences of the form

∀x̄(ϕlhs ⇔ ϕrhs) (1)

3Note that there can be at most one dead state, and if the language
accepted by A is empty then B has a single state that is not final and B
has no moves.
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where FV (ϕlhs) = x̄ and FV (ϕrhs) ⊆ x̄. The lhs ϕlhs of
(1) is called the pattern of (1). In the axioms below, we
underline the patterns.

The high-level view behind the use of axioms like (1) is
as follows. The axiom (1) is triggered by the current goal ψ,
if ψ contains a subformula γ and there exists a substitution θ
such that γ = ϕlhsθ, i.e., γ matches the pattern of the axiom.
If (1) is triggered, then the current goal ψ is replaced by the
logically equivalent formula where γ has been replaced by
ϕrhsθ.

Thus, the axioms are used as “rewrite rules” in our case,
and each application of an axiom preserves the logical equiv-
alence to the original goal. As long as there exists an axiom
that can be triggered, then triggering is guaranteed. Thus,
termination is in general not guaranteed when (mutually)
recursive axioms are being used.

B. Representation of strings

For each sort σ there is also a list sort L〈σ〉. Lists are
provided as built-in algebraic datatypes and are accompa-
nied with standard constructors and accessors in Z3. For
a given element sort σ there is an empty list nil (of sort
L〈σ〉) and if e is an element of sort σ and l is a list
of sort L〈σ〉 then cons(e, l) is a list of sort L〈σ〉. The
accessors are, as usual, hd (head) and tl (tail). Strings are
represented by lists of characters; we write S for the sort
L〈C〉. The empty string is abbreviated by "" and a string
cons(a, cons(b, cons(c,nil))) is abbreviated by "abc",
e.g., hd("abc") = a and tl("abc") = "bc".

C. Unary numbers

One can define other (arbitrarily nested) algebraic
datatypes in Z3. We are using unary natural numbers as an
algebraic datatype for reasons explained below. We declare
N as the corresponding sort, and we declare the constructors

0 : N, s : N → N.

We write k + 1 for s(k).

D. From εSFAs to axioms

Let A be a given εSFA. Assume A is normalized. For all
q ∈ QA, declare the predicate symbol

AccA
q : S × N → B

The idea behind the axioms defined below is that AccA
q (s, k)

holds for a string s iff the length of s is at most k and there
is a path from q that reads s and leads to a final state. In
particular, if AccA

q0A
(s, k) is true then s is accepted by [[A]].

Let
AccA def= AccA

q0A

The role of the second argument of AccA
q is to guarantee

that the triggering process of axioms terminates. To this end,
the sort N is used (rather than the built-in integer sort). This

enables us to define the patterns below, since constructors
of algebraic datatypes can be used effectively in patterns.
Intuitively, when such an axiom is used then there is always
something that strictly decreases and implies that there exists
a well-ordering so that each time an axiom is applied the
resulting goal is smaller with respect to that ordering. It is
not possible to write axioms that use integers in this way
because then one cannot associate a well-ordering with the
axioms.

For q ∈ QA, assume ΔA(q) is

{(q, ϕ1, q1), . . . , (q, ϕm, qm), (q, ε, p1), . . . , (q, ε, pn)}
and define the axioms ax0A

q and ax1A
q , where the patterns

are underlined,4

ax0A
q

def=
∀x (AccA

q (x, 0) ⇔ ∨n
i=1 AccA

pi
(x, 0) ∨ x = nil︸ ︷︷ ︸

if q ∈ FA

)

ax1A
q

def=
∀x y (AccA

q (x, s(y)) ⇔
(x �= nil ∧ (

∨m
i=1(ϕi[hd(x)] ∧AccA

qi
(tl(x), y))))

∨ ∨n
i=1 AccA

pi
(x, s(y)) ∨ x = nil︸ ︷︷ ︸

if q ∈ FA

)

Let Th(A) def= {ax0A
q , ax1

A
q | q ∈ QA}. The set of

formulas Th(A) (or equivalently
∧

Th(A)) is asserted to
the solver as the axioms for A.

Definition 8: An epsilon loop in an εSFA A is a path of
epsilon moves that starts and ends in the same state.

Theorem 1: Let A be an εSFA without epsilon loops.
Then

∧
Th(A) ∧ AccA(s, k) is satisfiable iff A accepts s

and the length of s is at most k.
The proof of Theorem 1 is outlined in [10]. Let us

consider a few examples.
Example 1: Consider A = ({q}, q, ∅, ∅). The language

accepted by A is obviously empty. The axioms Th(A) for
A are

ax0A
q = ∀x (AccA

q (x, 0) ⇔ false)
ax1A

q = ∀x y (AccA
q (x, s(y)) ⇔ false)

Thus, if M |= Th(A) then there is no string s or number k
such that M |= AccA

q (s, k). �
Example 2: Consider A = ({q}, q, {q}, {(q, true, q)}).

The language accepted by A is the set of all strings. The
axioms Th(A) for A are

ax0A
q = ∀x (AccA

q (x, 0) ⇔ x = nil)
ax1A

q = ∀x y (AccA
q (x, s(y)) ⇔

(x �= nil ∧ AccA
q (tl(x), y)) ∨ x = nil)

Assume M |= Th(A). Since M |= ax0A
q , we know that

AccA
q ("", 0)M = true. By induction on k, it follows from

4Note that the empty disjunction is the same as false .
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M |= ax1A
q that AccA

q (s, k)M = true for all strings s of
length at most k. �

Example 3: Consider the regex [a-z]+ and the follow-
ing SFA A for it (that also happens to be minimal):

0 1
((#>=a)&(#<=z))

((#>=a)&(#<=z))

The axioms Th(A) for A are as follows, where ϕ[χ] is the
formula (χ ≥ a) ∧ (χ ≤ z),

ax0A
0 = ∀x (AccA

0 (x, 0) ⇔ false)
ax1A

0 = ∀x y (AccA
0 (x, s(y)) ⇔ x �= nil ∧ ϕ[hd(x)]

∧ AccA
1 (tl(x), y))

ax0A
1 = ∀x (AccA

1 (x, 0) ⇔ x = nil)
ax1A

1 = ∀x y (AccA
1 (x, s(y)) ⇔ (x �= nil ∧ ϕ[hd(x)]

∧ AccA
1 (tl(x), y)) ∨ x = nil)

Declare a fresh (uninterpreted) constant s :S and assert
the axioms Th(A) and the goal AccA

0 (s, 2) to the solver.
We describe a plausible scenario for the resulting model
generation process. First, the axioms are triggered:

AccA
0 (s, 2)

ax1A
0� s �= nil ∧ ϕ[hd(s)] ∧

AccA
1 (tl(s), 1)

ax1A
1� s �= nil ∧ ϕ[hd(s)] ∧

((tl(s) �= nil ∧ ϕ[hd(tl(s))] ∧
AccA

1 (tl(tl(s)), 0)) ∨ tl(s) = nil)
ax0A

1� s �= nil ∧ ϕ[hd(s)] ∧
((tl(s) �= nil ∧ ϕ[hd(tl(s))] ∧
tl(tl(s)) = nil) ∨ tl(s) = nil)

Second, a model is generated for the resulting (quantifier
free) formula (if a model exists) using the built-in theories.
In this case a possible model M is such that sM = "ok".

In Z3 the resulting model M provides also an interpreta-
tion for all the predicate symbols AccA

q . For entries (e, k)
that did not occur in the derivation, the interpretation is
arbitrary – typically a default value of the range sort, that is
false for B. In other words, M is not necessarily a model
for Th(A), since it may violate the axioms for entries that
are irrelevant with respect to the goal. �

The condition that A has no epsilon loops is necessary
in Theorem 1. The theorem would fail otherwise, as the
following example illustrates.

Example 4: Consider A = ({q}, q, ∅, {(q, ε, q)}). The
language accepted by A is obviously empty because there
are no final states. The axioms Th(A) for A are

ax0A
q = ∀x (AccA

q (x, 0) ⇔ AccA
q (x, 0))

ax1A
q = ∀x y (AccA

q (x, s(y)) ⇔ AccA
q (x, s(y)))

The axioms are simply useless logical tautologies. Consider
for example a model M with an interpretation for AccA

q

such that M |= AccA
q ("", 0). Trivially, M is also a model

for Th(A) but "" is not accepted by A. Moreover, if the
axioms were asserted to Z3, the resulting proof search for a
goal such as AccA

q ("", 0) would not terminate. �
When an εSFA is created from a regex the property that

there are no epsilon loops follows immediately from the
constructions in [7]. So the case when epsilon loops are
present is not relevant here.

V. IMPLEMENTATION AND USE

The automata algorithms discussed in Section III and
the axiom generation discussed in Section IV have been
implemented in Rex. The SMT solver Z3 is used for sat-
isfiability checking and model generation. Interaction with
Z3 is implemented through its programmatic API rather than
using a textual format, such as the smt-lib format [11]. The
main reasons for this are:

• the API provides access to built-in datatypes, such as
algebraic datatypes, and corresponding theories that are
not (yet) part of the smt-lib standard;

• the API enables working within a given Z3 context.

The first point was illustrated clearly in Section IV. The sec-
ond point is equally important, it allows Rex to be used as a
decision procedure that is seamlessly integrated with Z3, and
used by other tools such as Pex [12], [1] (for dealing with
regular expression constraints in parameterized unit tests)
and Qex [13], [3] (for dealing with LIKE expressions in
database unit tests). In Rex, Z3 is also used for checking con-
straint satisfiability in the implementation of the algorithm
steps described in Section III-B2(iii), Section III-B3(ii), and
Section III-B4(iii).

A. Working within a Z3 context

A (Z3) context includes declarations for a set of symbols,
assertions for a set of formulas, and the status of the last
satisfiability check (if any). There is a current context and a
backtrack stack of previous contexts. Contexts can be saved
through pushing and restored through popping.

The following is an actual code snippet from Rex illus-
trating how the satisfiability of a formula f is checked in
the current context without “cluttering” the context.

z3.Push();
z3.AssertCnstr(f);
LBool isSat = z3.Check();
z3.Pop(); ...

B. Model generation

Besides allowing to check satisfiability, perhaps the most
important feature of SMT solvers is generating a model
as a witness of the satisfiability check, i.e., a mapping of
the uninterpreted function symbols in the current context
to their interpretations. The Z3 API has a separate method
for satisfiability checking with model generation. This code
snippet illustrates the use of that functionality:
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Table I
SAMPLE REGEXES.

#1 \w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*([,;]\s*\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*)*
#2 $?(\d{1,3},?(\d{3},?)*\d{3}(\.\d{0,2})?|\d{1,3}(\.\d{0,2})?|\.\d{1,2}?)

#3 ([A-Z]{2}|[a-z]{2} \d{2} [A-Z]{1,2}|[a-z]{1,2} \d{1,4})?([A-Z]{3}|[a-z]{3} \d{1,4})?

#4 [A-Za-z0-9](([ \.\-]?[a-zA-Z0-9]+)*)@([A-Za-z0-9]+)(([\.\-]?[a-zA-Z0-9]+)*)\. ([A-Za-z][A-Za-z]+)

#5 (\w|-)+@((\w|-)+\.)+(\w|-)+

#6 [+-]?([0-9]*\.?[0-9]+|[0-9]+\.?[0-9]*)([eE][+-]?[0-9]+)?

#7 ((\w|\d|\-|\.)+)@{1}(((\w|\d|\-){1,67})|((\w|\d|\-)+\.(\w|\d|\-){1,67}))\.((([a-z]|[A-Z]|\d){2,4})(\.([a-z]
|[AZ]|\d){2})?)

#8 (([A-Za-z0-9]+ +)|([A-Za-z0-9]+\-+)|([A-Za-z0-9]+\.+)|([A-Za-z0-9]+\++))*[A-Za-z0-9]+@((\w+\-+)|(\w+\.))*\w
{1,63}\.[a-zA-Z]{2,6}

#9 (([a-zA-Z0-9 \-\.]+)@([a-zA-Z0-9 \-\.]+)\.([a-zA-Z]{2,5}){1,25})+([;.](([a-zA-Z0-9 \-\.]+)@([a-zA-Z0-9 \-\.
]+)\.([a-zA-Z]{2,5}){1,25})+)*

#10 ((\w+([-+.]\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*)\s*[,]{0,1}\s*)+

Table II
EVALUATION RESULTS FOR SAMPLE REGEXES.

εSFA(r) SFA(r) DSFA(r) mDSFA(r)
r size t ms size t ms size t ms size t ms

#1 91 100 73 40 81 70 20 140
#2 90 10 64 10 71 30 29 40
#3 83 10 70 10 104 30 69 100
#4 45 40 35 60 53 70 26 70
#5 98 100 71 10 74 30 15 40
#6 31 0 12 0 16 10 10 10
#7 2728 840 920 1800
#8 281 40 269 60 380 170 296 870
#9 1944 280 2128 260
#10 112 30 104 30

Model m;
z3.AssertCnstr(f);
LBool sat = z3.CheckAndGetModel(out m);
Term v = m.Eval(s); ...

Suppose that f above is the conjunction of Th(A) for
a given SFA A and the goal AccA(s, |QA|). If L(A) is
nonempty then the value of v is a string in L(A).

VI. EXPERIMENTS

We evaluated the performance of Rex on a collection
of sample regexes shown in Table I.5 These are typical
examples of concrete regexes appearing in various prac-
tical contexts. The regexes are taken from [6], where the
technique is not able to handle regexes #7 and #8. Table I
excludes some of the samples from [6] due to shortcomings
of the regex parser that we use temporarily in Rex.

For each regex r we conducted the following experiments,
that are summarized in Table II. We constructed the εSFA,
SFA, DSFA and minimal DSFA for r using the algorithms
described in Section III. For regexes #7, #9 and #10,
determinization timed out (using a timeout of 10 seconds).

The size of each automaton, shown in column size, is its
number of moves plus its number of states. The graph of

5The experiments were run on a Lenovo T61 laptop with Intel dual core
T7500 2.2GHz processor.

each automaton is sparse, having, in average, at most twice
as many moves as states; e.g., Figure 2 shows a typical εSFA
generated for one of the regexes in Table I.

For every automaton A we performed an independent
member generation experiment as follows.

1) Declare a fresh constant s :S and assert Th(A) and
AccA(s, |QA|).

2) Generate a model M for the assertions.
3) Validate that sM indeed matches r using the built-in

.NET regex class.

The member generation time (in milliseconds) is shown in
column t. The time contains the regex parsing time, the
automaton construction time, the axiom construction time,
and the model generation time with Z3. For all εSFAs and
SFAs the construction time is negligible (a few milliseconds
or less than a millisecond). In case of DSFAs and minimal
DSFAs, the time spent in model generation in Z3 is in many
cases only a small fraction of t. Thus, minimization could
pay off if the automaton is created once, but used several
times. (We have rounded the measurements and use 0 if the
entries are less than a millisecond.)

In most cases t is marginally better for SFAs, with case #7
being an exception, where the εSFA is 3 times larger than
the SFA but t is twice smaller. One possible explanation is
that after epsilon elimination the conditions on the moves in
the SFA, although fewer, are more complex.

In general, using a (minimal) DSFA eliminates choices
during backtracking and could be preferable in a context
where it is combined with other constraints. A general
heuristic could be to try to determinize (and minimize)
using a time limit and fall back to using the original
SFA upon timeout. Some regexes are inherently hard to
determinize, since the resulting (minimal) DSFA may be
exponentially larger than the εSFA. The classical example
is [a-c]*a[a-c]{n} where n is a fixed positive number;
the number of states in the εSFA is in this case n+ 3, e.g.,
the εSFA for [a-c]*a[a-c]{2} is
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Figure 2. εSFA of regex #2 in Table I.

0

((#>=a)&(#<=c))

1 42#=a 3((#>=a)&(#<=c)) ((#>=a)&(#<=c))

and the corresponding SFA is

0

((#>=a)&(#<=c))

2#=a 43((#>=a)&(#<=c)) ((#>=a)&(#<=c))

but the number of states in the (minimal) DSFA is 2n+1.
We conducted the above member generation experiment for
this regex and n = 1, . . . , 11. In all cases, using the εSFA or
SFA, time was negligible (a few ms); whereas, by making
the DSFA, time increased exponentially, see Figure 3.

Figure 3. Determinization and member generation times (ms) with Rex
for [a-c]*a[a-c]{n}, where n = 1, . . . , 11.

The final experiment in this section shows scalability and
the use of the product construction. We ran the following
member generation check for n up to 1000.

1) Construct A as the product of the SFAs for
[a-c]*a[a-c]{n+1} and [a-c]*b[a-c]{n}.

2) Declare a fresh s : S and assert Th(A) and
AccA(s, |QA|).

3) Generate a model M for the assertions (also validate
that sM indeed matches both regexes).

The result of the experiment is shown as a chart in Figure 4.
The trendline is also shown, that is polynomial in n. One can

Figure 4. Member generation times (ms) for the intersection of the regexes
[a-c]*a[a-c]{n+1} and [a-c]*b[a-c]{n} for n up to 1000.

also assert the acceptors for the two regexes as a conjunction
(without building the product), also in this case the time
complexity scales reasonably well, e.g., for n = 50 it
takes around 10 seconds, but which is still in the order
of 100 slower than using the product construction. The
main reason for this is that, during the product construction,
unsatisfiable moves are eliminated, and dead states are
eliminated, as explained in Section III-B4. This means that
the corresponding axioms are never created and the search
space that Z3 needs to cover during model generation is
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dramatically reduced. The satisfiability checks during the
product construction are also done with Z3, but these checks
are typically very fast because they are “local” to the moves.

VII. RELATED WORK

It was suggested earlier [14] to annotate transitions of an
FA with predicates. Van Noord et.al. [15] later formalized
the basic idea, and it was implemented [15] as an extension
to a Prolog-based automata library [16]. However, they [15]
merely suggest in a footnote that “an implementation might
choose to ignore transitions for which the corresponding
predicate is not satisfiable”. We formally introduce the
notion of “clean” SFAs, which we construct and maintain
by systematically pruning infeasible transitions in our de-
terminization, minimization and product construction algo-
rithms using an SMT solver to prove unsatisfiability. This is
the key to efficiency, which we evaluated as well.

A connection between logic and automata has been dis-
covered already fifty years ago [17], [18], and revived about
a decade ago [19] in the context of symbolic reasoning with
Binary Decision Diagrams (BDDs) [20]. With BDDs, rather
dense automata over large alphabets can be represented com-
pactly and reasoned about efficiently. However, with BDDs
all characters must be encoded as strings over Boolean
variables, while our approach allows transition predicates
over variables that belong to any theory support by the
underlying (SMT) solver.

Several program analysis techniques for programs with
strings [21], [22], [23], [24] build on automata libraries [19],
[25] that efficiently handle transitions over sets of characters
as BDDs and interval constraints. Most of those program
analysis approaches suffer from the separation of the deci-
sion procedures, as constraints over strings are decided by
one solver, while constraints over other domains are decided
by other solvers, and the specialized solver usually cannot
be combined in a sound or complete fashion. Our approach
avoids this problem by building on top of an SMT solver
which has decision procedures for a variety of theories.
We discussed symbolic analysis of SQL queries with an
SMT solver in earlier work [3]. Another instance is the
analysis .NET programs, which use a rich set of string
operations; we developed a framework to reason about such
string operations using an SMT solver by separating index
and length constraints from character constraints [2], and in
earlier work we discussed how regular expression matching
could be handled by a general-purpose program analysis
framework for .NET [1] after translating the queries to a
.NET program [6].

Hooimeijer et.al. give a decision procedure for subset
constraints over regular language variables [26]. They do
so in a self-contained way, reasoning over dependency
graphs. In contrast, we showed how finite automata can
be generalized by making transitions symbolic, and how a

decision procedure can be embedded into a logic of an SMT
solver.

HAMPI [27] is another string solver, closely related to
ours, which turns string constraints over fixed-size string
variables into a query to STP [28], a solver for bit-vectors
and arrays. As their solver neither supports lazily instantiated
quantifiers nor the theory of data types (or variable-length
lists), they can only handle fixed-size inputs. They use
“templates” that resemble our quantifiers, but their templates
get instantiated eagerly upfront. Also, they do not formally
generalize finite automata to symbolic finite automata.

Yu et.al. [29] describe the derivation of unary length
automata from finite automata, in order to analyze the
relationship among string and integer variables in programs.
Their unary length automata are related to our unary en-
coding of string lengths. They verify program properties by
an over-approximating fixpoint computation, while we are
concerned with exact decidability.

VIII. CONCLUSION

The scalability of the approach taken in Rex was highly
surprising to us. Rex is able to handle large regexes, for
which the automata often have hundreds or even thousands
of states, often under a second. It shows also how effective
the underlying SMT solver Z3 is in handling large collec-
tions of axioms that are created on-the-fly, since the number
of axioms is proportional to the size of the automaton.
Moreover, the initial experiments show that it does not
seem to pay off to determinize (and minimize) SFAs for
this application, since the performance is very unpredictable
then. The integration of Rex in Pex and Qex looks really
promising. Moreover, there are still a lot of opportunities
for further improving the performance, we mention some
below.

IX. FUTURE WORK

There are several possible optimizations on the set of
axioms Th(A) for a given εSFA A, that have not been
tried out or implemented yet. One such optimization is to
use individual characters in patterns of axioms when the
condition on the corresponding move is the matching of a
single character.

In the context of integrating Rex in Pex one technical
challenge is the conversion between different representations
of strings. In Pex strings are currently represented by arrays
of bitvectors rather than lists. We can define axioms that
provide such conversions (the direction from lists to arrays
is easy), in order to combine regex constraints with other
constraints on strings that arise in path conditions.

A more thorough evaluation of Rex is also needed in
order to better understand the role of the list sorts and the
lazy instantiation of the axioms, in particular, comparing
the performance with related approaches like HAMPI [27].
Moreover, evaluation of Rex integrated into Pex will enable
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its evaluation when regex constraints arise in program ver-
ification and testing in combination with other constraints
(such as string length constraints). In this context, it is also
interesting to compare the approach to existing techniques
based on constraint reasoning using regular sets that can also
be combined with other string constraints [30].

The current implementation of Rex uses an incomplete
regex parser. In order to expand the technique presented in
the paper to a more expressive class of regexes, the presented
axiomatization needs to be extended in a nontrivial way.
Modern regular expression languages have features such
as laziness and as-few-times-as-possible quantifiers that go
beyond classical regular languages. It is possible to define
symbolic language acceptors for more complex languages
(for example for CFGs), by using additional parameters.
However, the price to pay is that the prerequisites for the
correctness of the axiomatizaton will be more involved, and
the variations of the classical algorithms that can be used
for SFAs and enable the use of automata theoretic methods
will be unclear.

On the theoretical side, we have not formally studied the
computational complexity of the SFA algorithms, i.e., how
much harder are they than the classical versions? Note that
it is not reasonable to view the size of the alphabet as a
constant in this case, that would for example be 232 for
UTF-32 character encoding.

Furthermore, none of the algorithms really depends on
the actual sort of the characters, which could be unbounded,
such as integers or reals. We have not investigated how
changing the character sort from bitvectors to some other
sort affects the performance of Rex.
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