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Previous studies investigating the effect of aspect ratio (AR) for insect-like regimes
have reported seemingly different trends in aerodynamic forces, however no detailed
flow observations have been made. In this study, the effect of AR and Reynolds
number on the flow structures over insect-like wings is explored using a numerical
model of an altered fruit fly wing revolving at a constant angular velocity. Increasing
the Reynolds number for an AR of 2.91 resulted in the development of a dual leading-
edge vortex (LEV) structure, however increasing AR at a fixed Reynolds number
generated the same flow structures. This result shows that the effects of Reynolds
number and AR are linked. We present an alternative scaling using wing span as the
characteristic length to decouple the effects of Reynolds number from those of AR.
This results in a span-based Reynolds number, which can be used to independently
describe the development of the LEV. Indeed, universal behaviour was found for
various parameters using this scaling. The effect of AR on the vortex structures
and aerodynamic forces was then assessed at different span-based Reynolds numbers.
Scaling the flow using the wing span was found to apply when a strong spanwise
velocity is present on the leeward side of the wing and therefore may prove to be
useful for similar studies involving flapping or rotating wings at high angles of attack.
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1. Introduction

Many current micro-air vehicle (MAV) designs have been inspired by nature
as MAV designers wish to match the aerodynamic manoeuvrability, efficiency and
stability of insects and small birds. Despite some progress, the performance of these
MAVs is still inferior to that of natural flyers (Pines & Bohorquez 2006). In order
to bridge this gap in flight performance, further advances in our understanding of the
aerodynamics of flapping and rotating wings is required.

Research into the aerodynamics of insect flight has shown that the presence of a
stable leading-edge vortex (LEV) provides insect wings with additional circulation and
enhanced lift during hovering flight (Ellington et al. 1996; Usherwood & Ellington
2002a; Birch, Dickson & Dickinson 2004). This persistent LEV is a common
occurrence in the insect world, and it has been observed for many species of
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insects (e.g. Ellington et al. 1996; Srygley & Thomas 2002; Liu & Aono 2009).
Studies investigating the velocity field around flapping wings have shown the three-
dimensional structure of the LEV and have highlighted the presence of strong
spanwise flow from wing root to tip (Birch & Dickinson 2001; Birch et al. 2004;
Poelma, Dickson & Dickinson 2006). Lentink & Dickinson (2009b) suggest that it is
the propeller-like rotation of the wing that stabilizes the LEV to the wing’s surface,
although Jones & Babinsky (2010, 2011) have observed unstable LEVs in their semi-
submersed waving wing experiments.

Despite the variety of wing shapes seen in nature, seemingly little work has been
aimed at understanding the effect that wing geometry has on the optimal aerodynamic
performance of these insects. One critical wing design parameter for large aircraft is
wing aspect ratio (AR), however the effect of this parameter for flapping and rotating
wings in insect-like flight regimes is not well understood. Noticeably, different insects
have different wing aspect ratios and often seemingly contradictory results have been
reported in the literature. In some cases, little change in forces has been observed
(Usherwood & Ellington 2002b; Luo & Sun 2005), whilst in others there have been
clear trends (Tsuzuki, Sato & Abe 2007; Ansari, Knowles & Zbikowski 2008). Indeed,
it is still unclear whether AR is a significant design parameter for optimal aerodynamic
performance in insect flight.

Furthermore, no observations have been made to highlight potential changes in
the LEV’s structure with AR and to link these changes to the aerodynamic forces.
It has been suggested that it is the centripetal and Coriolis accelerations resulting
from the low-Rossby-number rotation that are required for LEV stability, and that
the Rossby number (Ro) is equal to the wing’s AR for hovering flight (Lentink &
Dickinson 2009b). This suggests that there should indeed be a change in the LEV’s
characteristics with AR as low-aspect-ratio wings would be required for the LEV to be
stable. However, the manner in which the LEV structure changes with AR is unknown.

This paper describes an investigation into the effect of AR on rotating wings at
insect Reynolds numbers. A numerical model of a fruit fly wing undergoing constant
velocity rotation is first presented and the change in the structure of the LEV
with Reynolds number is highlighted. This model is then extended to different AR

wings and analysis of the vortex structures reveals that AR has the same effect as
the Reynolds number on the LEV. An alternate scaling parameter is presented that
decouples the effect of AR and Reynolds number. Finally, the applications to which
this new scaling parameter can be applied are explored.

2. Numerical method

The flow over a revolving wing is modelled by the Navier–Stokes equations cast in
a non-inertial rotating frame of reference and combined with the continuity constraint,

∂ρuabs

∂t
+ ∇ · (ρuuabs) = −∇p + ∇ · τ − ρΩ × u − ρΩ × (Ω × r), (2.1)

and

∇ ·u = 0. (2.2)

Here ρ is the fluid density, u and uabs are the velocity vectors in rotating and absolute
frames, respectively, p is the pressure, Ω is the rotational velocity vector, r is the
location vector and τ is the stress tensor, which is defined as

τ = µ(∇u + (∇u)T − 2

3
I∇ ·u), (2.3)
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FIGURE 1. Schematic of the fly wing geometry and coordinate system.

where µ is the fluid viscosity and I is the identity matrix. The last two terms in (2.1)

are the Coriolis and centrifugal momentum source terms due to the rotating frame. In

order to minimize numerical error an alternate rotation model was used whereby the

velocity in the advection and transient terms is modified to involve the absolute frame

velocity rather than the relative frame velocity, hence the use of uabs in (2.1). The

angular acceleration of the fluid is included in the transient term as uabs = u + Ω × r.

These equations were solved directly using the commercial finite-volume-based code

ANSYS CFX. The formally second-order accurate specified blend factor scheme (with

β = 1) was used for spatial discretization along with a second-order backward Euler

scheme for the time evolution terms.

The wing planform shape used in this study was based on a generic fruit fly

wing (Drosophila melanogaster). This planform was chosen as it has been studied

extensively both computationally (Liu & Aono 2009; Kweon & Choi 2010) and

experimentally (Birch & Dickinson 2001; Birch et al. 2004; Poelma et al. 2006;

Lentink & Dickinson 2009b). The wing was modelled as a rigid flat plate with square

edges with a thickness of 3 % of the mean chord. A schematic of the fruit fly wing

geometry and the coordinate system used in the computation is shown in figure 1.

Initially the wing was scaled to have a wing span of 2.47 mm and an AR of 2.91,

similar to that of an actual fly’s wing (Zanker & Gotz 1990). This wing shape was

then stretched to produce wings of different aspect ratios to reflect the variety seen in

nature (for examples see Ellington 1984; Shyy et al. 2010).

A simplified kinematic motion was prescribed for the wing to simulate the

vortex structures that are formed during the mid-stroke of a typical insect flapping

cycle without the complication of wing rotation and reversal. The kinematic motion

consisted only of a rotation about the wing’s base at a constant angle of attack of 45◦.

The wing was initially at rest and was accelerated over a period of t = 0.084T before

rotating at a constant rotational velocity Ω . An impulsively started wing rotating about

its base has been shown to be a good approximation to the beginning of the down

stroke of a typical insect flapping cycle (Poelma et al. 2006; Lentink & Dickinson

2009b) where the acceleration period typically ranges between 6 and 10 % of the

overall simulation time (Dickinson, Lehmann & Sane 1999; Birch et al. 2004; Lentink

& Dickinson 2009b). This kinematic motion is described by (2.4) where T is the total
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Re = 120 Re = 1500

Mesh Surface
size

Elements
(million)

CL GCI
(%)

CD GCI
(%)

CL GCI
(%)

CD GCI
(%)

1 0.02857c̄ 1.538 1.540 — 1.620 — 1.835 — 1.720 —
2 0.01449c̄ 5.490 1.543 0.251 1.609 0.066 1.842 0.546 1.704 0.564
3 0.00725c̄ 27.36 1.545 0.094 1.608 0.002 1.837 0.258 1.698 0.134

TABLE 1. Mesh resolution study.

simulation time,

Ωy(t) =







1

2
Ω

(

1 − cos
(

πt

0.084T

))

, t < 0.084T

Ω, t > 0.084T.
(2.4)

The simulation was stopped after the wing had completed 270◦ of rotation. As will
be shown in § 3.2 this allowed ample time for a quasi-steady flow state to form. The
Reynolds number (Re) was calculated using the velocity at the radius of gyration (Urg)
and the mean chord length. Similarly, the lift and drag coefficients were calculated as
CL = 2L/ρU2

rgS and CD = 2D/ρU2
rgS, respectively, where S is the wing area. Altering

the wing’s aspect ratio either by chord or by span also varies the Reynolds number.
Changing the wing’s span alters Urg as the radius of gyration is altered, and changing
the wing’s chord directly affects the Reynolds number. Therefore, the fluid viscosity
was adjusted to maintain a constant Reynolds number for each AR wing.

The wing was located in the centre of a cylindrically shaped computational domain
whose axis was coincident with the rotation axis of the wing, whose diameter was
18 times the wing span, and whose length was 48 times the average wing chord.
The boundary condition on the outer cylindrical surface was a free-slip wall condition
(Un = 0), while for the top and bottom circular surfaces fluid was allowed to flow into
and out of the domain with the average pressure on each boundary held at zero gauge
pressure. A no-slip boundary condition was applied at the wing’s surface.

The computational domain was meshed using an unstructured tetrahedral mesh with
a region of triangular prism elements near the wing’s surface. To explore spatial
resolution effects, three grids were generated such that the element size on the wing’s
surface and in the surrounding fluid zones were successively halved. The calculated
aerodynamic force coefficients are shown in table 1 for each mesh at Reynolds
numbers of 120 and 1500. The grid convergence index (GCI) method was used to
estimate the numerical error (Roache 1998). Mesh 2 had a GCI of less than 0.6 % and
was determined to be adequate. The temporal error was estimated in a similar way and
was found to have a GCI of 0.15 % for CL and CD with a time step of 0.00185T .

3. Results and discussion

3.1. Reynolds number effects for a fly wing

Simulations of the fruit fly wing (AR = 2.91) at various Reynolds numbers were used
to validate the numerical model against similar experimental investigations. Results at
Reynolds numbers of 120 (fruit fly scale) and 1500 (house fly or bee scale) were
used to compare to the air bubble flow visualizations of Lentink & Dickinson (2009b).
To visualize the flow features in a similar manner, a particle tracking model was
used to model the behaviour of neutrally buoyant particles ejected along the leading
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FIGURE 2. (Colour online) Comparison of numerical particle tracking flow visualization
results at (a) Re = 120 and (c) Re = 1500 with air bubble flow visualizations of Lentink &
Dickinson (2009b) (reproduced with permission) at (b) Re = 110 and (d) Re = 1400.
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FIGURE 3. (Colour online) Development of vortex structures over a fruit fly wing (AR =
2.91) with Reynolds number (a) Re = 120, (b) Re = 300, (c) Re = 750 and (d) Re = 1500.
Vortex structures are visualized using surfaces of constant Q criterion and are coloured by
spanwise vorticity (ωz) to indicate direction; blue (dark grey) is negative and red (light grey)
is positive. Images show the instantaneous flow structures at 270◦ of rotation and are taken
perpendicular to the wing surface.



Re and AR effects on the leading-edge vortex for rotating insect wings 171

and trailing edges of the wing. These results are compared in figure 2 and show
good agreement with the experimental visualizations at both Reynolds numbers. At
a Reynolds number of 120 the LEV does not form a tight spiral (as for the higher-
Reynolds-number cases) and is attached to the wing along its span to approximately
the 70 % span position, at which point it joins with the tip vortex as it separates from
the wing. Figure 3(a) shows a more detailed view of the vortex structures at this
Reynolds number and shows that the LEV grows in size in the spanwise direction.
In addition, the trailing-edge vortex separates from the wing slightly closer to the
wing tip, thus forming a pair of counter-rotating vortices in the wake. This vortex
structure was also observed by Poelma et al. (2006) in their particle image velocimetry
experiments on a flapping fruit fly wing.

At a Reynolds number of 1500, figure 2(c) and (d) show a tight spiral LEV which
breaks down at approximately 60 % span, resulting in an unsteady region of flow
near the wing tip. Figure 2(c) also shows a second vortex structure closer to the
leading-edge which is not seen in figure 2(d), however this dual LEV system was
observed by Lentink & Dickinson (2009b) towards the end of the wing’s stroke at a
Reynolds number of 1400. A dual leading-edge vortex structure has been observed by
Srygley & Thomas (2002) over butterfly wings during wing beats that resulted in very
large accelerations of the butterfly and has been shown to exist under certain Reynolds
number conditions and angles of attack for a range of wing shapes (Lu, Shen & Lai
2006; Phillips, Knowles & Lawson 2010).

Figure 3 shows the development of this dual LEV structure with Reynolds number,
where the vortices are visualized using surfaces of constant Q criterion. The Q value
is the second invariant of the velocity gradient tensor (Hunt, Wray & Moin 1988)
and is a measure of the magnitude of rotation rate relative to strain rate in a fluid.
Positive values of Q represent areas where the local magnitude of rotation in the fluid
dominates relative to strain and therefore can be used to highlight vortical structures.
Figure 3 shows that as the Reynolds number increases, the iso-Q surfaces near the
leading edge split, resulting in two co-rotating vortex structures (labelled LEV 1 and
2) separated by a smaller counter-rotating vortex (labelled SV). At high Reynolds
numbers the vortex structure furthest away from the leading edge of the wing (LEV 2)
breaks down near to the wing tip.

The development of this dual vortex structure with Reynolds number is further
highlighted in figure 4, which shows the change in spanwise vorticity patterns at 50 %
span. At a Reynolds number of 120 a single region of strong negative (blue/dark grey)
vorticity is located near the leading-edge of the wing. As the Reynolds number is
increased a region of negative vorticity develops further downstream of the leading
edge near to the wing’s surface. At first (Re = 300) these two regions of negative
vorticity are merged together forming a large region of vorticity near the leading edge.
As the Reynolds number is increased further (Re = 750 and 1500) the strength of the
vorticity in the region furthest downstream of the leading edge increases and the two
regions split to form two distinct vortex cores. As this dual vortex structure forms,
the proximity of LEV 2 to the wing’s surface induces a flow near the wall. When
the Reynolds number is increased and the strength of LEV 2 increases, this boundary
layer separates due to the adverse pressure gradient generated by LEV 2 and forms
a secondary region of positive vorticity between the two regions of negative vorticity.
The formation of this counter-rotating vortex is similar to the vortex structure that
forms for a vortex ring impacting a wall (Walker et al. 1987). Furthermore, the overall
change in vorticity pattern with Reynolds number is very similar to that observed by
Lu et al. (2006) for an AR = 5.8 flapping wing at 60◦ angle of attack.
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FIGURE 4. (Colour online) Contours of spanwise vorticity (ωzR/Urg) at 50 % span for
Reynolds numbers of (a) 120, (b) 300, (c) 750 and (d) 1500. Solid lines are contours of
constant Q criterion. Images show the instantaneous flow structures at 270◦ of rotation.

The vortex centre identification algorithm presented by Graftieaux, Michard &
Grosjean (2001) was employed to calculate the location of the LEV axis at various
spanwise locations. This method calculates a scalar field, γ1, which is a measure of the
relative rotation about each grid point constrained to a definable interrogation window.
The discrete scalar function is defined as

γ1(P) =
1

N

∑

M

(RPM ∧ UM) · z

‖RPM‖ · ‖UM‖
=

1

N

∑

M

sin(θM), (3.1)

where N is the number of grid points, M, within a bounded square region centred on
grid point P. γ1 is equivalent to the ensemble average of sin(θM), where θM represents
the angle between the velocity vector UM and the radius vector RPM. The magnitude
of γ1 is bounded by one and is calculated on two-dimensional (2D) velocity planes
in the chordwise direction, where z is the unit normal vector of the plane. The centre
of a vortex core is identified as a local maximum of the |γ1| field. The location of
each of the vortex centres across the span are plotted in figure 5(a) and highlight that
the position of the dual vortex structure is independent of Reynolds number. LEV 1
largely follows the shape of the leading edge, only deviating slightly as the spanwise
position increases, while LEV 2 moves away from the leading edge as it tracks across
the wing.
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FIGURE 5. (Colour online) LEV plots of an AR = 2.91 wing at various Reynolds numbers:
(a) position of the vortex axis plotted in wing coordinates; and (b) the circulation (Γz/UrgR) of
the co-rotating vortices. Solid black lines in (a) are the average vortex positions and the grey
line is the wing outline. Solid lines in (b) represent regions where vortex cores are merged and
therefore are the combined circulation of the dual co-rotating vortices. Dotted lines show the
circulation of the individual vortices after they have split. For both figures, open symbols are
LEV 1 and filled symbols are LEV 2.

The circulation of the dual vortex structure was calculated using the Graftieaux et al.

(2001) vortex core identification algorithm, in which the previously defined scalar field
is modified to take into account the local advection velocity UP around P. The new
field is

γ2(P) =
1

N

∑

M

[RPM ∧ (UM − UP)] · z

‖RPM‖ · ‖UM − UP‖
, (3.2)

where |γ2| is again bounded by one. Regions where |γ2| > 2/π are locally dominated
by rotation and therefore represent a vortex core. The spanwise vorticity within these
regions was integrated to calculate the circulation of the dual LEV system which is
plotted in figure 5(b). The solid lines represent regions where the two vortex cores
are merged together and therefore represents the combined circulation of the dual
co-rotating vortices. Dotted lines show the circulation of the individual vortices after
they have split. Figure 5(b) shows that the combined circulation initially increases
approximately linearly with span. Except for a Reynolds number of 120, where only
LEV 1 is present, the two vortex cores split at some point along the span and this
point moves towards the wing root with increasing Reynolds number. After the split,
the circulation of LEV 2 is fairly constant with span until it breaks down, which
indicates that after the two vortex cores separate, vorticity is no longer fed into the
second vortex. The circulation of LEV 1 continues to grow approximately linearly
with span after the split up to ∼70 % span.

The spanwise velocity distribution over the wing is also influenced by Reynolds
number. Birch et al. (2004) found that an increase in Reynolds number caused the
peak in the spanwise velocity to strengthen and shift to be within the core of the LEV.
The development of the spanwise velocity with Reynolds number for our simulations
is shown in figure 6. At a Reynolds number of 120, a broad region of positive (root
to tip) spanwise flow extends across the wing. While there is some positive velocity
within the core of the LEV the maximum spanwise flow is located behind the LEV.
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FIGURE 6. Contours of spanwise velocity (w/Urg) at 50 % span for Reynolds numbers of (a)
120, (b) 300, (c) 750 and (d) 1500. Solid lines are contours of constant Q criterion. Images
show the instantaneous velocity fields at 270◦ of rotation.

This spanwise velocity pattern is similar to those observed by Birch et al. (2004) and
Poelma et al. (2006). As the Reynolds number increases, and the dual vortex structure
develops, the spanwise velocity increases within the core of the downstream vortex
(LEV 2) such that the peak in spanwise velocity shifts to be within LEV 2. At high
Reynolds numbers there is still significant spanwise velocity in the region behind the
LEV system, however the spanwise flow within the core of LEV 1 is relatively weak.

3.2. Temporal development of flow structures

In this section the variation of the aerodynamic forces and flow structures throughout
the wing’s motion are described. An example of the change in lift coefficient with
time is compared with the experimental force measurements of Birch et al. (2004) in
figure 7. Here, it should be noted that the current computational fluid dynamics (CFD)
model is not intended to be an exact replica of their experiment. Nonetheless, the
variation of the aerodynamic force is consistent with previously reported aerodynamic
forces for impulsively started rotating wings (Dickinson et al. 1999; Birch et al.

2004), where there is an initial transient period in which the lift coefficient reaches
a maximum, which is followed by a lift minimum, before the lift coefficient recovers
and there is a period of approximately constant force production. The average lift
coefficient is approximately 9 % lower than the average measured lift coefficient for
both Reynolds numbers, while the maximum lift coefficient is 12 and 18 % lower for
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FIGURE 7. Lift coefficient time history for an AR = 2.91 wing compared with the
experimental results of Birch et al. (2004).

FIGURE 8. (Colour online) Temporal vortex structure development over a fruit fly wing
(AR = 2.91) at Re = 120. Vortex structures are visualized using surfaces of constant Q
criterion and are coloured by spanwise vorticity (ωz) to indicate direction; blue (dark grey)
is negative and red (light grey) is positive. Images show the instantaneous flow structures
throughout the wing’s rotation and are taken perpendicular to the wing surface.

the high and low Reynolds numbers, respectively. The large steady lift coefficients that
are produced after the initial transient period indicate that a quasi-steady flow regime
has developed where the LEV remains attached to the wing. To explore this further,
the development of the vortex structures near the wing’s surface at six time instances
throughout the simulation are shown in figures 8 and 9.

Figure 8 shows the iso-Q surfaces during the wing’s motion for a Reynolds number
of 120. At the beginning of the wing’s motion, a horseshoe-shaped vortex is formed
which consists of the LEV, tip vortex and trailing-edge vortex. As the wing continues
to rotate, this vortex grows in size and the trailing-edge vortex is shed from the
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FIGURE 9. (Colour online) Temporal vortex structure development over a fruit fly wing
(AR = 2.91) at Re = 1500. Vortex structures are visualized using surfaces of constant Q
criterion and are coloured by spanwise vorticity (ωz) to indicate direction; blue (dark grey)
is negative and red (light grey) is positive. Images show the instantaneous flow structures
throughout the wing’s rotation and are taken perpendicular to the wing surface.

wing. Noticeably, the LEV enlarges towards the wing tip which results in a three-
dimensional (3D) vortex structure. This flow structure development is similar to that
computed for the initial part of the downstroke of a hovering fruit fly (Aono, Liang
& Liu 2008). At t/T = 0.267 a second trailing-edge vortex can be seen to detach
from the wing on the wing tip side of the tip vortex. By t/T = 0.363 the growth
of the LEV has stopped and the structure of the LEV remains steady for the rest
of the simulation. The second trailing-edge vortex continues to develop in the wake,
forming a counter-rotating vortex pair with the tip vortex, however this does not have a
significant impact on the aerodynamic forces.

The development of the vortex structures at a Reynolds number of 1500 is shown
in figure 9. Initially, a similar horseshoe-shaped vortex structure is formed as was seen
at a Reynolds number of 120. At t/T = 0.178 the trailing-edge vortex also separates
from the wing in a similar manner, however here the iso-Q surface representing the
LEV begins to split near the tip of the wing. By t/T = 0.267 a clear dual LEV
structure has formed and by t/T = 0.363 LEV 2 has burst, resulting in smaller-scale
structures forming. These smaller-scale structures are advected into the wake as the
wing’s motion continues, however the LEV structure appears to be fully developed and
consistent in size and position from t/T = 0.363.

As is shown by both the lift coefficient time history (figure 7) and the vortex
structure development (figures 8 and 9), a quasi-steady flow state has developed for the
vortex structures immediately near the wing by approximately t/T = 0.36, or 90◦ of
wing rotation. This period of flow development is similar to that reported by Poelma
et al. (2006).

3.3. Effect of AR at constant Reynolds number

The fruit fly wing simulation at a Reynolds number of 300 was used as the basis for
an initial investigation into the effect of AR. The wing was scaled to create wings of
different aspect ratios while the fluid viscosity was adjusted to maintain a constant
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FIGURE 10. (Colour online) Variation of the vortex structures for different AR wings at
Re = 300: (a) AR = 2.91; (b) AR = 5.1; (c) AR = 7.28. Vortex structures are visualized
using surfaces of constant Q criterion and are coloured by spanwise vorticity (ωz) to indicate
direction; blue (dark grey) is negative and red (light grey) is positive. Images show the
instantaneous flow structures at 270◦ of rotation and are taken perpendicular to the wing
surface.

Reynolds number. Figure 10 visualizes the vortex structures using surfaces of constant
Q criterion and shows a significant change in the vortex structures with AR.

Increasing the AR results in the LEV structure evolving into dual vortices in a
similar manner to that observed in § 3.1 for increasing Reynolds number. This can
be seen in figure 10 by the splitting of the iso-Q surface near the leading edge
into two co-rotating vortices and the formation of a secondary counter-rotating vortex
as AR is increased. The development of the dual LEV system is also seen in the
time-averaged contours of spanwise vorticity at 50 % span shown in figure 11. Here
the same changes in flow patterns are observed with AR as was observed to occur with
Reynolds number, namely the splitting of the negative vorticity region into two distinct
vortex cores, an increase in strength of vorticity within the core of the downstream
vortex and the formation of a region of positive vorticity between the two co-rotating
vortex cores.
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FIGURE 11. (Colour online) Contours of time-averaged spanwise vorticity (ωzR/Urg) at 50 %
span for wings at Re = 300: (a) AR = 2.91; (b) AR = 5.1; and (c) AR = 7.28. Solid lines are
contours of constant Q criterion. Flow field has been averaged over the quasi-steady period
(0.36 6 t/T 6 1.0).

In addition to the formation of dual LEVs, higher AR wings have larger LEVs in
proportion to the wing chord. Consequently, the trailing edge of the wing is closer
to the core of the downstream vortex (LEV 2) and this appears to result in the LEV
interacting with the vorticity from the underside of the wing and the generation of
unsteady vortex shedding out near the tip of the wing. This can be seen in figure 10
by the increase in complexity of the vortex structures in the wake with AR. A more
detailed discussion of this effect of AR is presented in § 3.4.2.

3.4. Wing span as a characteristic length

The striking similarity between the change in flow structures with AR and those with
Reynolds number indicates that the two sets of results are linked, and may be scaled
in an alternative manner so as to yield similar vortex structures for a range of aspect
ratios. Figure 6 gives a clue as to how these results may be scaled differently. Figure 6
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shows the spanwise velocity that exists both within the core of the LEV and in the
region immediately behind the wing. This velocity component dominates in this region
and allows the LEV to grow in size (figure 3) and strength (figure 5b) along the span
of the wing by convecting vorticity towards the wing tip (Maxworthy 1979; Ellington
et al. 1996; Lentink & Dickinson 2009b). Hence, the key characteristic of the wing
shape seems to be the wing span and not the wing chord.

We therefore propose the hypothesis that the wing span is a more useful
characteristic length to use in the scaling of flapping and rotating wings at high
angles of attack. In order to test this hypothesis we first non-dimensionalize the
Navier–Stokes equation (3.3) using the method outlined by Lentink & Dickinson
(2009a),

ρ
Du

Dt
+ ρΩ̇ × r + ρΩ × (Ω × r) + ρ2Ω × u = −∇p + µ∇2

u. (3.3)

Here we use the same scaling parameters as Lentink & Dickinson (2009a) except that
we replace the average wing chord (c) with the wing span (R) as the characteristic
length, thus the scaled variables become:

u
∗ =

u

Utip

, t∗ =
Utipt

R
, ∇

∗ = R ·∇, Ω̇
∗ =

Ω̇

Ω
, (3.4a,b,c,d)

Ω
∗ =

Ω

Ω
, r

∗ =
r

R
, p∗ =

p

p0

, (3.4e,f,g)

where Utip is the wing tip velocity, p0 is the ambient pressure, Ω̇ is the angular

acceleration vector and Ω̇ is the time-averaged angular acceleration amplitude.
Substituting (3.4) into (3.3) and normalizing it by ρU2

tip/R results in the following
dimensionless equation,

Du

Dt
+

Ω̇R2

U2
tip

Ω̇ × r +
Ω2R2

U2
tip

Ω × (Ω × r) +
ΩR

Utip

2Ω × u

= −
p0

ρU2
tip

∇p +
µ

ρUtipR
∇2

u, (3.5)

where * is omitted for clarity. Equation (3.5) shows that when the Navier–Stokes
equation is scaled in this way, the Reynolds number becomes based on the wing span
(ReR = ρUtipR/µ). Furthermore, the centripetal and Coriolis accelerations scale with

1/Ro2 and 1/Ro, respectively, where Ro = Utip/ΩR is the Rossby number. Lentink &
Dickinson (2009b) propose that these rotational accelerations mediate LEV stability
and, therefore, if this argument is true, then our new definition of Rossby number
should describe LEV stability and the span-based Reynolds number should determine
the structure of the LEV. The effects of these two parameters are investigated below.

3.4.1. Scaling of results using a span-based Reynolds number
Simulations of the fruit fly wing scaled to different aspect ratios were re-run with

the fluid viscosity adjusted to match the span-based Reynolds number for each wing.
The results of these tests were assessed to determine the dependence of the LEV
structure on AR and span-based Reynolds number. Figure 12 shows a comparison of
the vortex structures over different AR wings for two span-based Reynolds numbers
of 613 and 7667. These two Reynolds numbers are equivalent to Re = 120 and 1500
for an AR of 2.91. Comparing the flow structures in this way shows a stronger
correlation of the vortex structures between different AR wings at the same span-based
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FIGURE 12. (Colour online) Vortex structures over different AR wings at span-based
Reynolds numbers of (a–c) ReR = 613 and (d–f ) ReR = 7667: (a,d) AR = 2.91; (b,e)
AR = 5.1; (c,f ) AR = 7.28. Vortex structures are visualized using surfaces of constant Q
criterion and are coloured by spanwise vorticity (ωz) to indicate direction; blue (dark grey)
is negative and red (light grey) is positive. Images show the instantaneous flow structures at
270◦ of rotation and are taken perpendicular to the wing surface.

Reynolds number. For ReR = 613 (figure 12a–c), all three wings show a very similar
vortex structure. A single LEV extends along the wing until approximately 70 % span,
where it separates and joins with the tip vortex. Similarly, the iso-Q surfaces for
ReR = 7667 (figure 12d–f ) show similar vortex structures. Here the dual LEV structure
is clearly evident and is well developed for all aspect ratios. Similar consistency in
flow structures was found for intermediate span-based Reynolds numbers between 613
and 7667.

Sectional slices of spanwise vorticity further show the similarity of the LEV
structure for the different AR wings when scaled with the span-based Reynolds number.
At a span-based Reynolds number of 613 (figure 13a–c) all AR wings have a single
region of strong negative vorticity located near the leading edge of the wing, while
at a span-based Reynolds number of 7667 (figure 13d–f ) the dual LEV structure
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FIGURE 13. (Colour online) Contours of time averaged spanwise vorticity (ωzR/Urg) at
50 % span for different AR wings at span-based Reynolds numbers of (a–c) ReR = 613
and (d–f ) ReR = 7667: (a,d) AR = 2.91; (b,e) AR = 5.1; (c,f ) AR = 7.28. Solid lines are
contours of constant Q criterion. The flow field has been averaged over the quasi-steady
period (0.36 6 t/T 6 1.0).

consisting of two regions of negative vorticity separated by a region of positive
vorticity can be seen.

The spanwise position of the point at which the vortex core identification algorithm
(Graftieaux et al. 2001) recognizes two separate vortex cores is plotted against both
the chord-based and span-based Reynolds numbers in figure 14. This shows that as the
Reynolds number is increased the spanwise position at which two distinct vortex cores
can be observed shifts towards the wing root. This can therefore be used as a measure
of how much the dual LEV structure has developed for each wing. Figure 14(a) shows
that the ‘splitting’ point depends on both the chord-based Reynolds number and the
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FIGURE 14. Normalized spanwise position (r/R) of the point at which two individual vortex
cores are observed as a function of (a) Re and (b) ReR.
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FIGURE 15. Normalized spanwise position (r/R) of the breakdown point of LEV 2 as a
function of (a) Re and (b) ReR.

wing AR. However, when these results are plotted against the span-based Reynolds

number (figure 14b) the ‘splitting’ point becomes independent of the wing AR, as

shown by the collapsing of the data onto effectively a single curve. This further

demonstrates that the development of the dual LEV system is characterized by the

span-based Reynolds number.

As shown in figure 12, at high Reynolds numbers LEV 2 breaks down at some point

along the span. Vortex breakdown is an abrupt change in the structure of a vortex with

a marked retardation of the flow in the axial direction (Hall 1972). Figure 15 shows

the spanwise location of the breakdown point plotted against both the chord-based and

span-based Reynolds numbers. Here, the breakdown point is estimated as the point

at which the spanwise velocity in the vortex core approaches zero. Figure 15 shows

that as the Reynolds number is increased the burst point shifts towards the wing root

and like the ‘splitting’ point, the spanwise position of the breakdown point can be

described by the span-based Reynolds number for all aspect ratios.
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FIGURE 16. Combined circulation (Γz/UrgR) of dual co-rotating LEVs for different AR
wings at (a) ReR = 613 and (b) ReR = 3833. Note that only one vortex is present for

ReR = 613.
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FIGURE 17. (Colour online) Vortex lines plotted in wing coordinates for aspect ratios of
(a) 2.91, (b) 5.1 and (c) 7.28.

3.4.2. Effect of AR at constant span-based Reynolds number

Our results show that the span-based Reynolds number does indeed describe the
structure of the LEV. Viewing the results in this way also allows the influence of AR

and Reynolds number on the flow structure to be separated. The effect of wing AR on
the flow structures is discussed below.
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FIGURE 18. (Colour online) Time sequence of spanwise vorticity (ωzR/Urg) at 70 % span for
AR = 7.28 and ReR = 3833. Solid lines are contours of constant Q criterion.

Figures 12 and 13 show that as the wing AR is increased the LEV increases in
size relative to the chord length of the wing. At low span-based Reynolds numbers,
when only LEV 1 is present, this does not have a significant impact on the structure
of the LEV, however the circulation of the LEV is reduced for higher aspect ratios
(figure 16a). At higher Reynolds numbers, when the dual LEV structure is present, the
position of LEV 2 is influenced by its proximity to the trailing edge. This can be seen
in figure 17 which shows the vortex centrelines for the LEVs at three aspect ratios. For
high-AR wings LEV 2 tracks across the wing moving away from the leading edge over
the inner part of the wing but is deflected towards the tip when it reaches the trailing
edge. For the AR = 7.28 wing this occurs around mid-span. After LEV 2 has been
deflected it follows the trailing edge of the wing until it separates from the wing near
the tip.

For high aspect ratios, the proximity of LEV 2 to the trailing edge causes LEV
2 to interact with the vorticity from the underside of the wing, which results in a
region of unsteady flow to develop in the outer part of the wing, even before LEV 2
has burst. In fact this interaction seems to suppress the breakdown of LEV 2 as will
be discussed later. An example of when this occurs is for the AR = 7.28 wing at a
span-based Reynolds number of 3833. The instantaneous surfaces of the Q criterion
at 270◦ of rotation are shown in figure 10(c). This figure shows that the vortex
structures are steady over the inner part of the wing, however beyond approximately
50 % span the flow becomes unsteady as indicated by the complex vortex structures in
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FIGURE 19. Spanwise velocity (w/Urg) along the axis of LEV 2 at ReR = 3833.

the wake. It is over this same region of the wing where LEV 2 follows the trailing
edge (figure 17c). To show the fluctuation of the flow out near the wing tip more
clearly the time evolution of the spanwise vorticity at 70 % span for the AR = 7.28
wing at ReR = 3833 is shown in figure 18. Here, the proximity of LEV 2 to the
trailing edge causes the vorticity from the underside of the wing to roll up into a
trailing-edge vortex which is later shed from the wing. LEV 2 also appears to be
pushed up slightly towards the leading edge and therefore interacts with the vorticity
from the leading edge in a similar manner, resulting in negative sign vortices being
shed from the wing. This continual interaction results in unsteady fluctuation of the
flow in the outer part of the wing. Nonetheless, the dual LEV structure can always be
visualized in figure 18. The LEV is therefore not completely shed as it would be for a
purely translating high-aspect-ratio wing, and remains attached to the wing throughout
the wing’s rotation. The LEV does, however, have reduced circulation in this section
of the wing as is shown in figure 16(b).

The interaction between LEV 2 and the vorticity at the trailing edge also appears to
suppress the breakdown of LEV 2. Figure 19 shows the spanwise velocity along the
vortex axis at ReR = 3833. At low aspect ratios, where LEV 2 is not influenced by
the trailing edge, the spanwise flow in the vortex rapidly drops towards zero beyond
the mid-span, which indicates the formation of a stagnation point and the beginning
of vortex breakdown (Hall 1972; Leibovich 1978). However at AR = 7.28 the peak in
spanwise velocity in the vortex core is reduced and beyond 50 % span, where LEV
2 is following the trailing edge of the wing, the spanwise velocity fluctuates around
a mean value and does not rapidly drop towards zero. This results in the suppression
of the breakdown of LEV 2 for high aspect ratios at moderate span-based Reynolds
numbers. When the Reynolds number is high enough such that the breakdown location
occurs at or before the point that LEV 2 meets the trailing edge then LEV still
undergoes vortex breakdown. This is the case for the AR = 7.28 wing at a span-base
Reynolds number of 7667 as shown in figure 12(f ).

Even though LEV 2 does not break down for high-AR wings at moderate span-based
Reynolds numbers, this does not result in higher aerodynamic forces. In fact, the
breakdown of LEV 2 does not seem to affect the lift coefficient greatly at any AR,
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FIGURE 20. Aerodynamic force graphs: (a) average lift coefficient as a function of ReR;
(b) lift coefficient as a function of AR for three span-based Reynolds numbers; (c) average
lift-to-drag ratio as a function of ReR; and (d) lift-to-drag ratio ignoring wing thickness effects.
Aerodynamic forces have been averaged over the quasi-steady period (0.36 6 t/T 6 1.0).

as shown in figure 20(a) by the approximately constant or slightly increasing lift
coefficients for Reynolds numbers above 3000 where vortex breakdown was observed
to occur. Actually, the interaction of LEV 2 with the trailing-edge vorticity results
in reduced LEV circulation and therefore lower lift coefficients for high aspect ratios.
Figure 20(b) shows that for span-based Reynolds numbers of 3833 and 7667 the
lift coefficient is fairly constant up to AR ≈ 5, after which the reduction in LEV
circulation near the wing tip begins to reduce the wing’s lift.

Figure 20(c) shows the lift-to-drag ratio for three wings as a function of span-based
Reynolds number. It shows that for higher span-based Reynolds numbers the lift-to-
drag ratio exceeds one for all wings. This is due to the pressure acting across the
thickness of the wing’s leading edge. To highlight this, figure 20(d) shows the lift-to-
drag ratio after this surface has been removed from the aerodynamic force calculation.
This shows that when the wing’s thickness is ignored the lift-to-drag ratios for each
wing become approximately one for high span-based Reynolds numbers. Therefore,
the variation in lift-to-drag ratio with AR shown in figure 20(c) at these Reynolds
numbers is an artefact of the proportionally thinner wings for higher aspect ratios.

Lower span-based Reynolds numbers represent a different flow regime where only
LEV 1 is present. Here, the increased viscosity results in reduced gradient of
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circulation as a function of wing span for higher aspect ratios (figure 16a). This
reduces the lift capacity across the whole wing and therefore lowers the lift coefficient
for higher aspect ratios (e.g. figure 20b, ReR = 613). At these Reynolds numbers the
skin friction force on the wing is also significant and accounts for between 4 and
8.5 % of the total lift and drag forces depending on the wing AR. Higher-AR wings
have proportionally higher skin friction drag and therefore the lift-to-drag ratio is also
reduced for increased aspect ratios.

3.4.3. Discussion of LEV stability
The ability for the LEV to remain attached to the wing is a key characteristic that

is required in order to maintain high lift throughout the wing stroke. Studies that
have investigated 2D and 3D translating wings at insect Reynolds numbers and high
angles of attack have shown that the LEV is shed after a few chord lengths of travel
(Dickinson & Gotz 1993; Miller & Peskin 2004; Taira & Colonius 2009). However,
studies that have incorporated the rotation of the wing about its base have often found
stable LEVs (Usherwood & Ellington 2002a; Birch et al. 2004; Lentink & Dickinson
2009b). One notable exception to this is that Jones & Babinsky (2010, 2011) did not
observe an attached LEV in their semi-submerged rotating wing experiments. Lentink
& Dickinson (2009b) have proposed that the centripetal and Coriolis accelerations due
to wing rotation mediate LEV stability. In their analysis, these accelerations scale with
the inverse of the Rossby number and therefore they suggest that low Rossby numbers,
of the order of one, are required for the LEV to be stable.

As shown in § 3.4, our scaling of the Navier–Stokes equation using wing span
resulted in the Rossby number being Ro = Utip/ΩR, and for the centripetal and

Coriolis accelerations to scale with 1/Ro2 and 1/Ro, respectively. For a hovering wing,
where Utip = ΩR, this results in a Rossby number of one, which indicates that a stable
LEV is always possible under this flight regime. Furthermore, letting Utip = U∞ + ΩR,
where U∞ is the flight velocity of the insect or MAV, results in Ro = U∞/ΩR + 1.
This suggests that only large flight speeds compared with the velocity due to
rotation would result in high Rossby numbers and therefore an unstable LEV. This
condition is not tested here, however the stability of the LEV under hovering-type
conditions is.

All of our simulations show that the LEV remains attached to the wing when it
is rotating at a constant rotational velocity. We use the words ‘stable’ and ‘attached’
interchangeably to mean that the structure is persistent throughout the wing’s rotation
and is not completely shed as it would be for a purely translating wing. At low
span-based Reynolds numbers only LEV 1 is present and it remains attached to the
wing for the majority of the span for all aspect ratios, only separating near the tip as
it joins with the tip vortex (see figure 12a–c). At higher Reynolds numbers when the
dual LEV structure is present, LEV 1 still remains attached to the wing’s leading edge
despite the flow becoming unsteady out near the tip of the wing (figure 12d–f ). LEV
2 also remains attached to the wing up until the point at which it bursts (figure 12d–f ).
Even at high aspect ratios and moderate Reynolds numbers, when the interaction
between LEV 2 and the vorticity at the leading and trailing edges results in unsteady
flow and vortex shedding, the dual LEV structure remains attached to the wing.

The finding that the LEV is always stable regardless of the aspect ratio or
span-based Reynolds number agrees with the idea that the centripetal and Coriolis
accelerations mediate LEV stability as the Rossby number is one for all our
simulations. However, further investigation is required to confirm the behaviour of
the LEV under forward flight conditions.
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3.4.4. Conditions for which span-based scaling is applicable
Our results have shown that by using the wing’s span rather than chord to scale

the flow around a rotating wing allows the LEV structure to be characterized
by a span-based Reynolds number. This scaling is useful when comparing the
performance of wings with different planform shapes, as it allows each wing to have a
comparable LEV structure. However, under what conditions is this scaling applicable?
As explained above, this scaling comes about due to the strong spanwise velocity that
dominates in the region immediately behind the wing, which allows the LEV to grow
along the span. Therefore, the presence of a spanwise flow is a necessary condition in
order for this scaling to be applied.

The spanwise pressure gradient that results from the wing’s rotation and the
centripetal and Coriolis rotational accelerations are both mechanisms which have
been suggested to drive the spanwise velocity (Ellington et al. 1996; Aono et al.

2008; Lentink & Dickinson 2009b). Clearly the wing’s rotation is important for
both mechanisms. Lentink & Dickinson (2009a) have proposed that moving the wing
further away from its rotation axis is analogous to transitioning from pure rotation to
only translation. It is therefore possible that increasing the offset distance will reduce
the spanwise velocity compared to free stream velocity, which would be equivalent to
increasing forward flight speed for a wing rotating about its base. Hence, the use of
wing span as the characteristic length is likely to not apply for wings with large offset
distances or large forward flight velocities. Another way of viewing this is simply that
the span-based scaling may not apply when the Rossby number is high, as it is a
measure of the wing’s rotation compared with translation.

The strength of the spanwise velocity also seems to be linked to the wing’s angle
of attack. Usherwood & Ellington (2002a) observed for their rotating model hawkmoth
wings that at very low angles of attack there was no spanwise flow. Occasionally
at small angles of attack, around 10◦, the flow separated from the leading edge and
travelled rapidly towards the tip and only at higher angles of attack did a consistent
spanwise velocity form. Lu et al. (2006) also noted that considerable spanwise flows
were only generated for angles of attack above 30◦. Finally, for angles of attack greater
than 30◦, Ozen & Rockwell (2011) observed increasing maximum spanwise velocities
with angle of attack. Consequently, it is possible that the wing’s angle of attack also
plays a role in determining when the span-based scaling can apply.

Many studies in the literature that have observed stable LEVs have reported a 3D
LEV structure along the wing’s span as well as significant spanwise flows on the
leeward side of the wing. In addition, the simplified kinematic motion used in this
study has been shown to be a good approximation of the beginning of a typical
insect’s flapping stroke (Poelma et al. 2006; Lentink & Dickinson 2009b) and thus
generates similar structures to those seen on flapping wings. Therefore, this span-based
scaling has the potential to apply over a wide range of both flapping and rotating
wing flows. The above discussion suggests that the wing’s offset from it’s rotation axis,
angle of attack and flight velocity may all have an influence on when this scaling can
apply, however, the extent to which these parameters influence this requires further
investigation.

3.5. Prediction of vortex breakdown

In the past, several vortex breakdown criteria have been applied to both free swirling
jets and swirling pipe flows in order to predict the onset of vortex breakdown. In
this section we attempt to apply one of these criteria to our data to see whether
it can successfully predict vortex breakdown in a more complex flow. Here we use
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FIGURE 21. Swirl parameter graphs. (a) Variation of the swirl parameter along the wing’s
span for the AR = 2.91 wing at three ReR values. Open circles indicate the spanwise position
of the breakdown point. (b) Maximum swirl parameter as a function of ReR. Open symbols
represent high-AR cases where vortex breakdown is suppressed due to the proximity of LEV 2
to the trailing edge.

the swirl parameter proposed by Billant, Chomaz & Huerre (1998). They derive
the vortex breakdown criterion by considering the case of a free vortex undergoing
conical breakdown in a flow of infinite extent. The Bernoulli equation is applied along
the streamline on the vortex axis and the assumption is made that the stagnation
region is directly connected to the surrounding quiescent fluid and therefore the
pressure at stagnation is equal to the ambient pressure. This results in the following
relation

∫ ∞

0

U2
θ

l
dl

U2
a

=
1

2
, (3.6)

where Ua is the axial velocity on the vortex axis, Uθ is the azimuthal velocity and l

is the radial distance from the vortex axis. To simplify this further the particular case
of a Rankine vortex is considered. Here, Uθ = Ωθ l within the vortex core (l 6 a) and
Uθ = Ωθa2/l outside it (l > a), where Ωθ is the solid body rotational velocity of the
vortex. Thus, this criterion reduces to

Uθmax

Ua

=
1√
2
, (3.7)

where Uθmax is the maximum azimuthal velocity.
This swirl criterion is applied to LEV 2 in figure 21(a), which shows the variation

of this parameter along the span for the AR = 2.91 wing at three span-based Reynolds
numbers. For high span-based Reynolds numbers where LEV 2 is observed to break
down, the swirl parameter rapidly increases near the root of the wing and reaches a
maximum value before reducing more slowly with span until the point of breakdown
(as indicated by the open circles). For these Reynolds numbers, the maximum swirl
criterion that is reached is of a comparable value. For the lowest span-based Reynolds
number, vortex breakdown was not observed to occur and the swirl parameter is
generally much lower across the whole span. Figure 21(b) shows a plot of the
maximum swirl parameter with span-based Reynolds number applied to all cases
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where a dual LEV system was observed over a portion of the wing. It shows that

for all cases where vortex breakdown occurs the maximum swirl parameter exceeded

a value of approximately 0.6, which suggests that this is the critical value for this

flow regime. This critical value is, however, of the order of 15 % lower than the

theoretical limit of 1/
√

2. Nevertheless, the assumptions of an infinite flow extent and

of the stagnation pressure being equal to the ambient pressure, which are made in the

derivation of (3.7), do not apply to this flow regime and could account for the lower

critical value. It is worth noting, however, that maximum swirl values of around 0.6

or higher were calculated for some cases but no vortex breakdown was seen to occur.

These are shown in figure 21(b) by the open symbols and correspond to high aspect

ratios where vortex breakdown is suppressed because of the interaction of LEV 2 with

the trailing edge. Under these conditions the prediction of vortex breakdown failed and

so the application of this breakdown criterion to our data was only partially successful.

4. Conclusion

In this paper we have investigated the flow structures over rotating wings with

different aspect ratios for a range of Reynolds numbers. Simulations of a fruit fly

wing (AR = 2.91) were conducted at Reynolds numbers between 120 and 1500. Over

this Reynolds number range a dual LEV structure was found to develop, where the

LEV split into two co-rotating vortex structures separated by a smaller counter-rotating

vortex. Results at higher aspect ratios revealed that the same dual LEV structure

develops with increasing AR at a fixed Reynolds number.

Analysis of the flow structures suggested that these results could be scaled in an

alternative manner so as to decouple the effects of Reynolds number and AR. We

found that by using the wing’s span as the characteristic length, rather than chord,

that these results could be scaled using a span-based Reynolds number to yield similar

LEV structures for different AR wings. The span-based Reynolds number was able to

independently describe the location where two co-rotating vortices could be observed

as well as the breakdown point of the downstream vortex.

This scaling may prove to be useful when comparing the performance of different

wing shapes and was used in this study to assess the impact of AR on the flow

structures and aerodynamic forces. At low span-based Reynolds numbers higher-AR

wings had reduced LEV circulation and therefore lift coefficients. At high span-based

Reynolds numbers, when the dual LEV structure had developed, it was found that

high-AR wings altered the direction of the downstream LEV near the wing tip. In this

region the LEV follows the trailing-edge of the wing and interacts with the positive

vorticity from underneath the wing, resulting in a region of unsteady flow in the outer

part of the wing and suppression of vortex breakdown of the LEV. This interaction

resulted in reduced LEV circulation and lower lift coefficients for high-AR wings. This

finding shows that low-AR wings do in fact outperform high-AR wings under these

conditions.

The limitations of using wing span as a characteristic length were assessed and

determined to be restricted to flapping and rotating wings revolving about their base

at high angles of attack where a strong spanwise velocity dominates immediately

behind the wing. These conditions are typical of those seen in nature, and hence

this scaling could be applied to investigations involving insects and birds as well as

nature-mimicking MAVs.
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