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This paper examines how increasing the value of the Reynolds number Re affects the
ability of spanwise-forcing techniques to yield turbulent skin-friction drag reduction. The
control strategy is the streamwise-travelling waves of spanwise wall velocity (Quadrio et

al. J. Fluid Mech., vol. 627, 2009, pp. 161–178). The study builds upon an extensive drag-
reduction database created with Direct Numerical Simulation of a turbulent channel flow
for two, 5-fold separated values of Re, namely Reτ = 200 and Reτ = 1000. The sheer
size of the database, which for the first time systematically addresses the amplitude
of the forcing, allows a comprehensive view of the drag-reducing characteristics of the
traveling waves, and enables a detailed description of the changes occurring when Re
increases. The effect of using a viscous scaling based on the friction velocity of either
the non-controlled flow or the drag-reduced flow is described. In analogy with other
wall-based drag reduction techniques, like for example riblets, the performance of the
travelling waves is well described by a vertical shift of the logarithmic portion of the
mean streamwise velocity profile. Except when Re is very low, this shift remains constant
with Re, at odds with the percentage reduction of the friction coefficient, which is known
to present a mild, logarithmic decline. Our new data agree with the available literature,
which is however mostly based on low-Re information and hence predicts a quick drop
of maximum drag reduction with Re. The present study supports a more optimistic
scenario, where for an airplane at flight Reynolds numbers a drag reduction of nearly
30% would still be possible thanks to the travelling waves.

1. Introduction

Reducing the turbulent drag in general, and the turbulent skin-friction drag in par-
ticular, is a potentially rewarding technological goal which, however, presents several
challenges that span from the understanding of a complex physics to the design of a
reliable and affordable control system.
In the last few decades, fundamental research efforts in skin-friction drag reduction

met with considerable success, and several viable strategies to reduce drag have been
introduced, although often only proofs-of-concept based on numerical simulations or lab-
oratory experiments are available. For obvious reasons, such studies are typically limited
to low-Reynolds number flows, and the question naturally arises how to extrapolate the
observed performance (in terms of e.g. maximum drag reduction, or energy cost of the
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control technique) to the higher values of the Reynolds number Re typical of most in-
dustrial applications.
Some of the earliest techniques, however, have already been demonstrated in the en-

visaged application: the most notable example is perhaps riblets (Walsh 1980; Bechert
& Bartenwerfer 1989; Garćıa-Mayoral & Jiménez 2011), i.e. small streamwise-aligned
grooves patterned on an otherwise smooth surface, which have been tested on a full-scale
airplane in flight conditions (Walsh et al. 1989). Although in flight tests an indirect mea-
sure of the riblets effectiveness based on changes in fuel consumption is often preferred,
in simple and well-controlled laboratory flows like a channel flow the friction drag reduc-
tion achieved by riblets is typically characterized in terms of the drag reduction rate R,
defined as the relative change of skin-friction coefficient Cf between the controlled and
the reference flow:

R = 1− Cf

Cf,0
. (1.1)

In this definition, the subscript ”0” indicates a quantity measured in the reference flow,
and the skin-friction coefficient is defined as

Cf = 2
τw
ρU2

b

, (1.2)

where τw is the wall-shear stess, ρ is the fluid density and Ub the bulk velocity. The
maximum drag reduction for riblets is known (Luchini 1996; Spalart & McLean 2011)
to vary with Re, owing to the (mild) Re-dependency of Cf itself. A Re-independent
quantification of the riblets ability to reduce drag is obtained by considering riblets as a
particular roughness distribution that yields a decrease of the skin friction instead of the
typical increase. Hence, drag changes due to riblets can be characterized by a quantity
often employed to describe the effects of wall roughness: the vertical shift induced in the
logarithmic portion of the mean velocity profile when plotted in the law-of-the-wall form.
This shift, positive (upward) in case of drag reduction and physically interpreted as a
consequence of the thickening of the viscous sublayer (Choi 1989), implicitly contains
the Re-dependency of Cf through the friction velocity used for the adimensionalization.
Thus, if Re is large enough for the logarithmic law to be valid in a Re-independent form,
the amount of this shift is constant with Re, and is the preferred way to characterize the
ability of riblets to reduce drag, as clearly advocated by Spalart & McLean (2011).
Turning now our attention to active, wall-based techniques for skin-friction drag re-

duction, a lively debate is taking place in the scientific community regarding the high-
Re behaviour of the last generation of techniques, in particular the open-loop ones that
promise large benefits with the advantage of reasonable implementation complexity. Such
techniques operate by enforcing suitable temporal and spatial distributions of velocity
perturbations at the wall, and have been shown to be able to relaminarize an otherwise
turbulent flow, with an energy cost that can be significantly smaller than the energy
savings. Assessing their potential for achieving sizeable benefits at high Re is obviously
important to motivate further research in this field.
The specific case of spanwise-forcing techniques for drag reduction includes the well-

known spanwise-oscillating wall (Jung et al. 1992) and its generalizations made by the
spanwise-travelling waves (Du et al. 2002) and streamwise-travelling waves (Quadrio et al.
2009); although most of the available information concerns internal flows, numerical ex-
periments (Skote 2011; Lardeau & Leschziner 2013; Skote 2013; Mishra & Skote 2015)
have shown that the forcing is effective in external flows too. The streamwise-travelling
waves, in particular, yield larger maximum drag reduction and, more importantly, im-
proved energetic efficiency, which is essential if drag reduction is motivated by the need
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to save energy. Thanks to the wealth of data available for this class of forcing, it is
known that the impressive low-Re performance, i.e. 58% drag reduction and 28% net
energy saving at Reτ = 200 in a turbulent channel flow (Quadrio et al. 2009), and flow
relaminarization at Reτ = 200 in a turbulent pipe flow (Xie 2014), does indeed degrade
with Re.
The drag reduction rate R is often considered to decrease with the Reynolds number

following a power law, i.e. R ∼ Re−γ
τ with the exponent γ determined empirically. Early

Re-dependency studies were typically based upon a large parameter study carried out at
low Re and fixed forcing amplitude, where the best combination of parameters for drag
reduction was first identified; this sole or a few sets of parameters were then tested at
higher Re, and the performance drop measured under the assumption that the control
parameters identifying the optimal point scale in viscous wall units. However, as discussed
by Quadrio (2011), the assumption of viscous scaling not only needs to be verified, but
also implies a choice in selecting the velocity scale: in drag reduction studies, besides the
friction velocity uτ,0 of the non-controlled flow, an additional friction velocity is available
to build viscous units, namely the actual friction velocity uτ of the drag-reduced flow. In
this paper, we will indicate with the customary + superscript the “reference” wall units,
whereas a ∗ superscript will indicate the ”actual” wall units. Limiting to the literature
where more than one value of Re was considered, quantities have been scaled through
either reference + units (Quadrio et al. 2009; Touber & Leschziner 2012; Gatti & Quadrio
2013; Hurst et al. 2014) or actual actual ∗ units (Moarref & Jovanović 2012). The choice
of nondimensionalization is particularly delicate and may cause spurious Re effects, since
R is function of all control parameters including Re.

A recent study that thoroughly describes the literature relevant to the higher-Re be-
haviour of spanwise-forcing techniques is that by Hurst et al. (2014). Choi et al. (2002)
considered the oscillating wall for Reτ = 100, 200 and 400 and, although not address-
ing the Reynolds dependency directly, provided results implying γ = 0.2− 0.4. Ricco &
Quadrio (2008) considered the oscillating wall at Reτ = 200 and Reτ = 400 and mea-
sured γ = 0.21 for the point with largest drag reduction, although the rate of drecrease
appeared to depend on the parameters of the oscillating wall. Quadrio et al. (2009) for
the streamwise-travelling waves measured γ = 0.24. Touber & Leschziner (2012) went up
to Reτ = 1000 for the oscillating wall and suggested γ = 0.20. This is a rather strong
decrease rate: with γ = 0.24, the 58% drag reduction of the travelling waves at Reτ = 200
would become a mere 7% at Reτ = 106. Note that these figures do not account yet for
the energy cost of the active control.
However, there are indications that the picture might be more complicated and possibly

not as negative. First of all, the few experimental data available (Choi & Graham 1998;
Ricco & Wu 2004) observe small, if any, Re effect. Moreover, numerical studies based on
alternative approaches suggest a different scenario. Duque-Daza et al. (2012) solved the
linearized Naver–Stokes equations to study how the growth of the near-wall streaks is
affected by the travelling waves; they found no significant Re-effect when comparing the
growth between Reτ = 200 and Reτ = 2600. They also observed that, at least at Reτ =
200 where DNS data for the drag change are available, streak amplification correlates
well with drag reduction. Thus, the implicit message is that drag reduction might be
mildly affected by increasing Re, similarly to streak growth. Moarref & Jovanović (2012)
developed a model-based approach for studying spanwise-wall oscillations. They used
eddy-viscosity-enhanced linearization of the turbulent flow with control in conjunction
with turbulence modelling to determine skin-friction drag without resorting to heavy
simulations. Unfortunately, their method relies upon the availability of statistical results
from a DNS of the uncontrolled flow at the same Re, and does not lend itself to being used
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at very high Reynolds numbers. However, up to Reτ = 1000 they found γ = 0.15 for the
oscillating wall. Belan & Quadrio (2013) studied turbulent drag reduction in conjunction
with the RANS equations, and carried out an asymptotic analysis to extrapolate the
performance of streamwise-travelling waves at high Re. Their finding is that at Reτ =
20, 600 drag reduction decreases only by 15% from the value at Reτ = 200, which is
equivalent to γ = 0.04.
The recent study by Gatti & Quadrio (2013) began to shed some light upon these

contrasting indications. Their numerical study, based on DNS applied to rather small
computational domains, went up to Reτ = 1000 with a few points at Reτ = 2000,
and confirmed that maximum drag reduction at the considered forcing amplitude indeed
decreases quickly with γ ≈ 0.2. However, Gatti & Quadrio (2013) were able to carry out a
larger parameter study at Reτ = 1000 too, and evaluated γ at several points in the space
of control parameters, finding that γ is a strong function of the parameters which define
the forcing, and that the performance drop is more pronounced where drag reduction at
low Re is maximum. The results obtained by Gatti & Quadrio (2013) were confirmed by
Hurst et al. (2014) with a less detailed parameter study but with the added reliability of
using DNS with full-size computational domains. Data at Reτ = 200, 400, 800 and 1600
confirmed that γ depends on the flow control parameters, typically ranging between 0.1
and 0.5.
Overall, this calls for a deeper understanding and generalization of these findings, as

the outlook for practical applications would be strongly affected. Hence, the goal of the
present paper is to further address the high-Re behavior of spanwise forcing techniques.
Two DNS databases are built to characterize the streamwise-traveling waves in terms
of drag reduction and net energy savings at two, well separated values of the Reynolds
number: Reτ = 200 and Reτ = 1000. The parameter study is extremely large and is made
by 4020 DNS calculations on small domain sizes, plus 20 additional cases with a larger
domain size. For the first time the amplitude of the travelling waves is systematically
studied together with their wavelength and speed: this will for the first time allow for a
clear interpretation of the results in terms of the actual forcing intensity. Details of the
numerical procedures and the computational parameters are given in §2, with particular
attention to the spatial discretization issue: the employed computational domain, like in
Gatti & Quadrio (2013), is smaller than the usual to reduce the computational cost, and
monitoring the uncertainty of the results is essential. The results are then presented and
discussed in §3, while in §4 the drag reduction data are examined in terms of γ, to show
that this quantity is not particularly well suited to describe the Re-effect. The vertical
shift in the logarithmic portion of the mean mean velocity profile is then shown to be a
more robust alternative. An analytical relation is eventually developed to predict drag
reduction at arbitrarily high values of Re based on low-Re information.

2. Method

Direct Numerical Simulations (DNS) of the turbulent flow in a doubly periodic channel
are used to study the effect of the Reynolds number Re on the reduction of turbulent
drag achieved by streamwise-travelling waves of spanwise wall velocity (Quadrio et al.

2009), imposed on both walls as the boundary condition:

Ww(x, t) = A sin(κx− ωt). (2.1)

In the above expression for the wall forcing, Ww is the spanwise velocity enforced at
the wall, A is the amplitude of the forcing, κ is the streamwise wavenumber and ω is
the angular frequency. x and t are the streamwise coordinate and time respectively. The



Reynolds-dependence of skin-friction drag reduction by spanwise forcing 5

x

y

z

Mean flow

Lx

Lz

Ly = 2h

λ = 2π

κ

c = ω

κ

Ww (x, t) = A sin (κx− ωt)

Figure 1. Schematic of a turbulent channel flow modified by streamwise-travelling waves of
spanwise wall velocity, with amplitude A, streamwise wavenumber κ and angular frequency ω.
λ is the streamwise wavelength and c is the phase speed of the waves. Lx, Ly = 2h and Lz

are the dimensions of the computational domain in the streamwise, wall-normal and spanwise
directions, respectively.

forcing, sketched in figure 1, consists in a wall distribution of streamwise-modulated waves
of the spanwise (z) velocity component with wavelength λ = 2π/κ and period T = 2π/ω,
which travel at speed c = ω/κ forward (c > 0) or backward (c < 0) with respect to the
direction x of the mean flow. The three independent parameters (for example A, κ, ω)
of the control law (2.1) combined with the Reynolds number Re define a 4-dimensional
parameter space, whose complete investigation represents a computational challenge.

The simulations have been run with the solver for the incompressible Navier–Stokes
equations developed by Luchini & Quadrio (2006), and adapted in this work to run on a
Blue Gene/Q system at the CINECA computing centre, where most of the calculations
were carried out. Simulations enforcing either a constant flow rate (CFR) or a constant
pressure gradient (CPG) (see Hasegawa et al. 2014; Quadrio et al. 2015, for details)
are considered. The aim is to obtain and compare two comprehensive sets of cases at
Reτ = 200 and Reτ = 1000, where Reτ = uτh/ν is the Reynolds number based on the
channel half-height h, the friction velocity uτ of the uncontrolled flow and the kinematic
viscosity ν of the fluid. This is enforced directly in the CPG cases where the value of
Reτ is specified as an input parameter, while in the CFR cases the imposed flow rate
(hence the input value of Reb = Ubh/ν) leads to values of Reτ which only approximately
correspond to the target. In the following, for ease of discussion we will conventionally
refer to the two casesets as the low-Re (or Reτ = 200) caseset and the high-Re (or
Reτ = 1000) caseset.

In both casesets, the initial condition is that of an uncontrolled turbulent flow, and
care is taken to begin the statistical analysis after properly discarding the initial transient
(of duration up to 1,000 viscous time units) where the control leads the flow towards a
reduced level of friction drag. The spatial resolution in wall units is always better than
∆x+ = 12.3 and ∆z+ = 6.1 (or ∆x+ = 8.2 and ∆z+ = 4.1 if the additional modes
used to completely remove the aliasing error are considered). ∆y+ smoothly varies from
∆y+ ≈ 1 near the wall to ∆y+ ≈ 7 at the centerline. In the CFR cases, the spatial
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Type Ncases Reb Reτ Lx/h Lz/h L+
x L+

z Nx ×Ny ×Nz

CFR 1530 6627 203.0 1.59π 0.80π 1015 507 96× 100× 96
CFR 480 6627 203.4 2.05π 1.02π 1308 654 128× 100× 128
CFR 1530 39333 905.6 0.32π 0.16π 906 453 96× 500× 96
CFR 480 39333 948.3 0.43π 0.22π 1290 645 128× 500× 128

CFR 5 6360 199.9 4π 2π 2512 1256 256× 128× 256
CPG 5 6358 200.0 4π 2π 2513 1257 256× 128× 256
CFR 5 39980 1000.0 4π 2π 12566 6283 1024× 500× 1024
CPG 5 39900 998.6 4π 2π 12549 6274 1024× 500× 1024

Table 1. Details of the small-box (upper half) and large-box (lower half) simulations. Every
caseset is detailed in terms of simulation type (CFR or CPG), number of cases Ncases, values
of bulk Reynolds number Reb and friction Reynolds number Reτ , length and width of the
computational domain in inner and outer units, number of Fourier modes in the homogeneous
directions (additional modes are used for dealiasing, according to the 3/2 rule) and collocation
points in the wall-normal direction.

resolution in every direction strongly improves with drag reduction and the related drop
in Reτ . Time integration is carried out with a partially implicit approach, with a Crank-
Nicolson scheme for the viscous terms and a third-order Runge–Kutta scheme for the
convective terms. The CFL number is set at unity, well below the stability limit of the
temporal integration scheme; the consequent average size of the timestep is always below
∆t+ = 0.17 for the low-Re cases, and below ∆t+ = 0.1 for the high-Re cases. The
duration of the simulation obviously affects the quality of the estimate of the mean value
of drag: the total integration time is thus adjusted in order to reach an acceptably small
uncertainty over the whole dataset. The integration time is at least 24,000 viscous time
units, and in certain cases it increases up to 80,000 viscous units. For each value of Re, the
computational study considers two distinct sets of simulations, described below, details
of which are reported in table 1.

2.1. The small-box large database

The first set (upper half of table 1) is a parameter study designed to produce a massive
database of drag reduction data (4020 cases overall); the parameter space includes the
forcing wavenumber κ, the forcing angular frequency ω and, for the first time, the forcing
amplitude A too. For each Re, six values of A+ = {2, 4.5, 5.5, 7, 12, 20 }, a wide fre-
quency range −0.5 ≤ ω+ ≤ 1, and 13 different values of κ+ are considered, between the
limiting case κ+ = 0 when the control law (2.1) reduces to the classic spanwise-oscillating
wall and the maximum considered wavenumber κ+ = 0.05. Previous knowledge of the
drag reduction pattern is exploited to focus on the interesting regions of the parameter
space through a non-uniform distribution of the simulation points. Values of A+ are cho-
sen to describe reasonably well the region for maximum energetic efficiency near A+ = 5,
to include the point A+ = 12 that corresponds to most available information (Quadrio
et al. 2009; Touber & Leschziner 2012; Hurst et al. 2014), and to include an additional
point at larger A+ to better characterize the absolute maximum of drag reduction. Avail-
ability of data at different A+ is essential for appreciating the difference, discussed below,
between “reference uτ” or + scaling and “actual uτ” or ∗ scaling.
For this set of calculations, carried out under the CFR condition, a relatively small

computational domain (whose dimensions are kept constant in wall units when Re is
increased) is employed: the consequent savings in computing time are key to make this
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huge parameter study possible. For each value of Re, two subsets of simulations are
reported in table 1, which differ for the slightly different value of the length Lx of the
computational domain. Since the wave length of the wall forcing is constrained to integer
submultiples of the box length, this mitigates the quantization effect and allows a better
investigation of the lower forcing wavenumbers. In changing box size, the aspect ratio
of the computational domain is always kept constant at Lx = 2Lz, and the number of
Fourier modes in the wall-parallel directions is adjusted as to keep the spatial resolution
in wall units unchanged.

2.2. The large-box small database

The second set of simulations (lower half of table 1) employs a larger domain size, whose
dimensions are kept constant in outer units when Re is increased. Owing to the larger
computational cost, only a few representative cases are computed. For both Re we con-
sider the reference uncontrolled case, and four other cases at the amplitude A+ = 7.
One case is for the oscillating wall at nearly optimal period T+ = 75, one case with
oscillating wall at the larger period T+ = 250, one case with travelling waves with large
drag reduction (ω+ = 0.0239 and κ+ = 0.01) and one case for travelling waves with drag
increase (ω+ = 0.12 and κ+ = 0.01). Each case is run under both CFR and CPG (and
for the latter the forcing parameters listed above are to be intended in actual wall units),
for a total of 20 simulations featuring the larger computational domain.

2.3. Domain size and uncertainty

For the simulations described in §2.1, the computational domain is rather small, with
a streamwise length of the order of 1000 wall units (one half of that for the domain
width). Such domains, which imply a reduced computational cost per timestep, have
been already used in the past for similar studies. Although several times larger than the
minimal domain shown by Jiménez & Moin (1991) to be capable of sustaining the near-
wall turbulent cycle, the present computational domain is not large enough to guarantee
truly truncation-independent flow statistics. The large outer structures that become more
and more important as Re increases do not entirely fit into such a small domain, the
mean velocity in the outer region progressively deviates from the correct profile, and even
the prediction of wall friction is affected by an error. Trace of this can be observed in
table 1, where at high Re a 35% increase in box length brings about a 5% change in Reτ .
However, Gatti & Quadrio (2013) demonstrated that reliable information concerning

drag reduction can still be extracted from such simulations. In fact, most of the inaccu-
racy in predicting friction cancels out when the two friction coefficients (with and with-
out control) are subtracted to compute drag reduction. It must be noted that the much
shorter computing time per timestep comes at the cost of a larger number of timesteps
required to obtain meaningful temporal averages of spatially-averaged quantities, which
present larger temporal fluctuations as a consequence of the lesser contribution of the
spatial average (Jiménez & Moin 1991). Lozano-Durán & Jiménez (2014) have shown
that the standard deviation of the spatially-averaged skin friction is roughly inversely
proportional to the square root of the area of the computational box. Hence, it is imper-
ative to monitor the statistical uncertainty of the main quantities, and to increase the
averaging time (i.e. the duration of the simulations) until the uncertainty reduces to an
acceptable level.
In the present paper, the main quantity of interest is the drag reduction rate R, as

defined in Eq. (1.1). Its uncertainty δR is written by propagating the standard uncer-
tainty of the skin-friction coefficients for the uncontrolled and controlled flows, and by
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assuming they are independent variables:

δR =
Cf

Cf,0

√

(

δCf

Cf

)2

+

(

δCf,0

Cf,0

)2

(2.2)

and then extended to a 95% confidence interval. The standard uncertainties δCf,0 and
δCf are evaluated with the procedure described by Oliver et al. (2014), by calculating
an integral timescale via an autoregressive method. This is slightly different from the
strategy employed by Gatti & Quadrio (2013), who estimated the timescale differently,
and it is interesting to note that the two methods end up with essentially the same
result. For instance, when applied to the time history of skin-friction in an unmanipulated
channel flow at Reτ = 200, with domain size Lx = 4πh, Lz = 2πh and an integration
time of 4480 h/Ub, the present method yields a relative standard uncertainty of 0.70%
while the method by Gatti & Quadrio (2013) the slightly lower value of 0.66%. Similar
values of 0.61% and 0.64% are obtained respectively with the well-known method of non-
overlapping batch means (Schmeiser 1982), which is related to the procedure followed
by Hoyas & Jiménez (2008), and the similar method proposed by Mockett et al. (2010),
which relies on the known statistical properties of white noise.
The uncertainty on the value of other quantities, such as the mean velocity profile or

the control performance estimators presented below, is computed analogously. Hereinafter
the uncertainty is always reported in the text when applicable and represented with error
bars or shading in all the relevant figures.

3. Results

3.1. Validation for the oscillating wall

We show first the results for the temporal oscillation of the wall (i.e. κ = 0), that can be
used as a further validation of the present dataset, thanks to the availability of several
literature data at various Re. Figure 2 shows in the left panel the drag reduction rate
against the period of wall oscillation T+ for oscillations with an amplitude of A+ = 12
in reference inner scaling. At Reτ = 200 the present results agree very well with those
from Gatti & Quadrio (2013), who employed a comparable domain size, as well as with
the full-size simulations of Touber & Leschziner (2012) and Hurst et al. (2014). At the
low-Re optimal period of wall oscillation T+ ≈ 100 − 125 and A+ = 12, for instance,
Touber & Leschziner (2012) observed R = 0.385, Hurst et al. (2014) R = 0.364 and Gatti
& Quadrio (2013) R = 0.384. All agree well with the present value of 0.374± 0.018. The
only exception is the data point at T+ ≈ 200 by Hurst et al. (2014), which lies well below
the other datasets. The comparison against the reference dataset by Quadrio & Ricco
(2004) confirms the slight (less than 0.02) overestimation of R in a narrow region close
to the optimal period T+ ≈ 100, already known (cfr. the discussion of figures 5 and 6
in Gatti & Quadrio 2013) and attributed to domain size effects; this is limited to the
region of largest drag reduction (R > 0.3) and becomes milder for streamwise-travelling
waves (κ > 0). The agreement between the present dataset and the available literature
data is excellent also at Reτ = 1000. The datapoints by Hurst et al. (2014) lie slightly
above the present results for small oscillation periods, but it must be recalled that they
are computed at the lower Reτ = 800. As already known (Gatti & Quadrio 2013; Hurst
et al. 2014), the optimal oscillation period decreases with Re and becomes T+ ≈ 75 at
Reτ = 1000. At this value of T+ a drag reduction of 0.277 ± 0.016 is measured, which
is very close to R = 0.275 measured by Hurst et al. (2014) and R = 0.29 reported by
Touber & Leschziner (2012) at T+ = 100.
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Figure 2. Drag reduction rate R versus period of wall oscillation T+ at A+ = 12 in reference
scaling (a) and versus T ∗ at A∗ = 7 in actual scaling (b). Black (darker) color identifies low-Re
data, and red (lighter) color corresponds to high-Re data. Present data are identified by lines,
with shaded area representing the corresponding interval at 95% confidence level. In panel (a),
open symbols are from Gatti & Quadrio (2013), while letters within symbols identify literature
data: Q, Quadrio & Ricco (2004); T, Touber & Leschziner (2012); H, Hurst et al. (2014) with
the higher Reynolds data at Reτ = 800. In panel (b), symbols are present data for large-box
simulations.

Figure 2(b) shows R versus T ∗ at constant A∗ = 7, i.e. with actual viscous scaling,
which would require data from simulations driven at CPG. The present small-box simu-
ations are indeed computed at CFR, but the availability of data at several values of A+

makes a ∗ scaling possible through interpolation. As far as we know, no such data exist
for Reτ = 1000 or nearby; the only data we can compare with are the large-domain CPG
simulations described in table 1, and this motivates the choice of the amplitude A∗ = 7.
At Reτ = 200 the optimal period is T ∗ ≈ 75, where a drag reduction of 0.255± 0.020 is
achieved. This value is very close to 0.253± 0.002 of the full-size data point at the same
T ∗. Good agreement between the present full-size DNS and reduced domain database is
evident also at Reτ = 1000, where at T ∗ = 75 the former achieved 0.167± 0.015 and the
latter 0.175 ± 0.005. The shift of the optimal T ∗ with Re is much milder than that of
T+, suggesting that actual inner scaling might be more appropriate.

3.2. The whole dataset at a glance

Travelling-wave results are now presented as in Quadrio et al. (2009) and Hurst et al.

(2014), by plotting drag reduction maps in the space of the control parameters (κ+, ω+)
at A+ = 12. The data just discussed in figure 2 are those lying on the κ = 0 horizontal
axis. Note that to produce such maps, the raw results are first interpolated on a finer
Cartesian grid, without any smoothing or outliers removal, on which the contour lines are
drawn. Using * scaling also implies interpolation along the third axis (forcing amplitude).
Figure 3 compares the drag reduction rate R at Reτ = 200 and Reτ = 1000. The map
at Reτ = 200 reproduces the well known shape described by Quadrio et al. (2009),
with a maximum R at fixed A+ = 12 of Rm,A+ = 0.500 ± 0.015 located at (ω+, κ+) =
(0.0195, 0.0063), which agrees with Rm,A+ = 0.48 at (0.018, 0.005) measured by Quadrio
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Figure 3. Map of drag reduction RA+ at constant forcing amplitude for streamwise traveling
waves at A+ = 12, for Reτ = 200 (a) and Reτ = 1000 (b). Contours are spaced by 0.1, negative
contours are dashed. The thick white line corresponds to zero drag change while the dash-dotted
line is the locus of points where R = Rm,A+−δR, and the cross indicates the position of Rm,A+ .

et al. (2009) and Rm,A+ = 0.5 at (0.025, 0.008) obtained by Hurst et al. (2014). The
side-by-side comparison with data at Reτ = 1000 clearly shows that, consistent with
all previous information, the forcing becomes less effective as Re grows, since both the
largest drag reduction and drag increase weaken. Rm,A+ decreases to 0.388± 0.014 and
its location in the plane moves along the drag reduction ridge towards higher frequencies
and wavenumbers to (ω+, κ+) = (0.05, 0.0195). It must be observed, however, that the
precise location of Rm,A+ in the (ω+, κ+) plane is not a robust information, since the
region of maximum drag reduction presents a rather flat peak. This is particularly true
at Reτ = 1000, where the contour level drawn for R = 0.388−0.014, i.e. Rm,A+ minus its
uncertainty, is an elongated region which almost encloses the low-Re maximum. However,
the decrease of Rm,A+ at larger Re as well as its shift towards higher frequencies and
wavenumbers is clear, and it agrees with previous evidence by Gatti & Quadrio (2013)
and by Hurst et al. (2014), with the latter being based on fewer data at Reτ = 800 but
computed on a larger computational domain.
The present database contains much more information than that shown in figure 3, be-

cause several values of forcing amplitude are considered. Figure 4 shows the entire dataset
at a glance in the three-dimensional parameter space (ω+, κ+, A+), in comparative form
between the two Reynolds numbers. The three-dimensional field of R is visualised via
isosurfaces of R = const, and the clouds of tiny dots in the figure indicates the 4020
points where a DNS has been performed. Such an extensive database makes the descrip-
tion of R with actual inner scaling possible. In the past, only few channel flow studies (for
example Ricco et al. 2012) were performed at CPG, thus ensuring that drag reduction
does not lead to changes in Reτ . When CFR is employed, a significant drop in the friction
velocity and Reτ due to drag reduction implies that the inner scaling changes, and in
particular that A+ becomes significantly larger than A∗. Hence, in this case + scaling
is just a disguised outer scaling (Quadrio 2011). The present data have been computed
on A+ = const planes, but they can be easily interpolated to produce figure 5, where a
map of R in the (ω∗, κ∗) plane at A∗ = 12 is shown. At Reτ = 200, the maximum drag
reduction at constant A∗ is Rm,A∗ = 0.453 ± 0.015 at (ω∗, κ∗) = (0.0167, 0.067), to be
compared with Rm,A+ = 0.500± 0.015 at (ω+, κ+) = (0.0195, 0.0063). This agrees with
data at same A∗ and Re by Quadrio & Ricco (2011), who drove the channel at CPG and
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at each Re, a DNS has been carried out.
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Figure 5. Map of drag reduction RA∗ at constant forcing amplitude for streamwise traveling
waves at A∗ = 12, for Reτ = 200 (a) and Reτ = 1000 (b). Lines and symbols as in figure 3.

found Rm,A∗ = 0.45 at (ω∗, κ∗) = (0.012, 0.045). At the higher Reτ = 1000, Rm,A∗ =
0.343±0.019 at (ω∗, κ∗) = (0.0246, 0.0789) is observed instead of Rm,A+ = 0.388±0.014
at (ω+, κ+) = (0.05, 0.0195).
Looking at R with different scalings leads to important remarks. First, the difference

between Rm,A+ and Rm,A∗ is small at A+ = 12. This is explained by the known weak
dependence of R on A at large amplitudes where saturation occurs (Quadrio et al. 2009).
Indeed, at lower forcing intensities we observe a stronger drop, which at the lower Re is
from Rm,A+ = 0.035±0.016 for A+ = 4.5 to Rm,A∗ = 0.29±0.015 for A∗ = 4.5. Second,
the effect of Re on the value of Rm,A∗ is qualitatively similar to the one on Rm,A+ ,
and the shift of the location of the maximum in the (ω, κ) plane is confirmed. Since
the maximum of drag reduction is rather flat, this last observation is better highlighted
in figure 6 by observing, at several values of A∗, how the shape and size of the region
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Figure 6. Region of large drag reduction, defined as the region whereR is at leastRm,A∗−0.015,
for various values of A∗. Solid black lines: Reτ = 200; dashed red lines: Reτ = 1000. The location
of Rm,A∗ is marked by a black circle at Reτ = 200 and a red square at Reτ = 1000.

where R is nearly maximum change while Re increases. This region is identified by the
contour line drawn for R = Rm,A∗ − 0.015, with 0.015 being a representative value of
δR. For every value of A∗, this region at Reτ = 1000 is found to be larger than the one
at Reτ = 200, which is enclosed by the former but for a small part at low wavenumbers
and frequencies.
A global view of the drag reduction performance of the traveling waves as determined

by the present dataset can be obtained from figure 7, that shows for both values of Re how
the maximum drag reduction Rm,A increases with the forcing amplitude. It is confirmed
that, regardless of the scaling adopted, the general shape of the curve is always that of
a saturated growth of R with A. The curves with ∗ scaling are consistently lower than
the curves with + scaling, and data at Reτ = 1000 are lower than data at Reτ = 200.
The figure also includes a few datapoints from Quadrio et al. (2009) at Reτ = 200.
Their point at A+ = 12 falls slightly below the present data, something that Gatti &
Quadrio (2013) already documented as an effect of the limited computational domain.
However, the larger values of Rm,A+ observed for A+ < 12 in the present study also
descend from a better scan of the parameter space. In fact, Quadrio et al. (2009) simply
assumed a simple (reference) viscous scaling for the location of Rm,A+ , whereas here a
full parameter study avoids this assumption and determines that Rm,A+ = 0.38± 0.017
can still be achieved at A+ = 5.5 and Reτ = 200, which becomes Rm,A+ = 0.26± 0.020
at Reτ = 1000. The comparison at A+ = 12 with the data from Hurst et al. (2014) shows
excellent agreement, considered that the slightly higher R of the high-Re datapoint is
due to its lower value of Reτ = 800.

3.3. Performance indicators

Active techniques for skin-friction drag reduction should not be characterised by R alone:
the net power saving rate S, which also accounts for the energy cost of the control, is
an important additional figure of merit for a complete assessment. S can be defined as
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follows:

S = R− Pin

P0

, (3.1)

where P0 is the power (per unit area) required to drive the uncontrolled channel flow,
and Pin is the control input power, computed here following Baron & Quadrio (1996) by
neglecting the mechanical losses of a real actuator. Figure 8(a) presents the maximum
net power saving Sm,A at fixed amplitude. At both Re the largest Sm,A is observed
at A+ ≈ 6, where the travelling waves yield Sm,A+ = 0.31 ± 0.021 at Reτ = 200 and
Sm,A+ = 0.19 ± 0.018 at Reτ = 1000. In comparison with existing data from Quadrio
et al. (2009), there is a noticeable improvement due to the more detailed scan of the
parameter space at low forcing amplitude. As observed by Ricco & Quadrio (2008) and
Gatti & Quadrio (2013), the power expenditure per unit pumping power Pin/P0 decreases
with Re at a rate proportional to Re−0.136

τ and faster than R in many parts of the
control parameter space. This means that S decreases as R, or at a slower rate. Sm,A∗ is
slightly lower than Sm,A+ at both Re up to A∗ ≈ 7. In this range of forcing amplitudes
the main contributor to S is R, being the input power much smaller, and lower R is
achieved if forcing is performed at constant A∗ compared to constant A+. Starting from
A∗ ≈ 7, the opposite occurs and Sm,A∗ becomes larger than Sm,A+ , because at high
forcing amplitude S is dominated by −Pin/P0, which is smaller (in absolute value) when
forcing is considered at constant A∗ than at A+.
The control gain G is defined as the power benefit per unit control power:

G =
RP0

Pin
, (3.2)

and is plotted in figure 8 (b). Gm,A+ increases rapidly for decreasing forcing amplitude,
since Pin is proportional to the square root of A (Quadrio & Ricco 2011), while R varies
less than linearly with A. At the amplitude value yielding the largest Sm,A+ we measure
G = 5.3 ± 0.24 at Reτ = 200 and G = 3.9 ± 0.31 at Reτ = 1000, with a mild decrease
with Re. In fact, the beneficial Re effect on Pin/P0 is even more effective on G than on
S.

4. The effect of Re on drag reduction

We now focus our attention on understanding how the drag reduction performance of
the streamwise-traveling waves is affected by an increase of the Reynolds number.

4.1. Characterizing R via a power law

The effect of Re on R has been traditionally quantified, as discussed in §1, by assuming
(Choi et al. 2002; Moarref & Jovanović 2012; Touber & Leschziner 2012; Duque-Daza
et al. 2012; Belan & Quadrio 2013) that R decreases with Re according to a simple power
law, i.e.

R ∝ Re−γ
τ . (4.1)

The power-law assumption was originally adopted by Choi et al. (2002) to fit early
DNS-computed drag reduction results obtained for the spanwise-oscillating wall, and it is
not endowed with a specific physical significance. Recently, Gatti & Quadrio (2013) and
Hurst et al. (2014) observed that γ is not a simple constant, but depends on the control
parameters ω, κ and A. The function γ = γ(ω∗, κ∗, A∗) can easily be constructed from
the present dataset. For a given (ω∗, κ∗, A∗) combination, one knows the drag reduction
values R200 and R1000 measured at Reτ = 200 and Reτ = 1000, and γ can be computed
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Figure 9. Power-law exponent γ as a function of κ∗ and ω∗ at A∗ = 12, measured according
to the formula (4.2). Contour lines from 0 to 0.45 in 10 steps. In the regions marked by the
checkerboard pattern the exponent γ is undefined.

as:

γ =
ln (R200/R1000)

ln (200/1000)
. (4.2)

This quantity is shown in figure 9 for A∗ = 12. The details might certainly change
depending, for example, on the specific value of A∗, on the choice between working at
constant A+ or constant A∗, or on the choice between using in (4.2) the nominal values of
Reτ or the actual ones reported in table 1. However, the emerging picture is consistently
as rich as chaotic. The known result that γ strongly varies across the parameter space
is easily confirmed, and this implies that some regions more than others are sensitive to
the increase in Re. For example, in most of the ridge of large drag reduction γ assumes
intermediate values between 0.1 and 0.15, while the largest values are seen in the low-
wavenumber region of the drag increase valley.
The complexity of figure 9 graphically illustrates how γ is not well suited to compre-

hensively describe the effect of Re on the drag reduction. Indeed, γ is an ill-conditioned
quantity, which is sensitive to small uncertainties inR, and according to definition (4.2) it
grows to infinity whenever either R200 or R1000 is zero, while it becomes undefined when
drag reduction at one Re turns into drag increase at the other Re (see the checkerboard-
marked areas in figure ??). However, the most significant conceptual drawback of using
γ is that, owing to the lack of physical rationale in the assumption of a power-law be-
haviour, extrapolation of existing data at higher Re (for example those which are typical
of aeronautical applications) is entirely arbitrary. In fact, γ might well be a function of Re
too, as some resulty by Hurst et al. (2014) seem to indicate. Hence, in our view γ should
be merely regarded as a (not well-conditioned) indicator with the same limited predictive
capability of other, more trivial quantities, like the relative decrease of drag reduction.
In the following, we will overcome the problem by introducing a more physically sound
indicator.

4.2. Characterizing R via the vertical shift ∆B of the mean velocity profile

When dealing with distributed wall roughness (also including those particular rough-
ness distributions, like streamwise aligned riblets, that reduce friction drag instead of
increasing it), it is well known that the consequent friction changes are reflected in the
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logarithmic region of the velocity profile. According to the classical theory (Pope 2000),
the streamwise mean velocity profile 〈u〉 (y) over a smooth wall (for which the distinction
between the reference inner scaling + and the actual inner scaling * is irrelevant) presents
a thin near-wall region, called the viscous sublayer, where 〈u〉+ = y+, which is connected
through the buffer region to the logarithmic layer, where the profile follows a logarithmic
law:

〈u〉+ =
1

k
ln y+ +B. (4.3)

In the above expression, k is the von Kármán constant and B is the so-called additive
constant or near-wall intercept. Both constants are known to assume values that weakly
depend on Re when Re is low. For instance, Kim et al. (1987) reported k = 0.4 and
B = 5.5 at Reτ = 180, whereas k = 0.386 and B = 4.40 at Reτ = 4079 or k = 0.384
and B = 4.27 at Reτ = 5200 have been reported respectively by Bernardini et al. (2014)
and Lee & Moser (2015). As stressed by Jiménez (2004), the additive constant B is
determined by the no-slip boundary condition at the wall but, since the logarithmic law
is only valid for y+ ≫ 1, its value depends on the details of the buffer and viscous layers.
In the region further from the wall, the velocity-defect law, which describes the difference
between the local mean velocity and the centerline mean velocity Uc, takes the following
form (Pope 2000):

U+
c − 〈u〉+ = −1

k
ln
(y

h

)

+B1 (4.4)

where B1 is a flow-dependent constant representing the difference between the actual
centerline velocity Uc and the velocity value obtained by extrapolating the velocity-defect
law up to the centerline. In channel flows, B1 is close to zero (Pope 2000).

If the logarithmic law (4.3) and the defect law (4.4) are added together, and Uc is
substituted with the more convenient Ub thanks to the relation U+

c = U+

b + 1/κ (Pope
2000), the use of the definition (1.2) for the friction coefficient Cf leads to the following
friction law, i.e. an implicit relationship between Cf and the Reynolds number Reτ :

√

2

Cf
=

1

k
lnReτ +B +B1 −

1

k
. (4.5)

When surface roughness is present, a classical statistical description of its effects (see
e.g. Clauser 1956; Jiménez 2004) is via the so-called roughness function, which quantifies
the roughness-induced drag change via the downward shift of the velocity profile in the
logarithmic layer, i.e. via the (negative) change ∆B of the additive constant B. The
same approach is used for the drag-reducing riblets (Luchini et al. 1991; Garćıa-Mayoral
& Jiménez 2011), which produce a positive ∆B. Luchini (1996) has shown that ∆B is
equivalent to the amount of drag reduction, and is proportional to the so-called protrusion
height, defined as the distance between two virtual wall-parallel planes where no-slip
boundary conditions for the profiles of the spanwise and streamwise velocity components
hold.
One is naturally led to think that what applies to changes in wall geometry (roughness)

might as well apply to the present, wall-based control strategy. Hence, our initial step
consists in verifying whether the travelling waves consistently produce a vertical shift ∆B
of the mean velocity profile. This is a known result (see for instance Baron & Quadrio
1996; Choi et al. 1998; Ricco & Wu 2004; Yudhistira & Skote 2011; Ricco et al. 2012;
Touber & Leschziner 2012; Skote 2014; Hurst et al. 2014) that is systematically checked
in figure 10 (a)-(d). The mean velocity profiles are obtained at both Re from the large-
box simulations described in §2.2 (discretization details have been reported in the lower
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Figure 10. Mean velocity profiles obtained from the large-domain simulations reported in the
lower half of table 1. Top: Reτ = 200; bottom: Reτ = 1000. Left: CFR cases; right: CPG cases.
The thick line is the reference case and the thin lines correspond to control yielding both drag
reduction and drag increase (see text). The insets enlarge a portion of the logarithmic layer to
show the (very small) statistical uncertainty at 95% confidence, denoted by the shaded area.

half of table 1). Since we do not want to limit the discussion to the case of maximum
drag reduction, at each Re five different cases are computed: the no-control case and
four additional ones, all with forcing amplitude of A+ = 7. These are two oscillating wall
cases at T+ = 75 and T+ = 250, and two travelling waves cases, one with drag reduction
at ω+ = 0.0238 and κ+ = 0.01, and one with drag increase at ω+ = 0.12 and κ+ = 0.01.
Every case is computed twice, at the nominal value of Reb with CFR and at the nominal
value of Reτ with CPG. For the CPG cases, the viscous quantities mentioned above to
define the control conditions must be intended in actual viscous units.
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Figure 10 (a)-(d) confirms that the spanwise forcing consistently produces a rigid
upward (when drag is reduced) or downward (when drag is increased) shift of the mean
velocity profile in the logarithmic region, while the parameter B1 and the von Kármán
constant do not change appreciably. In other words, the effect of the spanwise forcing
can be quantified via the change ∆B of the additive constant, regardless of the control
type, the value of Re, and the simulation strategy. Similar observations were recently
put forward by Skote (2014), who observed changes of ∆B with drag reduction obtained
by spanwise oscillations in a turbulent boundary layer, as well as changes in the von
Kármán constant. The changes in k, however, are a direct consequence of the spatial
transient present in the boundary layer setting, while in the present parallel flow ∆B
fully describes the effect of the spanwise forcing.
Once the control is seen to modify the mean velocity profile through ∆B, we can follow

what has been already done for riblets e.g. by Luchini et al. (1991) and by Garćıa-Mayoral
& Jiménez (2011), and exploit the friction law (4.5) to obtain a dimensionless relation
between the Reynolds number Reτ , the drag reduction rate R and the control-induced
change ∆B of the additive constant. Equation (4.5) can be written twice, once for the
uncontrolled flow (characterized by Reτ,0 and Cf,0) and once for the controlled flow (with
Reτ and Cf ). By subtracting the latter formula from the former, one obtains:

√

2

Cf
−
√

2

Cf,0
=

1

k
ln

Reτ
Reτ,0

+∆B, (4.6)

under the assumption that k and B1 are unaffected by the control. These assumptions
are discussed and verified in the Appendix.
Now, if the uncontrolled and controlled flows are compared under the CFR constraint,

equation (4.6) can be solved for ∆B and further manipulated by substituting Cf =
Cf,0 (1−R) and Reτ = Reτ,0

√
1−R, to yield:

∆B+ =

√

2

Cf,0

[

(1−R)
−1/2 − 1

]

− 1

2k
ln (1−R) . (4.7)

If on the other hand the pressure gradient is kept constant across the comparison
(CPG), then by definition Reτ = Reτ,0, and the above equation further simplifies to:

∆B∗ =

√

2

Cf,0

[

(1−R)
−1/2 − 1

]

. (4.8)

It is worth noting that equations (4.7) and (4.8) differ from the relationships proposed
by Luchini et al. (1991) and by Garćıa-Mayoral & Jiménez (2011) for the turbulent flow
over a surface with riblets. In fact, those are linearized under the assumption of small R,
which is definitely a reasonable assumption for riblets but does not apply to the present
forcing, which is capable to yield quite large R and consequently is better described by
the fully non-linear expression.
The main point is that, since Cf,0 is a function of Reb only, equations (4.7) and (4.8)

link ∆B and R, provided Reb is large enough for the friction law (4.5) to hold. This can
easily be tested with our DNS data, as shown in figure 11, where data from the large-box
simulations already considered in figure 10 are used. At Reτ = 1000 the agreement is
excellent, for both the CPG and CFR cases. The agreement is less good at Reτ = 200,
and it is interesting to note that the largest deviation occurs for the CFR case with largest
R at Reτ = 200, i.e. for the case possessing the lowest actual Reτ (namely Reτ = 173). It
comes at no surprise that, at such low Reτ , the assumptions underlying the friction law
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Figure 11. Relationship between the upward shift ∆B and the drag reduction rate R. Symbols
are present large-box DNS data, and lines are predictions from (4.7) and (4.8) for the CFR and
CPG cases.
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Figure 12. Relationship between the upward shift ∆B and the drag reduction rate R. Symbols
are present small-box DNS data, and lines are predictions from (4.7) and (4.8) for the CFR and
CPG cases.

(4.5), which implies that the flow rate is well approximated by the wall-normal integral
of the logarithmic velocity profile, do not apply in full.
Quite surprisingly, a very similar picture is observed in figure 12 for the small-box

simulations, where the mean velocity profile in the outer region is expected to be affected
by the size of the computational domain. Despite the larger statistical uncertainty of R
and the indeed quite small extent of healthy logarithmic region, the data at Reτ =
1000 agree fairly well with equations (4.7) and (4.8), while those at Reτ = 200 do not,
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Figure 13. Map of ∆B∗ for streamwise traveling waves at A∗ = 12, for Reτ = 200 (a) and
Reτ = 1000 (b). Contours are spaced by 1, negative contours are dashed. The thick white line
corresponds to ∆B∗ = 0.

because Re is too low, in the very same way as the corresponding data from the large-box
simulations.
The evidence that equations (4.7) and (4.8) describe well the relationship among Cf,0

(hence Reτ ), R and ∆B at sufficiently high Re implies that these equations also describe
the effect of Re on R, provided information is known on the Re-dependency of ∆B.
This information can be educed from the small-box database introduced in §2.1. Figure
13 shows the map of ∆B∗ at Reτ = 200 and Reτ = 1000, in actual viscous scaling
at A∗ = 12. Instead of measuring ∆B from the velocity profiles, ∆B is computed here
ex-post from the independently validated values of R through equation (4.7). In this
way, the computed value of ∆B matches the measured value at Reτ = 1000, while it is
consistently slightly smaller at Reτ = 200 (see figures 11 and 12). This estimate of ∆B
at low Re is still meaningful, as it can be interpreted to represent the ∆B value epurated
from the low-Re effects that are due to deviations from the predictions of the friction
law.
When compared to the two maps in figure 5, where R is observed to decrease sig-

nificantly across the whole plane, the two maps of ∆B∗ appear much more similar, if
exception is made for a localized change near the origin of the (ω∗, κ∗) plane. Figure
14 emphasizes the changes of ∆B∗ with Re, by plotting the difference between the two
previous maps, i.e. the pointwise difference between ∆B∗ at Reτ = 200 and ∆B∗ at
Reτ = 1000. The figure strengthens the previous claim that ∆B is roughly constant with
Re, once low-Re effects are discarded. In fact, except for a thin stripe located on the
right of the drag reduction ridge, the variation of ∆B∗ with Re is essentially zero. In this
region, which includes the whole area of large drag reduction except its right boundary,
the function ∆B∗(ω∗, κ∗) is solely determined by the control parameters, and equation
(4.6) can be used to describe the decrease of R with Re. The thin stripe, on the other
hand, is a low-Re effect that represents a non-trivial feature specific to the present control
technique.
Although this is not enough for the ultimate demonstration that ∆B∗ does not depend

on Re, the scenario depicted above is more than reasonable, and is reinforced by the
parallel made with riblets. Moreover, additional data exist to support it. For example,
Hurst et al. (2014) plot in their figure 16 mean streamwise velocity profiles for channel
flow modified by stationary waves at ω+ = 0 and κ+ = 0.008 with A+ = 12 and Reτ =
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Figure 14. Map of the difference between ∆B∗ at Reτ = 200 and ∆B∗ at Reτ = 1000 for
A∗ = 12. Contour lines from 0 to 3 in 10 steps. The thick dashed line marks the region of large
drag reduction, i.e. R > 0.3, at Reτ = 200.

{200, 400, 800, 1600}. By comparison with the reference profiles, they report ∆B+ =
{7.6, 6.2, 5.5, 5.0} respectively. The changes clearly are progressively decreasing as Re is
increased. Moreover, it should be noted that the point at ω+ = 0 and κ+ = 0.008 lies
in the small area where the residual Re-effect is maximum (see our figure 14) and some
change ∆B is expected. Lastly, Hurst et al. (2014) adopted a reference viscous scaling,
which by itself induces a change in ∆B: as Re increases, R shrinks, uτ/uτ,0 increases
and the actual forcing amplitude A∗ decreases. Hence, data from Hurst et al. (2014) are
compatible with the present work in suggesting that for a large enough Re the function
∆B(ω∗, κ∗) characterizes the forcing, and becomes constant with Re above a threshold
value. We estimate this minimum Re to be Reτ ≈ 2000.

5. Concluding discussion

In this study a large drag reduction DNS database has been produced for a turbulent
plane channel flow subject to a spanwise forcing. 4020 simulations have been used to
describe how increasing the value of the Reynolds number from Reτ = 200 to Reτ =
1000 affects drag reduction, and to propose a rationale behind the observed performance
deterioration. To the authors’ knowledge, this is the first study on spanwise forcing that
includes a wide range of forcing amplitudes, as well as Contant Pressure Gradient (CPG)
data at different values of Re. The large size of the numerical study has been possible
thanks to the use of relatively small computational domains, which at the same time
also constitutes its main limitation. This strategy has been already proved by Gatti &
Quadrio (2013) to successfully provide useful and accurate information about changes
in friction drag. Moreover, the numerical results and the main conclusions have been
corroborated by 20 additional cases where a large computational domain is employed.
The main findings of this study can summarized as follows.
(a) The existing information regarding spanwise forcing has been significantly ex-

tended. Thanks to the depth of the numerical study, the maximum net saving rate of
streamwise-travelling waves at Reτ = 200 is 0.31 ± 0.021, condition at which they pro-
duce a drag reduction of 0.382 ± 0.002 and a gain of 5.3 ± 0.24; these figures become
0.19± 0.002, 0.255± 0.02 and 3.9± 0.31 at Reτ = 1000. We have shown how the scaling
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Figure 15. Extrapolation of drag reduction data from Reτ = 1000 to Reτ = 100, 000. (a)
Continuous lines are prediction by equation (4.6), while the dashed line shows a decrease of
R ∝ Re−0.2

τ . (b) Extrapolated drag reduction map at Reτ = 105 for A∗ = 12, lines and symbols
as in figure 3. The white shaded area is excluded from the contour plot as there ∆B is found to
vary between Reτ = 200 and Reτ = 1000.

choices (viscous units based on the reference friction velocity, i.e. “+” scaling, or viscous
units based on the actual friction velocity of the drag-reduced flow, i.e. “ ∗ ” scaling) im-
pact the results, and the ensuing differences have been discussed. Though less practical
to implement, actual ∗ scaling has been shown to be more advantageous to describe a
wall-based phenomenon like skin-friction drag reduction.
(b) The deterioration of performance with Re has been confirmed, in agreement with

the majority of existing data. The often assumed but arbitrary power-law decrease of
drag reduction with Re, i.e. R ∼ Re−γ

τ , yields values of the exponent γ which vary
strongly across the space of control parameters. The lack of rationale of a power-law
dependency is such that a γ-based extrapolation at higher Re of existing data should be
regarded as potentially unreliable.
(c) The classic argument linking the skin-friction drag changes of a rough wall to the

vertical shift ∆B of the logarithmic portion of the mean velocity profile has been shown
to apply to the case of spanwise forcing. A non-linear expression has been derived that
can be specialized to the CFR or CPG cases. As for drag-reducing riblets, characterizing
drag reduction through ∆B is more informative than the simple statement of ”percentage
drag reduction”. Indeed, ∆B already contains the necessary Re dependency through the
friction law and, if the control parameters in actual units are constant, it does not signif-
icantly change once Re is above the threshold where the mean velocity profile features a
well-defined logarithmic region, and the validity of the friction law (4.5) is ensured.
(d) Under the assumption that ∆B∗ measured in the present work at Reτ = 1000

is already Re-independent, equation (4.6) can be used to extrapolate drag reduction
at higher Reτ , as done in figure 15(a), showing that a drag reduction of R = 0.5 at
Reτ = 1000 translates into R = 0.34 at Reτ = 105. The decrease is still significant but
not as dramatic as the low-Re evidence suggests: this can be easily appreciated by looking
at the dashed line, that describes R ∼ Re−γ

τ with γ = 0.20. The whole drag reduction
map at A∗ = 12 is extrapolated from Reτ = 1000 to Reτ = 105 in figure 15(b). The
maximum drag reduction in the plane reduces from 0.34 to 0.23, which is still a sizeable
amount considered the two-decades increase of Re.
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(e) While we are not in the position to make a claim of generality, we believe that
the line of reasoning developed in this paper for spanwise forcing might apply to other
wall-based active control techniques, as long as they do not disrupt the shape of the
mean velocity profile. The relation among ∆B, Cf,0 and R and the observation that
∆B becomes Re-independent provide an unbiased framework to describe the effect of
the Reynolds number on turbulent drag reduction obtained via wall-based control. For
riblets, ∆B depends on the riblet geometry alone. For spanwise forcing, a given set of
control parameters determines the properties of the generalized Stokes layer (Quadrio &
Ricco 2011), whose features, such as its thickness (Quadrio & Ricco 2011) or spanwise
shear stress at a certain wall distance (Yakeno et al. 2014), determine the shift ∆B or,
equivalently, the Re-dependent drag reduction rate R according to equations (4.7) or
(4.8). Hence, the comparison between wall-based control at different Reynolds numbers
should be in terms of ∆B, not of R.
(f) Although the present results are sound from a quantitative standpoint, we believe

that an accurate DNS study of the drag-reduction properties of the travelling waves at
higher Re is still needed. Such study would be forcedly less vast than the present one,
but could be designed taking advantage of the available information. The view presented
in this paper, with its Achille’s heel of being based on small-box simulations, will surely
benefit from an independent confirmation. Moreover, Reτ = 1000 is still not large enough
to reach a complete Re-independency for the values of ∆B, which, as mentioned above,
is expected to start at Reτ ≈ 2000. It must be stressed, however, that this additional
study is all what is needed to know drag reduction capabilities of the travelling waves at
any Re.

Although so far we have deliberately avoided to mention turbulent structures, by
strictly limiting our discussion to the simplest first-order statistics, we would like to
close this paper with a remark of a more general nature.

On a fundamental level, the dependence of Cf upon Re may be seen to reflect the
variable extension of the different portions of a turbulent wall flow, in particular the
inner and the outer layers, and the way they interact with each other. The importance
of the inner layer has been probably overemphasized in the last decades: indeed, at
the low values of Re typical of most studies addressing near-wall turbulence and its
control, the inner layer occupies a significant portion of the whole flow. At higher Re,
however, the wall-normal extension of the inner layer becomes progressively smaller with
respect to the outer layer, and at application-level Re most of the boundary layer is just
outer layer. It is also known, thanks for example to the FIK identity (Fukagata et al.

2002), that the portion of Reynolds shear stresses located in the outer layer carries an
increasing contribution to the skin-friction coefficient as Re increases. These Reynolds
stresses are due to the very large turbulent structures (Ganapathisubramani et al. 2003;
Guala et al. 2006) that populate the outer layer and modulate the smaller structures
residing near the wall (Brown & Thomas 1977; Ganapathisubramani et al. 2012; Lozano-
Durán & Jiménez 2014). This modulation has been confirmed also in the case of drag-
reducing flows (see for example Touber & Leschziner 2012). Those among the present
results which are computed in small computational domains obviously do not account for
the large structures, that at Reτ = 1000 already carry a non-negligible contribution to
Reynolds stresses and hence to turbulent drag (Ganapathisubramani et al. 2003). This
explains the significant deviations of the values of Cf from the correct value observed
for the uncontrolled flow. Nonetheless, the nearly correct prediction of changes in Cf ,
i.e. drag reduction, via small-box simulations indicates that the large outer structures do
not significantly interfere with the working mechanism of wall-based strategies for drag
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reduction. The control action takes place at the wall and targets turbulence in the very
vicinity of the wall, and the largest eddies which attach to the wall (Lozano-Durán &
Jiménez 2014) perceive a modified inner layer with a lower mean shear. In other words, the
fact that the near-wall region contributes progressively less to drag is already accounted
for in the friction law. The present results thus blend nicely with the result, presented by
Iwamoto et al. (2005), that artificially removing the turbulent fluctuations in a thin wall
layer of constant thickness when measured in inner units produces a reduction of friction
which is unexpectedly robust with respect to the increase in Re. There is thus no need
to control the outer structures directly to achieve drag redution at high Re, although of
course being able to do so would yield additional benefits.
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Hoyas, S. & Jiménez, J. 2008 Reynolds number effects on the Reynolds-stress budgets in
turbulent channels. Phys. Fluids 20, 101511/8.

Hurst, E., Yang, Q. & Chung, Y.M. 2014 The effect of Reynolds number on turbulent drag
reduction by streamwise travelling waves. J. Fluid Mech. 759, 28–55.

Iwamoto, K., Fukagata, K., Kasagi, N. & Suzuki, Y. 2005 Friction drag reduction achiev-
able with near-wall manipulation at high Reynolds numbers. Phys. Fluids 17 (011702),
4.
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Lozano-Durán, A. & Jiménez, J. 2014 Time-resolved evolution of coherent structures in
turbulent channels: characterization of eddies and cascades. J. Fluid Mech. 759, 432–471.

Luchini, P. 1996 Reducing the turbulent skin friction. In Computational Methods in Applied
Sciences 1996 (ed. Desideri et al.). Wiley.

Luchini, P., Manzo, F. & Pozzi, A. 1991 Resistance of a grooved surface to parallel flow and
cross-flow. J. Fluid Mech. 228, 87–109.

Luchini, P. & Quadrio, M. 2006 A low-cost parallel implementation of direct numerical
simulation of wall turbulence. J. Comp. Phys. 211 (2), 551–571.

Mishra, M. & Skote, M. 2015 Drag reduction in turbulent boundary layers with half wave
wall oscillations. Math. Prob. Engineering 2015, 253249.
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Appendix

In §4.2 equations (4.7) and (4.8) reciprocally linking drag reduction, the friction coeffi-
cient and Re have been deduced under the assumption that the von Kármán constant k
is independent upon Re, and the intercept B1 is negligible for channel flows. The validity
of these assumptions can be verified by measuring k, B and B1 for the whole set of 20
large-box simulations by fitting the log-law (4.4) to the mean velocity profiles shown in
figure 10. The results are summarized in Table 2.
The extrema of the least-squares fitted region in wall-normal direction are chosen in

such a way that the width of the fitted region is as large as possible, while keeping a
correlation coefficient r2 ≥ 0.9995 (where r2 = 1 means perfect fit). The same procedure
was employed by Lee & Moser (2015) with r2 = 0.9999 at Reτ = 5186. The present,
slightly lower threshold for r2 descends from the lower Re, which implies a shorter loga-
rithmic region. The lower bound of the fit is set at least ten wall units past the relative
minimum of the diagnostic function y+d 〈u〉+ /dy+. Note that choosing the range for this
curve fit is somewhat arbitrary (Lee & Moser 2015).
The near-wall intercept B is a function of k and is very sensitive to small variation

thereof. Thus, small uncertainties on k due to the arbitrariness of the log-region range
strongly affect B and make its measure not readily comparable among different simu-
lations. Therefore, the numerical value of k in the controlled cases is kept equal to the
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Full-size simulations at Constant Flow Rate (CFR)

Reτ Reb κ+ ω+ k B∗ B∗

1 R δR

199.9 6361 - - 0.390 5.151 -0.29 - 0.003
173.3 6361 0 0.0838 0.390 8.351 -0.32 0.248 0.003
184.1 6361 0 0.0251 0.386 6.965 -0.30 0.151 0.003
155.1 6361 0.01 0.0238 0.390 11.305 -0.32 0.397 0.004
213.0 6361 0.01 0.12 0.386 3.904 -0.29 -0.135 0.006

998.7 39990 - - 0.386 4.494 0.26 - 0.003
905.7 39990 0 0.0838 0.386 6.885 0.26 0.178 0.002
955.2 39990 0 0.0251 0.378 5.560 0.25 0.085 0.003
848.9 39990 0.01 0.0238 0.386 8.665 0.10 0.277 0.005
1039.2 39990 0.01 0.12 0.385 3.484 0.46 -0.083 0.003

Full-size simulations at Constant Pressure Gradient (CPG)

Reτ Reb κ∗ ω∗ k B∗ B∗

1 R δR

200 6358 - - 0.390 5.187 -0.30 - 0.003
200 7356 0 0.0838 0.387 7.940 -0.31 0.253 0.002
200 6827 0 0.0251 0.381 6.487 -0.31 0.133 0.004
200 5864 0.01 0.0238 0.390 9.675 -0.30 0.364 0.002
200 5864 0.01 0.12 0.388 3.849 -0.32 -0.176 0.003

1000 39992 - - 0.387 4.525 0.25 - 0.006
1000 44119 0 0.0838 0.386 7.711 0.10 0.178 0.005
1000 41635 0 0.0251 0.380 5.371 0.27 0.077 0.001
1000 46627 0.01 0.0238 0.388 7.993 0.09 0.264 0.006
1000 38512 0.01 0.12 0.390 3.735 0.28 -0.078 0.006

Table 2. Values of the von Kármán constant k, the intercepts B∗ and B∗

1 , the drag reduction
rate R and its uncertainty δR, for the 20 large-box cases detailed in table 1.

uncontrolled value while the validity of the aforementioned assumption is verified indi-
rectly by monitoring that the change in k is smaller than 0.01. In fact, the value of k
is known to weakly influence the way the logarithmic and defect-laws (4.3) and (4.4)
approximate the mean velocity profile (Del Álamo et al. 2004).
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