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Computational fluid dynamics is increasingly used to investigate the inherently complicated8
phenomenon of wave breaking. To date, however, no single model has proved capable of9
accurately simulating the breaking process across the entirety of the surf zone for both10
spilling and plunging breakers. The present study newly considers the Reynolds stress-ω11
turbulence closure model for this purpose, where ω is the specific dissipation rate. Novel12
stability analysis proves that, unlike two-equation closures (at least in their standard forms),13
the stress-ω model is neutrally stable in the idealized potential flow region beneath surface14
waves. It thus naturally avoids unphysical exponential growth of turbulence prior to breaking,15
which has plagued numerous prior studies. The analysis is confirmed through simulation of16
a progressive surface wave train. The stress-ω model is then applied to simulate a turbulent17
wave boundary layer, demonstrating superior accuracy relative to a two-equation model,18
especially during flow deceleration. Finally, the stress-ω model is employed to simulate19
spilling and plunging breaking waves, with seemingly unprecedented accuracy. Specifically,20
the present work marks the first time that a single turbulence closure model collectively:21
(1) avoids turbulence over-production prior to breaking, (2) accurately predicts the breaking22
point, (3) provides reasonable evolution of turbulent normal stresses, while also (4) yielding23
accurate evolution of undertow velocity structure and magnitude across the surf zone, for24
both spilling and plunging cases. Differences in the predicted Reynolds shear stresses (hence25
flow resistance) are identified as key to the improved inner surf zone performance, relative26
to a state-of-the-art two-equation model.27

Key words:28

1. Introduction29

Breakingwaterwaves feature a rather amazing variety of fluidmechanics, ranging fromnearly30
potential flow prior to breaking, to unsteady turbulent boundary layers at the sea bed, to a31
turbulent jet flow e.g. during the initial plunge, to a highly complicated and turbulent multi-32
phase (air and water) flow throughout the surf zone. Over the past decades, significant efforts33
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have been made to better understand the breaking wave process through both experimental34
and numerical means.35
A large number of experimental studies have been performed, with focus on e.g. the36

breaking onset location, turbulence characteristics, as well as the undertow velocity field in37
the surf zone, which is especially important in nearshore sediment transport processes. The38
surf zone is the part of the shoreface from the most seaward wave breaking point to the most39
landward broken wave (Van Rijn 1993). The surf zone can be divided into two sub-regions,40
i.e. the outer and the inner surf zone. For spilling breakers, there has not been a specific41
definition of the threshold between two sub-regions. It can be considered that the outer surf42
zone extends from the breaking point up to the part with rapid changes in wave shape, and the43
inner surf zone consists of the breaking bores with slow changes in wave shape. For plunging44
breakers, the splash point (where the water pushed upwards by the plunging jet hits the water45
again) is often used to mark the start of the inner surf zone. When breaking waves propagate46
to the shore, a return flow (known as undertow) beneath the wave trough is generated to47
compensate the amount of water waves that is transported shoreward. The undertow velocity48
is generally strongest in the surf zone (Svendsen 1984). Most of the experimental studies have49
been performed in relatively small scale facilities (e.g. Nadaoka et al. 1989; Chang & Liu50
1999; Ting & Kirby 1994, 1996; Stansby & Feng 2005; De Serio & Mossa 2006; Lara et al.51
2006). Among these, the spilling and plunging breaking wave experiments of Ting & Kirby52
(1994, 1996) have been most often used for validating numerical models. Spilling breaking53
is a rather gentle breaking at the wave crest and is followed by a gradual dissipation of energy54
over the surf zone, while plunging breaking is more violent with the crest curling over and55
plunging into the surface as a turbulent jet flow. Recently, several large-scale experimental56
studies involving breaking waves over a fixed barred bed profile (e.g. Scott et al. 2005; van57
der A et al. 2017; van der Zanden et al. 2018, 2019) have likewise been performed, with58
detailed measurements provided for the flow and turbulence fields throughout the surf zone,59
as well as in the near bed bottom boundary layer region (van der Zanden et al. 2018).60
With the continual increase in computer power, computational fluid dynamics (CFD)61

modelling has been increasingly utilized as an alternative means of studying breaking waves,62
due to its cheaper cost and faster set-up compared to conventional laboratory tests. CFD can63
also, in principal, overcome scale effects and operation disturbances that exist in laboratory64
experiments. CFD simulations on breaking waves have typically been conducted based65
on Reynolds-averaged Navier Stokes (RANS) equations, coupled with various turbulence66
closure models (e.g. Lin & Liu 1998; Bradford 2000; Chella et al. 2015; Derakhti et al.67
2016a,b; Lupieri & Contento 2015; Brown et al. 2016; Devolder et al. 2018; Liu et al.68
2020). Additionally, large eddy simulation models (LES, e.g. Christensen & Deigaard 2001;69
Christensen 2006; Zhou et al. 2017) have also been employed to study wave breaking70
processes, as have models based on so-called smoothed particle hydrodynamics (SPH, e.g.71
Shao 2006; Shadloo et al. 2015; Wei et al. 2018; Lowe et al. 2019). In recently years,72
some high-fidelity direct numerical simulation (DNS) studies have been made on breaking73
waves with focus on air-entrainment and bubble statistics (e.g. three-dimensional simulations74
of Deike et al. 2016; Wang et al. 2016; Chan et al. 2021), which have built largely upon75
previous two-dimensional simulations solving the Navier-Stokes equations (e.g. Iafrati 2009,76
2011). These high-fidelity simulations are at small length scales and are not yet practically77
applicable to surf zone breaking waves due to computational time and costs. Among those78
various approaches, RANS models have been those most widely used for surf zone breaking79
wave modelling, as they are the most computationally affordable.80
Regarding RANS two-equation models, the pioneering work of Lin & Liu (1998) applied a81

nonlinear k-ε model for simulating breaking waves (k is the turbulent kinetic energy density,82
and ε is the dissipation rate). Their simulations showed a pronounced over-production of83
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turbulence at their most offshore point of comparison (near the breakpoint). This is similar to84
othermore recent works (e.g. Brown et al. 2016; Derakhti et al. 2016a,b; Devolder et al. 2018;85
Liu et al. 2020) using other two-equation models such as k-ω and k-ω shear stress transport86
(SST) models (ω being the specific dissipation rate). Several of the simulations mentioned87
just above even clearly demonstrate turbulence levels prior to breaking that are similar88
in magnitude to those within the surf zone, which obviously defies physical explanation89
as well as measurements. Hsu et al. (2002) also identified that the k-ε turbulence model90
tended to predict unrealistically high turbulence in regions that were supposed to contain91
low turbulence levels during their long-time simulations. They suspected that this problem92
was due to convection and diffusion mechanisms. To combat this issue they have used an93
empirical damping coefficient to reduce the eddy viscosity in such regions.94
The persistent problem of over-production of turbulence in the potential flow region95

beneath (non-breaking) surface waves in RANS turbulence closure models has only recently96
been fully explained and analyzed. Building on the proof of conditional instability of the97
k-ω closure model of Mayer &Madsen (2000), Larsen & Fuhrman (2018) proved that nearly98
all two-equation models in wide use (several k-ω and k-ε variants) are (asymptotically)99
unconditionally unstable in such regions. (An exception is the realizable k-ε model of Shih100
et al. (1995), which was proved to be conditionally unstable in such regions by Fuhrman & Li101
2020). Larsen&Fuhrman (2018) devised a simple and generalmethod for formally stabilizing102
two-equation models, based on a reformulation of the eddy viscosity. Their “stabilized” k-ω103
model was tested on small-scale spilling waves over a constant slope in Larsen & Fuhrman104
(2018), and on full-scale plunging waves over a breaker bar in Larsen et al. (2020). These105
works have collectively shown that the stabilized k-ωmodel leads to marked improvement in106
the predicted turbulence, undertow velocity profiles, and the bottom boundary layer dynamics107
in the pre-breaking region and outer surf zones, likely to be of considerable importance for108
e.g. breaking wave hydrodynamics and cross-shore sediment transport predictions. However,109
even the best of the models considered in Larsen & Fuhrman (2018) and Fuhrman & Li110
(2020) were still rather inaccurate in the inner surf zone (i.e. closer to the shoreline), thus111
seemingly requiring yet more advanced methods of achieving turbulence closure. To date,112
no single turbulence closure model has demonstrated the ability to accurately simulate the113
entirety of the breaking process, from shoaling to the inner surf zone, including accurate114
prediction of the undertow velocity structure and magnitude, for both spilling and plunging115
breaking waves.116
NASA’s CFD Vision 2030 Study white paper (Slotnick et al. 2014) identifies advanced117

turbulence modelling based on Reynolds stress models (RSMs) as a priority in the coming118
decades. Motivated by this, and especially the persistent shortcomings encountered with119
two-equation turbulence closure models noted above, the present study will consider novel120
applications of a Reynolds stress turbulence model for the simulation of breaking waves.121
Specifically, we will consider applications of the stress-ωmodel proposed byWilcox (2006),122
which has not been utilized previously for this purpose. Unlike two-equation models, RSMs123
(e.g. Wilcox 2006; Launder et al. 1975) simulate all components of the Reynolds stress124
tensor with their own respective transport equation, eliminating the need to resort to a125
Boussinesq eddy viscosity approximation. RSMs are therefore theoretically superior to126
their two-equation counterparts, while still maintaining reasonable computational efficiency,127
compared to turbulence-resolving methods such as DNS and LES. Comparing to two-128
equation RANS models, RSMs must provide closure for a larger number of terms, which129
can present a challenge. In the present work, the closure terms and coefficients provided in130
Wilcox (2006) will be adopted.131
To the authors’ knowledge, the study of Brown et al. (2016) has been the only one to132

have attempted application of a RSM to study breaking waves, in their case utilizing the133
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Launder-Reece-Rodi (LRR) stress-ε model (Launder et al. 1975). However, they found a134
significant over-estimation of the turbulent kinetic energy for spilling breakers both pre-135
and post-breaking, which was even more pronounced than found with several of their two-136
equation closures. Their results suggest that RSMs may share the same problem of instability137
in the nearly potential flow region beneath surface waves, leading to unphysical exponential138
growth of turbulence. The formal stability of RSMs in the potential flow region beneath139
non-breaking surface waves is an open question, which will be definitively answered by the140
present work. We further aim to establish the ability of the stress-ω model to accurately141
simulate coastal fluid mechanics problems involving breaking waves.142

The present work is organized as follows:We begin by conducting a novel stability analysis143
of the Wilcox (2006) stress-ω model in a region of idealized potential flow beneath surface144
waves (Section 2). We will prove that this model is formally neutrally stable in such regions,145
and therefore ought not give rise to unphysical exponential growth of turbulence. The stress-146
ω model (with buoyancy production terms included, as derived in Appendix A) will then147
be tested in CFD simulations throughout Section 3. Here the formal stability analysis will148
be directly verified through simulations of a progressive surface wave train (Section 3.1).149
We then move from the surface to the sea bed, and consider CFD simulations of a turbulent150
wave boundary layer, with comparisons made against a two-equation k-ω model (Section151
3.2). We finally test the performance of the stress-ω model in simulations involving both152
the spilling (Section 3.3) and plunging (Section 3.4) breaking wave cases of Ting & Kirby153
(1994, 1996), with direct comparison made against the best of the k-ω models devised by154
Larsen & Fuhrman (2018). The present breaking wave results are discussed relative to those155
of prior CFD studies in Section 4, before drawing conclusions in Section 5.156

Although it is not the primary focus of the present work, for completeness, we similarly157
analyze the LRR stress-εmodel for stability in Appendix B. Similar to the stress-ωmodel, we158
prove that the stress-ε model is likewise neutrally stable in the potential flow region beneath159
non-breaking surface waves. This has also been confirmed through testing with surface wave160
trains, as noted there. The likely explanation of the LRR stress-ε model significantly over-161
predicting turbulence prior to breaking in the work of Brown et al. (2016) is also provided162
there.163

2. Stability analysis of the Wilcox (2006) stress-ω turbulence model in the164
potential flow region beneath waves165

2.1. Turbulence closure model166

While computational power has improved immensely in recent decades, for many fluid167
mechanics problems, it is still not practically feasible to resolve the small scales required168
for either DNS or LES simulations. Rather, it is often necessary in practice to work with a169
Reynolds-averaged description of the flow, with the effects of turbulence on the mean flow170
accounted for with the aid of a turbulence closure model. For this purpose, the present study171
will focus on the Wilcox (2006) stress-ω model (where ω is again the specific dissipation172
rate of turbulence). This model, in a form suitable for a two-phase (water-air) fluid mixture,173

Focus on Fluids articles must not exceed this page length
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consists of the following stress-transport equations:175

∂ρ̄τi j

∂t︸︷︷︸
Time variation

+ ūk
∂ρ̄τi j

∂xk︸   ︷︷   ︸
Convection

= − ρ̄Pi j︸︷︷︸
Production

+
2
3
ρ̄β∗ωkδi j︸        ︷︷        ︸
Dissipation

− ρ̄Πi j︸︷︷︸
Pressure-strain

+ ρ̄α∗b
k
ω

Ni j︸     ︷︷     ︸
Buoyancy production

+
∂

∂xk

[
ρ̄(ν + σ∗

k
ω
)
∂τi j

∂xk

]
︸                         ︷︷                         ︸

Diffusion

(2.1)176

combined with a separate transport equation for the specific rate of dissipation ω:178

∂ρ̄ω

∂t︸︷︷︸
Time variation

+ ū j
∂ρ̄ω

∂xj︸  ︷︷  ︸
Convection

= ρ̄α
ω

k
τi j
∂ūi
∂xj︸         ︷︷         ︸

Production

− ρ̄βω2︸︷︷︸
Dissipation

+σd
ρ̄

ω

∂k
∂xj

∂ω

∂xj︸           ︷︷           ︸
Cross-diffusion

+
∂

∂xk

[
ρ̄(ν + σ

k
ω
)
∂ω

∂xk

]
︸                       ︷︷                       ︸

Diffusion

(2.2)179

In the above xj are the Cartesian coordinates, ū j are the mean (Reynolds-averaged) com-180
ponents of the velocity, gj is gravitational acceleration, δi j is the Kronecker delta, ν is the181
kinematic fluid viscosity, ρ̄ is the fluid density, and t is time. The specific Reynolds stress182
tensor is defined as:183

τi j = −u′iu
′
j (2.3)184

where a prime superscript denotes turbulent fluctuations and the overbar denotes Reynolds185
averaging. The turbulent kinetic energy (per unit mass) is thus:186

k = −
1
2
τkk (2.4)187

Buoyancy production (as derived in Appendix A) is included with terms proportional to the188
Brunt-Väisälä frequency tensor:189

Ni j =
1
ρ0

(
gi
∂ρ̄

∂xj
+ gj

∂ρ̄

∂xi

)
(2.5)190

where ρ0 is the constant reference density of the fluid.191
The pressure-strain correlation is:193

Πi j = β
∗C1ω

(
τi j +

2
3

kδi j

)
− α̂(Pi j −

2
3

Pδi j)

−β̂(Di j −
2
3

Pδi j) − γ̂k(Si j −
1
3

Skkδi j)
(2.6)194

where195

Pi j = τim
∂ū j

∂xm
+ τjm

∂ūi
∂xm

(2.7)196
197

Di j = τim
∂ūm
∂xj
+ τjm

∂ūm
∂xi

(2.8)198

199

Si j =
1
2

(
∂ūi
∂xj
+
∂ū j

∂xi

)
(2.9)200
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P =
1
2

Pkk (2.10)201

The model closure coefficients, taken directly from Wilcox (2006), are defined as follows:202

C1 = 1.8, C2 = 10/19, α̂ = (8 + C2)/11, β̂ = (8C2 − 2)/11
γ̂ = (60C2 − 4)/55, α = 0.52, β∗ = 0.09, β0 = 0.0708
β = β0 fβ, σ = 0.5, σ∗ = 0.6, σd0 = 0.125

(2.11)203

σd =


0,

∂k
∂xj

∂ω

∂xj
6 0

σd0,
∂k
∂xj

∂ω

∂xj
> 0

(2.12)204

205

fβ =
1 + 85χω
1 + 100χω

, χω =

�����Ωi jΩjk Ŝki
(β∗ω)3

����� , Ŝki = Ski −
1
2
∂ūm
∂xm

δki (2.13)206

with α∗
b
= 1.36 (following Larsen & Fuhrman 2018, see also Appendix A). Unless explicitly207

stated otherwise, this value is fixed in what follows. A detailed description of the closure208
evolution from third-order turbulence correlations to second-order can be found in Wilcox209
(2006, p. 41–43) and Launder et al. (1975, their Section 3).210
Compared to the LRR (Launder et al. 1975) stress-ε model, the ω-based stress-transport211

model formulated above reduces the complexity of the diffusion term and the pressure-strain212
relation considerably. Moreover, since the ω equation yields better near-wall behaviour,213
the pressure-strain relation does not require an artificial wall-reflection term. (As discussed214
by Parneix et al. 1998, the LRR wall-reflection term is more to mitigate a deficiency in215
the ε equation than to correctly or physically represent the pressure-echo process.) We216
therefore adopt the Wilcox (2006) stress-ω model as our primary focus for both analysis and217
applications in what follows.218

2.2. Stability analysis219

As shown and explained by Mayer & Madsen (2000), Larsen & Fuhrman (2018), and220
Fuhrman & Li (2020) (see also Section 7.6 of Sumer & Fuhrman 2020), standard two-221
equation turbulence closure models can result in turbulence over-production in the potential222
flow core region beneath surface waves. This is due to their inherent instability in such223
regions, leading to non-physical exponential growth of the turbulent kinetic energy and224
eddy viscosity. Computational results of Brown et al. (2016), who used the LRR stress-ε225
turbulence model to simulate breaking waves, demonstrated seemingly similar turbulence226
over-production prior to incipient wave breaking. This suggests that RSMs may share the227
same inherent instability in nearly potential flow regions having finite strain. It is therefore of228
interest to extend the analysis of Larsen & Fuhrman (2018) to consider the formal asymptotic229
stability of Reynolds stress models. In what follows in the main text we will formally analyze230
the Wilcox (2006) stress-ω model. Similar analysis (and findings) of the LRR stress-ε model231
is provided in Appendix B for completeness.232
Consider now an incompressible fluid region having constant density beneath a small233

amplitude plane surface wave train propagating in the horizontal x1 = x direction, where the234
turbulence model described above is active. We will assume the mean flow is described by235
linear potential flow (Stokes first-order) wave theory, with velocity fields:236

ū1 = u =
Hσw

2
cosh(kwy)
sinh(kwh)

cos(kw x − σwt) (2.14)237
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238

ū2 = v =
Hσw

2
sinh(kwy)
sinh(kwh)

sin(kw x − σwt) (2.15)239

where the vertical x2 = y axis is placed at the bed, σw is the angular wave frequency, kw is240
the wave number, h is the water depth, and H is the wave height.241
Following Mayer & Madsen (2000), Larsen & Fuhrman (2018) and Fuhrman & Li (2020)242

diffusive and convective terms will be neglected in the analysis, which is reasonable in the243
potential flow region. Meanwhile, the buoyancy production term goes to zero in the region244
beneath surface waves where the density is again assumed constant. From the assumptions245
stated above, (2.1) and (2.2) simplify to the following system of seven governing equations:246

∂τi j

∂t
= −Pi j +

2
3
β∗ωkδi j − Πi j (2.16)247

248
∂ω

∂t
= α

ω

k
τi j
∂ūi
∂xj
− βω2 (2.17)249

We may simplify the governing equations yet further by (1) assuming that the turbulence250
field under consideration has equivalent normal stresses (such that τ11 = τ22 = τ33), (2)251
accounting for both assumed zero mean flow (ū3 = w = 0) and uniformity (∂/∂x3 = 0) in252
the transverse x3 = z direction, and (3) invoking local continuity ∂ūi/∂xi = 0. Equations253
(2.16) and (2.17) then reduce considerably to the following system of three ODEs:254

∂k
∂t
= 2τ12S12 − β

∗ωk (2.18)255

256

∂τ12

∂t
=

(
4
3
−

4
3
α̂ −

4
3
β̂ + γ̂

)
kS12 − C1β

∗ωτ12 (2.19)257

258
∂ω

∂t
= 2α

ω

k
τ12S12 − βω

2 (2.20)259

where (2.18) stems from the trace of (2.16). Notice that even in this reduced form the260
resulting Reynolds stress model differs fundamentally from a simpler k-ω turbulence model261
(see Larsen & Fuhrman 2018), with the Reynolds shear stress τ12 governed by its own262
equation.263
For analysis purposes, it turns out to be convenient to introduce a dimensionless utility264

variable Ψ = k/τ12. Combining (2.18) and (2.19), while also invoking Ψ into the ω equation265
(2.20) then leads to:266

∂Ψ

∂t
=

(
4
3
α̂ +

4
3
β̂ − γ̂ −

4
3

)
︸                    ︷︷                    ︸

−8/15

Ψ
2S12 + (C1 − 1)β∗Ψω + 2S12 (2.21)267

268
∂ω

∂t
= −βω2 + 2α

ω

Ψ
S12 (2.22)269

From inspection of (2.21) and (2.22) it is clear that, for any reasonable initial conditions i.e.270
with τ12 (hence Ψ) and S12 having the same sign, both Ψ and ω will evolve asymptotically271
towards equilibrium values such that their respective time derivatives are zero. A brief272
mathematical analysis follows. Setting both (2.21) and (2.22) to zero, and solving for Ψ and273
ω (discarding the unphysical solution with ω = 0) leads to the following asymptotic values274
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(so called fixed points):275

Ψ∞ = ±

√
6 ·

(1 − C1)αβ∗ − β

β(4α̂ + 4β̂ − 3γ̂ − 4)
≈ ±2.394 (2.23)276

277

ω∞
S12
= ±α

√
2
3
·

4 − 4α̂ − 4β̂ + 3γ̂
β2 + (C1 − 1)αββ∗

≈ ±6.135 (2.24)278

where the closure coefficients have been invoked to arrive at the constants. For positive S12,279
the fixed point is (Ψ∞,ω∞) = (2.394,6.135S12), while for negative S12, the fixed point is280
(Ψ∞,ω∞) = (−2.394,−6.135S12).281
Now let us check for formal stability of the fixed points based on the eigenvalues of the282

Jacobian matrix for (2.21)–(2.22) which is defined by283

J =


∂

∂Ψ

(
∂Ψ

∂t

)
∂

∂ω

(
∂Ψ

∂t

)
∂

∂Ψ

(
∂ω

∂t

)
∂

∂ω

(
∂ω

∂t

) (2.25)284

After invoking the right-hand sides of (2.21)–(2.22) in the above, in addition to the model285
closure coefficients, this becomes:286

J =

[
−1.067S12Ψ + 0.072ω 0.072ω

−
1.04S12ω

Ψ2 −0.1416ω +
1.04S12

Ψ

]
(2.26)287

By linearizing about (i.e. inserting) the fixed points (Ψ∞,ω∞), the eigenvalues of J are288
found to be (−1.99,−0.558)|S12 |. As these are negative, the fixed points correspond to289
stable nodes (Strogatz 2018). This is also visually demonstrated for the positive quadrant by290
the dimensionless stream plot of (1/|S12 |∂Ψ/∂t,1/(S12 |S12 |)∂ω/∂t) in figure 1, depicting291
evolution to a single point in the ω/|S12 |-Ψ plane, there indicated by the filled circle. The292
plot with Ψ and S12 both having negative sign is symmetric to that shown in figure 1. This293
behaviour has been confirmed through numerous numerical simulations of (2.18)–(2.20),294
examples of which (with initial conditions for S12 and τ12 having both positive and negative295
values) are shown in figure 2. The asymptotic constants found above are likewise consistent296
with figure 1.297
Inserting the asymptotic values Ψ∞ and ω∞ back into (2.18) and (2.19) and simplifying298

then leads to linearized equations of the form299

1
k
∂k
∂t
=

1
τ12

∂τ12

∂t
= Γ∞ (2.27)300

where301

Γ∞ = (β − αβ
∗)

√
2
3
·

4 − 4α̂ − 4β̂ + 3γ̂
β2 + (C1 − 1)αββ∗

· |S12 | ≈ 0.2831 · |S12 | (2.28)302

defines the asymptotic exponential growth rate of both k and τ12.303
It is seen from (2.28) that the exponential growth rate is expressed in terms of the strain-rate304

S12 =
1
2

(
∂u
∂y
+
∂v

∂x

)
(2.29)305

which has been treated as fixed above at some unknown value for the sake of keeping the306
analysis tractable. Note that this is entirely consistent with the prior analysis of the k-ω307
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Figure 1: Dimensionless stream plot of
(

1
|S12 |

∂Ψ
∂t ,

1
S12 |S12 |

∂ω
∂t

)
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Figure 2: Simulated development (full lines) and predicted asymptotic values (dashed
lines) of Ψ and ω/S12 based on ODEs of (2.18)–(2.20) for the stress-ω closure model. S12

and τ12 are provided with both positive and negative initial conditions.

model (and several other two-equation turbulence models) made by Larsen & Fuhrman308
(2018), who similarly assumed their variable p0 = 2Si jSi j to be fixed. This was interpreted in309
practice e.g. as a period- and depth-averaged value beneath the considered surface wave field.310
Adopting a similar approach, we therefore insert (2.14) and (2.15) into (2.29) and period311
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average. This leads to the rather trivial, but contextually important, result that312

〈S12〉 =
1
T

∫ T

0
S12dt

=
1
T

∫ T

0

1
2

Hkwσω cos(σωt − kw x)csch(hkw) sinh(kwy)dt

= 0

(2.30)313

(where 〈·〉 indicates period-averaging), such that the exponential growth rate will, in fact, be314
simply (on average) zero.315
This thus proves that, under the simplifying assumptions made above, the Wilcox (2006)316

stress-ω turbulence model is neutrally stable in the potential flow region beneath small317
amplitude progressives waves. We find similarly for the LRR stress-ε Reynolds stress model,318
the details of which are again provided in Appendix B. These results are in contrast to the319
authors’ original expectations, based on the computational results of Brown et al. (2016).320
The reason for this discrepancy is likewise explained in Appendix B. The present results are321
also in stark contrast to similar analysis made for several two-equation models, most of which322
have been proved to be either unconditionally unstable (Larsen & Fuhrman 2018) or (in the323
special case of the realizable k-ε model) conditionally unstable (Fuhrman & Li 2020), under324
the same assumptions as considered here.325
For the interested reader, an alternative analysis based on eigenvalues of the Jacobianmatrix326

for the governing equations (2.18)–(2.20), linearized about the fixed points, is presented in327
Appendix C. The alternative analysis confirms the asymptotic growth rate found in (2.28),328
and hence the finding of neutral stability above.329

2.3. Comparison with analysis of two-equation models330

Given the fundamental differences in the formal stability of Reynolds stress turbulence331
models compared to their two-equation counterparts, it seems worthwhile to briefly revisit332
the prior analysis of these simpler models to pinpoint precisely where these differences arise.333
For this purpose, consider the k equation in (2.18), where the turbulence production term334
corresponds to335

Pk = 2τ12S12, (2.31)336

the form of which is theoretically based. With a Reynolds stress closure model, τ12 is free to337
evolve naturally based on its own transport equation (2.19). Conversely, with two-equation338
closure models it is instead conventionally based on the Boussinesq approximation339

τi j = 2νtSi j −
2
3

kδi j (2.32)340

where νt is the kinematic eddy viscosity. For the conditions specifically analyzed in Section341
2.2, (2.32) leads to the Reynolds stress τ12 = 2νtS12, such that the turbulence production342
term becomes343

Pk = p0νt, p0 = 4S12S12 (2.33)344

i.e. proportional to p0 rather than simply S12. Similarly, in their analysis of standard two-345
equation models, Larsen & Fuhrman (2018) showed that they inevitably lead to asymptotic346
values of ω∞ and Γ∞ that are both proportional to √p0, rather than S12. Critically in the347
present context, in the potential flow region beneath surface waves 〈p0〉 is finite (Mayer &348
Madsen 2000; Larsen & Fuhrman 2018), rather than zero as is the case for 〈S12〉, see (2.30).349
Thus, this clarifies that it is the Boussinesq approximation of the Reynolds shear stress350

in two-equation turbulence closure models that is responsible for their formal instability in351

Rapids articles must not exceed this page length
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the potential flow region beneath surface waves. Notably, this finding lends credence to the352
approach adopted by Larsen & Fuhrman (2018), who utilized a re-formulated eddy viscosity353
(to include an additional stress-limiting feature) in order to formally stabilize such closures.354

3. CFD simulations with the Wilcox (2006) stress-ω model355

This section will present a series of CFD simulations, where the Wilcox (2006) stress-ω356
model is used as turbulence closure for a numerical model solving incompressible Reynolds-357
averaged Navier-Stokes (RANS) equations. The selected simulations will build towards the358
ultimate aim of accurately simulating breaking surface waves with significantly improved359
accuracy compared to existing two-equation closures. Specifically, Section 3.1 will consider360
simulation of a simple progressive non-breaking wave train, as a direct test of the model’s361
stability in the potential flow core region (as analyzed in the preceding section). We will362
then focus on simulation of the turbulent wave boundary layer in Section 3.2, of fundamental363
interest beneath both non-breaking and breaking waves. This section will finally culminate364
with CFD simulations of both spilling (Section 3.3) and plunging (Section 3.4) breaking365
waves. All simulations in the present work have been carried out within the OpenFOAM®366
v1812 framework. Free surface simulations utilize the waves2FOAM toolbox (Jacobsen et al.367
2012) for wave initiation or generation and absorption.368
The free surface is modelled using the volume of fluid (VOF) method, and the phases369

in terms of the two fluids (i.e. air and water) are tracked by a scalar field γ, where γ = 0370
denotes pure air and γ = 1 denotes pure water. Any intermediate γ value between 0 and 1371
represents a fluid mixture. The γ field is governed by the advection equation (see also Sumer372
& Fuhrman 2020, p. 558):373

∂γ

∂t
+
∂(ūiγ)
∂xi

+
∂[ūri γ(1 − γ)]

∂xi
= 0 (3.1)374

where ūri is a relative velocity for interface compression according to Berberović et al. (2009).375
Any fluid property (represented by Φ) is calculated by:376

Φ = γΦwater + (1 − γ)Φair (3.2)377

i.e. fluid properties are weighted linearly based on the local value of γ. For modelling378
the free-surface of breaking waves with strong turbulence, Brocchini & Peregrine (2001)379
and Brocchini (2002) also proposed an approach using averaged equations (i.e. mass and380
momentum conversation equations along with an equation for the turbulent kinetic energy),381
with boundary conditions obtained through integration across the two-phase surface layer.382
This may provide a useful alternative for modelling the disturbed free-surface of breaking383
waves, though this approach will not be pursued here.384

3.1. Simulating a progressive wave train385

The stability analysis in Section 2.2 demonstrates that the Wilcox (2006) stress-ω model386
is neutrally stable in the ideal potential flow region beneath surface waves. This is again387
in contrast to our original suspicions, since the Reynolds-stress CFD simulations of Brown388
et al. (2016) demonstrated turbulence over-production prior to breaking. As an initial test389
to confirm our stability analysis, we therefore conduct CFD simulations involving the390
simple propagation of a theoretically (based on potential flow theory) steady wave train.391
For comparative purposes, two simulations will be considered, having buoyancy production392
either on (α∗

b
= 1.36, as indicated in Section 2.1) or off (α∗

b
= 0). The reason for this393

comparison is to elucidate any effects of the buoyancy production term (which will cause a394
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sink of turbulence near the air-water interface), since it was not considered in the stability395
analysis for reasons of simplicity.396
Following Larsen & Fuhrman (2018), we adopt the wave properties associated with the397

incident wave from the spilling breaker experiments of Ting & Kirby (1994) for the present398
simulations, corresponding to period T = 2 s and wave height H = 0.125 m on a constant399
water depth h = 0.4 m. The numerically exact stream function wave (potential flow) solution400
of Fenton (1988) (as implemented by Jacobsen et al. 2012), yields the dimensionless depth401
kwh = 0.664 and steepness kwH = 0.207. This wave solution is set as the initial conditions402
on a domain spanning a single wave length with periodic left and right boundaries. An403
initially small turbulence field is set with τ11 = τ22 = τ33 = −τ12 = −1.33×10−6 m2s−2, such404
that the initial turbulent kinetic energy k0 is 2.0 × 10−6 m2s−2. The setup utilized (including405
mesh, discretization schemes, and multi-phase flow solver) is adopted directly from Larsen406
& Fuhrman (2018), who performed similar tests utilizing two-equation (k-ω) turbulence407
models. Specifically, the maximum Courant number is set to Co = 0.05, and a diffusive408
balance scheme as discussed in Larsen et al. (2019) is adopted. The bottom boundary is409
modelled as a slip wall, to mimic potential flow as much as possible.410
Figure 3(a,b) depicts time series of the dimensionless surface elevation as well as the411

period- and depth-averaged (note that [·] herein indicates depth-averaging) turbulence level,412
respectively, over a simulated duration of 100T . It is seen in figure 3(a) that the wave413
propagates with nearly constant form in both cases (the two results for the free surface414
elevations are indistinguishable). It is seen from figure 3(b) that the case with α∗

b
= 0 results415

in a growth rate in the turbulent kinetic energy that may indeed be reasonably characterized as416
zero. This result is consistent with our simplified analysis of this problem in Section 2.2, again417
predicting that the model is neutrally stable. Minor deviations (e.g. the initial slow decay418
and later rise of [〈k/k0〉]) are relatively insignificant, and are likely due to terms neglected419
in the analysis and/or from accumulation of small numerical errors, which may cause the420
solution to deviate from the ideal potential flow solution over extended times. It is likewise421
seen from figure 3(b) that the buoyancy production term being active instead leads to a decay422
in turbulence levels. This is clearly due to the additional sink in turbulence caused by this423
term near the air-water interface, which was not considered in the formal stability analysis.424
Hence, both simulations largely confirm our analysis, that the Wilcox (2006) stress-ω model425
is indeed stable in the ideal potential flow core region beneath non-breaking surface waves.426
Note that both results presented in figure 3 differ considerably from the simulation using the427
Wilcox (2006) k-ω closure model in its standard form, as presented in figure 4(a) of Larsen428
& Fuhrman (2018), which resulted in immediate exponential growth of the eddy viscosity429
(hence turbulence) and eventual wave decay, due to this model’s inherent instability, as shown430
and discussed therein.431

3.2. Simulating the oscillatory turbulent wave boundary layer432

We will now turn our attention to the performance of the Wilcox (2006) stress-ω model in433
the bottom boundary layer region beneath waves, an area of special importance beneath both434
non-breaking and breaking waves. (Recall that this region was neglected in the previous wave435
train simulations due to the use of a slip condition at the sea bed.) For this purpose, we will436
consider the experiments of Jensen et al. (1989) conducted in a full-scale oscillating tunnel437
facility. We will specifically consider their Test 13, involving the boundary layer beneath a438
sinusoidally varying free stream flow (having velocity magnitude U0m = 2.0 m/s and period439
T = 9.72 s) yielding a Reynolds number Re = aU0m/ν ≈ 6 × 106, where a = U0m/σw and440
ν = 1.14 × 10−6 m2/s. The bottom wall is rough, with Nikuradse’s equivalent roughness441
ks = 0.84 mm. A model height of 0.145 m corresponding to half of the physical tunnel442
height (0.29 m) in Jensen et al. (1989) is used, hence only the bottom boundary layer is443
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Figure 3: Computed (a) surface elevation time series and (b) the time- and depth-
averaged turbulence level for the progressive waves with the Wilcox (2006) stress-ω

model, with buoyancy production term both off (α∗
b
= 0) and on (α∗

b
= 1.36).

simulated. The top boundary is treated as a frictionless (slip) lid. The bottom boundary is444
set as a no slip wall, where the ω wall function with a viscous-inertial sublayer blending445
method (Menter & Esch 2001; Popovac & Hanjalic 2007) is applied, combined with a zero446
normal gradient condition for the Reynolds stress. The first cell center near the bottom wall447
lies at yc/ks = 0.5. An oscillatory body force is applied to drive the flow until an equilibrium448
(periodic in time) state is reached and comparisons are made.449
Computed and experimental results are compared in figure 4 at four phases during the450

oscillation cycle: σwt = 0◦ (free stream flow reversal), 45◦ (flow acceleration due to a451
favorable pressure gradient), 90◦ (peak free stream flow) and 135◦ (flow deceleration due452
to an adverse pressure gradient). Results are shown for the dimensionless mean flow u/U0m453
(figure 4a); the turbulent kinetic energy density k/U2

0m (figure 4b), which for the experiments454
of Jensen et al. (1989) has been empirically approximated from (Justesen 1991):455

k = −0.65(τ11 + τ22); (3.3)456

as well as the Reynolds stress components: −τ11/U2
0m, −τ22/U2

0m, and τ12/U2
0m (figure 4c,d,457

and e, respectively). Results computed utilizing both the Wilcox (2006) stress-ω and k-ω458
models are shown, such that those of the Reynolds stress model (the primary focus of the459
present work) may be compared directly with a simpler two-equation model. Note that for460
the k-ω model, the Reynolds stress components are obtained directly from the Boussinesq461
approximation (2.32).462
From figure 4(a) it is seen that the computed mean flow velocities from both models are463

largely similar, and in good agreement with the experiments. The most notable difference is464
the slight reduction (and increased accuracy) in the mean flow computed with the stress-ω465
model at phase σwt = 135◦ (i.e. during adverse pressure and flow deceleration), relative to466
the k-ω model. This difference will be explained immediately below. It is seen in figure 4(b)467
that the stress-ω model obviously improves the accuracy of the turbulence kinetic energy468
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simulations utilize both the Wilcox (2006) stress-ω and k-ω turbulence models.



15

k, relative to the k-ω model, especially at phase σwt = 135◦. Note that Sumer & Fuhrman469
(2020) have similarly documented relatively poor performance of the Wilcox (2006) k-ω470
model in simulating the deceleration stage of the wave boundary layer (see their figures471
5.90–5.92), and this is a well-known deficiency with two-equation models in general (see472
e.g. Justesen 1991, for similar finding with a k-ε closure model). From inspection of the473
results just discussed in figure 4(a), it is clear that the over-prediction of u seen there with474
the k-ω model is associated with its under-prediction of k at this phase i.e. that the k-ω475
model does not extract enough energy from the mean flow during the flow deceleration476
stage. Since the form of the turbulence production term in the k equation (τi j∂ui/∂xj which477
simplifies to τ12∂u/∂y in the present horizontally-uniform case) is theoretical (hence exact478
if its determination is free of error), it is then clear that this shortcoming must be due to479
inaccuracy of τ12 from the Boussinesq approximation (2.32).480
The individual Reynolds stress component profiles at each stage are presented in figure481

4(c–e). It is seen that the stress-ω model captures both the dynamics of the turbulent normal482
and shear stress components with better accuracy compared to the k-ω model, although τ11483
and τ12 at σwt = 135◦ are still slightly under-predicted in the near bottom region. It is seen484
in figure 4(c,d) that τ11 and τ22 predicted by the k-ω model (blue dashed lines) are identical485
and deviate from the experimental measurements. This is simply because application of the486
Boussinesq approximation (2.32) for the present case leads simply to:487

τ11 = τ22 = −
2
3

k, τ12 = νt
∂ū
∂y

(3.4)488

the former of which is well-known to be incorrect, even in the simpler case of a steady489
horizontally uniform turbulent boundary layer flow, see e.g. Chapter 3 of Sumer & Fuhrman490
(2020). In line with the discussion above, it is notable that τ12 (figure 4e) is indeed under-491
predicted by the k-ω model at σwt = 135◦. Overall, the Wilcox (2006) stress-ω model is492
demonstrated to be superior to the k-ω model in simulating the turbulence dynamics for the493
oscillatory wave boundary layer flows, as measured by Jensen et al. (1989).494
The measured and modelled friction velocity Uf is likewise presented in figure 4(f). In the495

experiment of Jensen et al. (1989), the friction velocity was determined by fitting straight496
lines to the logarithmic-layer portion of themean velocity distribution (see Sumer&Fuhrman497
2020, Section 5.4.1). It is noted that the difference in the measurements for two half cycles are498
quite obvious, and are due to apparent asymmetries that occurred in the experiment, which499
are avoided in the numerical simulations. It is seen that both stress-ω and k-ω model results500
match the friction velocity closely for the first half cycle. The friction velocity simulated with501
the stress-ωmodel is identical to that with the k-ωmodel in the flow acceleration stage, while502
being slightly larger than the k-ωmodel in the peak and deceleration stages. As the difference503
in the measurements over the two half cycles is larger than that of the two numerical results,504
both numerical model results are considered acceptable.505

3.3. Simulating spilling breaking waves506

The preceding preliminary simulations have demonstrated potential advantages of using a507
stress-ω model (rather than a traditional two-equation k-ω turbulence closure) for applica-508
tions relevant to non-breaking waves, ranging from the free surface (the progressive wave509
train) to the sea bottom (the turbulent wave boundary layer). Let us now apply the model510
to simulate breaking wave hydrodynamics, the primary aim of the present paper. For this511
purpose, we will first consider the spilling breaking wave experiment of Ting & Kirby512
(1994, 1996), to be followed by their plunging breaking wave experiment in the following513
sub-section.514
The numerical set-up for simulation of the experiments of Ting & Kirby (1994, 1996)515
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Figure 5: Computational domain set-up for plunging and spilling breaker cases
corresponding to Ting & Kirby (1994)’s breaking wave experiments.

Case T (s) H (m) h0 (m) xb (m) kwH kwh ξ0
Spilling 2 0.125 0.4 6.400 0.208 0.664 0.20
Plunging 5 0.128 0.4 7.795 0.076 0.238 0.60

Table 1: Wave properties for breaking wave simulations. In the above xb is the measured
breaking point in Ting & Kirby (1994), and ξ0 is the surf similarity parameter.

is shown in figure 5, where a tan β = 1/35 constant slope is connected to a region having516
constant still water depth h0 = 0.4 m. The origin is placed at the same water depth (h = 0.38517
m) as in the experiments, for consistency. A relaxation zone (Jacobsen et al. 2012) of one518
wave length is set at the inlet for wave generation, which also serves to absorb any reflected519
waves. A no slip condition along with standard smooth bed wall functions are employed520
as the bottom boundary conditions, since in the experiments of Ting & Kirby (1994) and521
Ting & Kirby (1996) a roughness value was not explicitly indicated. The computational522
mesh utilized is identical to that used previously by Larsen & Fuhrman (2018). Dimensional523
and dimensionless wave properties utilized for the simulation of both spilling and plunging524
breaking wave cases are indicated in table 1, where a numerically exact stream function525
(potential flow) theory is used for specification of the generated wave at the inlet. In table 1526
xb denotes the position of incipient breaking and527

ξ0 =
tan β√
H0/L0

(3.5)528

is the surf similarity parameter, where L0 = gT2/(2π) is the deep-water wave length and529

H0 = H

√
tanh(kwh)

(
1 +

2kwh
sinh(2kwh)

)
(3.6)530

is the deep-water wave height, calculated according to linear wave theory. The breaking wave531
simulations are initially run for 50T to reach equilibrium, followed by a subsequent 50T532
which is utilized for period-averaging purposes. The simulated spilling breaking case with533
the stress-ω model required approximately 12 days to run in parallel on 16 processors on the534
supercomputing cluster at the Technical University of Denmark (DTU). Note that the total535
computational time using the stress-ω model is approximately 15% more than that using the536
k-ω model.537
To elucidate differences between the Wilcox (2006) stress-ω and two-equation k-ω538

turbulence closuremodels, simulations utilizing a stabilized version of theWilcox (2006) k-ω539
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Figure 6: Snapshot of the spilling breaker turbulent kinetic energy simulated with the
Wilcox (2006) stress-ω model at t/T = 100.

model, as proposed by Larsen & Fuhrman (2018, with stress-limiter coefficients λ1 = 0.2 and540
λ2 = 0.05, as suggested there and in their notation), will also be considered for comparison.541
This model will hereafter be called the LF18 k-ωmodel. Note that results based on the LF18542
k-ωmodel have been re-simulated for presentation herein, to ensure full consistency with the543
stress-ω results. This ensures that any effects associated e.g. with the specific OpenFOAM544
software version or boundary treatment are fully controlled for. (Such effects have not been545
found to be very significant, but this accounts for subtle differences in the results presented546
herein compared to those originally presented in Larsen & Fuhrman 2018).547
To begin our investigation, figure 6 depicts a snapshot of the spilling breaker turbulent548

kinetic energy (here presented dimensionless as k/(gh0)where h0 = 0.4m is the constant still549
water depth prior to the slope) simulated with theWilcox (2006) stress-ωmodel at t/T = 100.550
It is observed that there is no sign of turbulence over-production prior to breaking, indicating551
that the Wilcox (2006) stress-ω model is indeed stable i.e. free of unphysical exponential552
growth of turbulence in nearly potential flow regions. This is once again consistent with553
our analysis of this model (Section 2) as well as our previous CFD simulations involving a554
progressive wave train (Section 3.1). The present result is in stark contrast to those stemming555
from two-equationmodels (both k-ω and k-ε variants) in their standard forms, see e.g. Brown556
et al. (2016), Larsen & Fuhrman (2018, their figure 6a,b), Larsen et al. (2020) and Fuhrman557
& Li (2020, their figure 7a).558
Figure 7 shows the surface elevation envelopes for the spilling breaker simulations, where559
〈η〉 is the period-averaged mean water level (over the final 50T), and ηmax and ηmin are560
respectively the averaged maximum and minimum surface elevations. Results from both the561
stress-ω and LF18 k-ωmodels are shown separately. The grey shaded regions depict plus and562
minus one standard deviation, hence indicating the degree of wave-to-wave variability. Good563
agreement is observed in figure 7(a) between the simulation with Wilcox (2006) stress-ω564
model and the measurements of Ting & Kirby (1994). The predicted breaking point (where565
ηmax − 〈η〉 is the highest) is consistent with the experimental measurement. The surface566
elevation envelopes predicted by the LF18 k-ω model are also similarly in line with the567
experimental measurement (figure 7b), consistent with previous demonstrations.568
Figure 8(a–d) compares the computed phase-averaged surface elevations with the exper-569

imental measurements of Ting & Kirby (1994) at four post-breaking cross-shore locations,570
where η̄ denotes the phase-averaged surface elevation and 〈η〉 denotes the period-averaged571
surface elevation. Additionally, the two model results are compared even further onshore572
(x = 9.725 m) in figure 8(e), for completeness. (Although the phase-averaged surface573
elevations from the experiments were not directly reported at this position, velocity and574
turbulence profiles were, to be presented in what follows.) It is seen that the numerical575
predictions with both turbulence models are generally in line with the experimental data576
for the three positions furthest offshore (figure 8a–c). Further onshore, the stress-ω model577
maintains this accuracy. However, it is seen in figure 8(d,e) that the wave front computed578
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Figure 7: Period-averaged surface elevation envelopes for the spilling breaker simulated
with (a) the Wilcox (2006) stress-ω model and (b) the LF18 k-ω model, comparing to the
experimental measurement of Ting & Kirby (1994). Grey shaded areas are the plus and

minus one standard deviation.

with the LF18 k-ω model is well ahead of what was measured. This was also noticed by579
Larsen & Fuhrman (2018), indicating that the breaking bore travels too rapidly in the inner580
surf zone. Larsen & Fuhrman (2018, see their figure 10) showed clearly that this problemwas581
due to the conventional stress-limiter on the eddy viscosity (controlled by the λ1 coefficient582
in their notation) within the Wilcox (2006) k-ω model. Simulations where this feature was583
on (λ1 > 0) resulted in significantly improved results (in terms of undertow velocity and584
turbulence profiles) in the outer surf zone, but at the expense of reduced accuracy in the inner585
surf zone. The stress-ω model, on the other hand, breaks free of the eddy viscosity concept586
altogether, and hence avoids this issue entirely.587
Let us now turn our attention to the turbulence quantities beneath the spilling breaking588

waves. Ting &Kirby (1994, 1996) have reported results for
√
〈k〉, 〈

√
−τ11〉 and 〈τ22〉/〈τ11〉 at589

each measurement position. Although the measurements for 〈τ22〉 were not directly reported,590

they can be obtained from their reported
√
〈k〉 and 〈τ22〉/〈τ11〉 values. In Ting&Kirby (1994),591

because the transverse velocity component was not measured, k was estimated empirically592
by593

〈k〉 =
1.33

2
(〈τ11〉 + 〈τ22〉) , (3.7)594

which is also utilized for the experimental k values presented in what follows. For the LF18595
k-ω model, the Reynolds stress components are again obtained directly from the Boussinesq596
approximation (2.32).597
Figures 9–10 compare specific period-averaged Reynolds normal stresses (non-598

dimensionalized −τ11 = u′u′ and −τ22 = v′v′ period-averaged over the final simulated 50T ;599
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Figure 8: Phase-averaged surface elevation for the spilling breaker from the experimental
measurement of Ting & Kirby (1994) and the present simulations. The subfigures (a, b, c)

are in the outer surf zone while (d, e) are in the inner surf zone.

results are similarly period-averaged in several forthcoming figures) profiles at each of the600
measured cross-shore positions. Figure 11 similarly presents a comparison of computed and601
measured period-averaged turbulent kinetic energy density k profiles. From these figures,602
it can be surmised that both the Wilcox (2006) stress-ω model and the LF18 k-ω model603
predict Reynolds normal stress components that are reasonably, though not perfectly, in604
line with the measurements. It is noted that the stress-ω model predicts streamwise normal605
stresses (τ11) significantly better than vertical ones (τ22). This might be attributed to the606
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Figure 9: Period-averaged Reynolds normal stress −τ11 for the spilling breaker from the
experimental measurement of Ting & Kirby (1994) and the present simulations. The

subfigures (a, b) are in the pre-breaking region while (c, d, e) are in the outer surf zone and
( f ,g, h) are in the inner surf zone.
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Figure 10: Period-averaged Reynolds normal stress −τ22 for the spilling breaker from the
experimental measurement of Ting & Kirby (1994, 1996) and the present simulations.

simple formulation of pressure-strain closure in the Wilcox (2006) stress-ω model, as the607
streamwise normal stresses (τ11) are dominated by the production term P11 while τ22 is608
mainly driven by the pressure-strain correlation Π22. It is seen in figure 11(d–h) that there609
is also a tendency for the LF18 k-ω model to predict more accurate turbulence near the610
free surface, where the stress-ω model predicts slightly higher turbulence than the k-ω611
model. This can also be attributed to the standard Wilcox (2006) stress-limiting feature in612
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Figure 11: Period-averaged turbulent kinetic energy k for the spilling breaker from the
experimental measurement of Ting & Kirby (1994) and the present simulations.

-1 0 2 5

-1

-0.5

0

-1 0 2 5

-1

-0.5

0

-1 0 2 5

-1

-0.5

0

-1 0 2 5

-1

-0.5

0

-1 0 2 5

-1

-0.5

0

-1 0 2 5

-1

-0.5

0

-1 0 2 5

-1

-0.5

0

-1 0 2 5

-1

-0.5

0

Figure 12: Period-averaged specific Reynolds shear stress τ12 for the spilling breaker from
the experimental measurement of Ting & Kirby (1994) and the present simulations.

the k-ω model, as shown through systematic testing by Larsen & Fuhrman (2018, compare613
e.g. Cases 3 and 5 in their figure 12).614
Let us now similarly investigate the computed Reynolds shear stresses τ12 = −u′v′, which615

can be expected to play a much more important role in terms of flow resistance than the616
turbulent normal stresses. Figure 12 compares the period-averaged τ12 (again over the final617
simulated 50T) profiles from both models at all eight measurement positions considered618
previously. Note that this quantity was not reported by Ting & Kirby (1994), thus we are619
not able to compare directly with their measurements; nevertheless, important differences620
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Figure 13: Phase-averaged τ12 at t/T = 0.08 for the spilling breaker case computed with
the (a) Wilcox (2006) stress-ω and (b) LF18 k-ω model. Results are scaled using the

depth h = 0.102 m at x = 9.725 m.

between the two models will be revealed. It is seen from figure 12(a–d) that neither model621
predicts significant Reynolds shear stress prior to breaking (as should be expected) or in622
the outer surf zone. However, further shoreward the Reynolds shear stress predicted with623
the Wilcox (2006) stress-ω model is significantly larger than with the LF18 k-ω model,624
particularly in the upper part of the water column i.e. near the surface. These differences625
can also be seen directly in figure 13, which compares (phase-averaged) snapshots of the626
specific Reynolds shear stress (τ12) field beneath breaking bores computed with both models627
in the inner surf zone. The instant shown has been selected such that the surface breaking628
wave front is approximately at the inner-most measurement position (x = 9.725 m). The629
increased Reynolds shear stresses with the stress-ωmodel will in turn increase flow resistance630
in the upper part of the water column. Although we again cannot compare directly with631
measurements of τ12 in the present case, it is now evident that it is this increased flow632
resistance that is responsible for slowing the propagation of the breaking wave front in633
the inner surf zone, bringing the resulting (phase-averaged) surface elevation time series634
computed with the stress-ω model in line with that measured (see again e.g. figure 8d). In635
Larsen & Fuhrman (2018), the flow resistance was represented through the eddy viscosity636
νt , as shown in their figure 14. A higher eddy viscosity in the upper part of the flow extracts637
more energy from the mean flow, which reduces the mean flow velocities. However, the638
stress-ω model does not utilize the eddy viscosity assumption. Therefore, we compare the639
flow resistance between two turbulence models through Pk , as given in (2.31) and (2.33),640
which represents the rate at which kinetic energy is transferred from the mean flow to the641
turbulence (Wilcox 2006, p. 109). For the stress-ω model, the turbulence shear production642
is in the form of τ12S12 which is seen to be the rate at which work is done by the mean shear643
strain rate against the Reynolds shear stress. Therefore, Pk is an indicator of flow resistance644
that is induced by the Reynolds shear stress τ12. For the two-equation model Pk is calculated645
based on νt , as is presented in (2.33). As shown in figure 14 in the upper part of the flow646
(right beneath the breaking bore), the shear production of turbulence with the stress-ωmodel647
is larger than with LF18 k-ω model, indicating higher flow resistance near the broken wave648
surface with the stress-ωmodel. The related effects on the period-averaged undertow velocity649
profiles will be considered in the next paragraph.650
As hinted immediately above, figure 15 compares computed andmeasured period-averaged651

undertow velocity profiles. It is seen that the stabilized LF18 k-ω model provides accurate652



23

0 0.005 0.01

-1

-0.5

0

0 0.005 0.01

-1

-0.5

0

0 0.005 0.01

-1

-0.5

0

0 0.005 0.01

-1

-0.5

0

0 0.005 0.01

-1

-0.5

0

0 0.005 0.01

-1

-0.5

0

0 0.005 0.01

-1

-0.5

0

0 0.005 0.01

-1

-0.5

0

Figure 14: Period-averaged Pk for the spilling breaker from the present simulations.

undertow velocity profiles before wave breaking and in the outer surf zone (figure 15a–e),653
generally consistent with the earlier findings of Larsen & Fuhrman (2018). Once reaching the654
inner surf zone (figure 15f–h), however, the LF18 k-ω model yields exaggerated undertow655
velocities. In contrast, the stress-ω model maintains consistent accuracy in the computed656
undertow velocity profile across the entirety of the measured surf zone, resulting in a657
significant increase in accuracy. These differences seem clearly linked to the increased658
flow resistance near the surface shown in figure 12(e–h) and figure 13, and the related659
increased accuracy of the breaking bore propagation evident from figure 8(d). As the660
Reynolds shear stress in two-equation turbulence closure models is computed based on661
the Boussinesq approximation, it seems clear that this classical assumption utilized within662
two-equation models (even in their stabilized form) fails to yield the correct evolution of the663
flow resistance in the inherently complicated inner surf zone, which further leads to locally664
inaccurate undertow predictions.665

The accurate prediction of undertow velocities is of major importance in the fluid666
mechanics of the surf zone, as they are important drivers of fluid, pollutants, and sediment667
transport in nearshore coastal regions. Despite this importance, the problem of inaccurate668
undertow velocity profiles has consistently plagued RANS CFD simulations of breaking669
waves over the past two decades. The present results utilizing the Wilcox (2006) stress-ω670
model are novel, in that they represent the first time that consistent quantitative accuracy in671
the computed undertow has been maintained throughout the entirety of the nearshore wave672
breaking process i.e. during shoaling (prior to breaking), to the outer surf zone, and all the673
way into the inner surf zone. Other RANS models (typically using two-equation turbulence674
closure) yield incorrect undertow structure prior to breaking and in the outer surf zone (e.g.675
Lin & Liu 1998; Brown et al. 2016; Devolder et al. 2018; Liu et al. 2020) or exaggerated676
undertow in the inner surf zone (e.g. Jacobsen et al. 2012; Larsen & Fuhrman 2018; Larsen677
et al. 2020), or both. A detailed discussion on the results and problems in previous works678
will be presented in Section 4.679
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Figure 15: Period-averaged undertow velocity profiles for the spilling breaker from the
experimental measurement of Ting & Kirby (1994) and the present simulations.

3.4. Simulating plunging breaking waves680

We will now employ the Wilcox (2006) stress-ω model to simulate the plunging breaking681
wave experiments of Ting & Kirby (1994, 1996). For these simulations the numerical set-up682
and protocol is identical to that used for spilling breakers in Section 3.3, with the wave683
parameters as indicated in table 1. The simulation of the plunging breaking waves required684
approximately 25 days to run in parallel on 16 processors on the supercomputing cluster at685
DTU. As before, comparison will be made with the LF18 k-ω model (Larsen & Fuhrman686
2018), which again represents a stabilized form of the basic model presented by Wilcox687
(2006). As much of the story to follow bears similarity to that in Section 3.3, it will be told688
with far greater brevity in the present sub-section.689
Figure 16 depicts a snapshot of the dimensionless turbulence field k/(ων) for the plunging690

breaking case, computed with the stress-ω model at a time instant of t/T = 50.825, similar691
to figure 6. This time instant has been chosen, as it corresponds to wave over-turning just692
prior to the subsequent plunge. Similar to our findings in the spilling breaking case, there693
is no turbulence over-production prior wave breaking. This should by now be expected as694
we have definitively established that the stress-ω model is stable in nearly potential flow695
regions beneath surface waves. It can be noted that this plunging case is not nearly as prone696
to significant turbulence over-production prior to breaking as the spilling case, because the697
unstable growth rate is much smaller due to a small value of [〈p0〉], as discussed by Larsen698
& Fuhrman (2018).699
Figure 17 compares the surface elevation envelopes from the model simulations with700

the experimental measurements, similar to figure 7. A reasonable match is again achieved.701
Both the Wilcox (2006) stress-ω and LF18 k-ω models predict the breaking point, and702
subsequent wave decay, reasonably. The set-up in the mean water level is likewise similarly703
well predicted. It is noted that right after the breaking point (at x ≈ 8m), themaximum surface704
elevation predicted with both numerical models has small deviations from the experimental705
measurement (with the stress-ω model result being slightly closer to the measurement). This706
deviation could be due to the plunging jet splashing down and causing turbulent mixture707
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Figure 16: Snapshot of the plunging breaker turbulent kinetic energy simulated with the
Wilcox (2006) stress-ω model at t/T = 100.
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Figure 17: Surface elevation envelopes for the plunging breaker simulated with (a) the
present Wilcox (2006) stress-ω model and (b) the LF18 k-ω model, comparing to the
experimental measurement of Ting & Kirby (1994). Grey shaded areas are the plus and

minus one standard deviation.

of the surface layer (as discussed in Brocchini 2002) which makes accurate modelling708
challenging. However, our numerical models are able to show reasonable consistency with709
the measurements, with minor deviations in the splash region. Comparison of computed710
and measured phase-averaged time series of the surface elevation at several measurement711
positions are additionally provided in figure 18. Interestingly, apart from the deviations near712
the crest in figure 18(c–e) with the k-ω model, the computed wave front in the present713
plunging case does not propagate noticeably faster with the k-ωmodel in the inner surf zone.714
This differs from our findings in the spilling case, see figure 8(d,e), and will be explained715
later in this sub-section.716
Computed and measured (when available) period-averaged (over the final 50T , as before)717

turbulent normal stress profiles are compared in figure 19 (for −τ11) and figure 20 (for718
−τ22), with profiles for the turbulent kinetic energy density k similarly presented in figure719
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Figure 18: Phase-averaged surface elevation for the plunging breaker from the
experimental measurement of Ting & Kirby (1995) and the present simulations. The
subfigures (a, b, c) are in the outer surf zone while (d, e) are in the inner surf zone.

21. In the experiments k was again estimated from (3.7). As Ting & Kirby (1994) did not720
provide measurement data for 〈τ22〉 or 〈τ22〉 /〈τ11〉 for their plunging case, only model results721
are shown in figure 20. From these figures it is seen that the two models seem to provide722
comparable accuracy for the turbulent normal stresses, similar to what was shown in our prior723
simulations involving spilling breaking waves. The results for k are somewhat more accurate724
with the stress-ω model specifically at x = 9.795 m (figure 21g), though this increased725
accuracy is not consistent throughout the surf zone as a whole. The overall prediction for k726



27

0 0.1 0.2

-1

-0.5

0

0 0.1 0.2

-1

-0.5

0

0 0.1 0.2

-1

-0.5

0

0 0.1 0.2

-1

-0.5

0

0 0.1 0.2

-1

-0.5

0

0 0.1 0.2

-1

-0.5

0

0 0.1 0.2

-1

-0.5

0

0 0.1 0.2

-1

-0.5

0

Figure 19: Period-averaged specific Reynolds normal stresses −τ11 profiles for the
plunging breaker from the experimental measurement of Ting & Kirby (1994) and the

present simulations. The subfigures (a, b) are in the pre-breaking region while (c, d, e) are
in the outer surf zone and ( f ,g, h) are in the inner surf zone.

in the inner surf zone with both turbulence models are larger than the measurement with a727
maximum factor of two (figure 21g). The reason remains uncertain to the authors. However,728
it is worthwhile to mention that the experimental study of Scott et al. (2005) presented729
k profiles post-processed with three different turbulence separation methods, with results730
varying by up to a factor of two to six from one another. The vertical gradient of their largest731
prediction is much higher than that of the lowest prediction (as shown in their figure 5).732
Therefore, the difference between our numerical results and the measurement of Ting &733
Kirby (1994) might still be considered reasonable.734
Figure 22 presents the computed phase-averaged τ12 field in the surf zone for the plunging735

case with both models, in a fashion similar to figure 13. The phase plotted has been selected736
to capture the propagation of the breaking wave front in the inner surf zone. Similar to our737
findings in the spilling case, it is clearly seen that the stress-ω model predicts turbulent shear738
stresses that are significantly larger in the inner surf zone than that with the k-ω model. It739
can thus be expected to result in increased flow resistance in this region. From comparison740
of figures 22 and 13 it is also seen that the increased turbulent shear stresses in the plunging741
case are spread more uniformly throughout the water column than in the spilling case, where742
they were more concentrated near the surface. This is likely due to the more violent surf743
zone initiated by the plunging breaking, and thus also explains why the breaking surface744
front propagates at approximately the same speed in the inner surf zone with both models in745
the present case (see again figure 18). The flow resistance indicated by Pk for the plunging746
breaker is likewise presented in figure 23. It is clearly seen that in the upper part of the747
flow, Pk predicted with the stress-ω model is much larger than that predicted with the LF18748
k-ω model, indicating higher flow resistance and therefore smaller magnitude of mean flow749
velocity with the stress-ω model.750
Figure 24 finally compares computed and measured undertow velocity profiles. It is seen751

that before wave breaking (figure 24a–c), the numerical simulations with both turbulence752
models are almost identical, and are in line with the experimental measurement. This is as753
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Figure 20: Period-averaged specific Reynolds normal stresses −τ22 profiles for the
plunging breaker from the present simulations.
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Figure 21: Period-averaged turbulent kinetic energy k profiles for the plunging breaker
from the experimental measurement of Ting & Kirby (1994) and the present simulations.

expected, since bothmodel variants considered herein are formally stable in the potential flow754
regions beneath surface waves, hence the choice of turbulence model has little impact prior to755
breaking. Results are also similar in the outer surf zone, as seen in figure 24(d,e). Much more756
significant differences become apparent once the inner surf zone is reached, as seen in figure757
24( f –h). Consistent with the previously considered spilling breaking case (figure 15), in the758
inner surf zone the LF18 k-ωmodel results in undertow velocity profiles that are much larger759
than were measured. The LF18 turbulence model similarly yielded over-predicted undertow760
velocities in the simulation of large-scale plunging breakers made by Larsen et al. (2020).761



29

9 9.5 10 10.5 11

-0.2

0

0.15

0

10

20

30

9 9.5 10 10.5 11

-0.2

0

0.15

0

10

20

30

Figure 22: Phase-averaged τ12 at t/T = 0.30 for the plunging breaker case computed with
the (a) Wilcox (2006) stress-ω and (b) LF18 k-ω model. Results are scaled using the
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Figure 23: Period-averaged Pk for the plunging breaker from the present simulations.

It is thus now evident that this is a consistent shortcoming with this model, which stems762
from the inclusion of the traditional stress-limiter within the Wilcox (2006) k-ω model (see763
again the comparisons made by Larsen & Fuhrman 2018, with this feature switched on and764
off). The stress-ω model, on the other hand, reduces this exaggeration considerably, though765
not completely. The undertow profiles predicted with this model in the inner surf zone are766
much more uniform, having a similar structure to what has been measured. The reduction in767
the undertow magnitudes computed with the stress-ω model is consistent with the increased768
flow resistance in the inner surf zone, as illustrated in figures 22 and 23.769
Though a substantial improvement of the predicted undertow in the inner surf zone is770

seen with the stress-ω model, there are still some disagreements between the stress-ω model771
prediction and the experimental measurement for the plunging breaker (figure 24 f –h). The772
reasons are, as yet, uncertain to the authors. One possible reason could be the simplistic773
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Figure 24: Period-averaged undertow velocity profiles for the plunging breaker from the
experimental measurement of Ting & Kirby (1994) and the present simulations.

formulation of the pressure-strain terms in theWilcox (2006) stress-ωmodel, for which more774
complex closures for pressure-strain terms could potentially make further improvement for775
the undertow predictions in the complicated inner surf zone of plunging breakers. Another776
possible reason could be air-bubbles entrained in the plunging surf zone. The present study777
has not specifically employed a model for the air bubbles/pockets. The bubble-mass cascade778
phenomena (Chan et al. 2021) and the bubble break-up in the inner surf zone may further779
increase the flow resistance. These may be interesting to investigate in future work.780

4. Discussion781

The present work represents the first time that such accurate prediction of the breaking point,782
turbulence characteristics, and evolution of the undertow structure from pre-breaking to the783
inner surf zone has been achieved with a single turbulence closure model for both the spilling784
and plunging breaking cases of Ting & Kirby (1994, 1996), which have widely served as the785
basis for validating breaking wave models over the past two decades. In what follows, we786
provide a discussion of the results and problems encountered in previous studies which have787
attempted to model breaking waves with comparable CFD models. Such results mainly fall788
into three categories:789

(i) Over-production of turbulence prior to breaking, especially in the spilling case.790
Models in this category become polluted due to unphysical turbulence over-production during791
the shoaling process i.e. before the wave breaking process even starts, and therefore cannot792
claim to have modelled the processes leading up to and including the surf zone correctly.793
Results in this category typically stem from two-equation closure models in their standard794
forms, as the analysis of Larsen & Fuhrman (2018) has proved that these are (asymptotically)795
unconditionally unstable in nearly potential flow regions beneath non-breaking surfacewaves.796
Numerous examples include wave breaking simulations using standard formulations of the797
k-ε turbulence model (e.g. Lin & Liu 1998; Bradford 2000; Xie 2013; Brown et al. 2016;798
Derakhti et al. 2016b). Results using the “non-stabilized” (standard) variant of the realizable799
k-ε model to simulate breaking waves by Fuhrman & Li (2020) also fall into this category.800
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The same problem is also evident in SPH simulations coupled with a k-ε model (e.g. Shao801
2006). Likewise, results from k-ω or k-ω SST closure models have also demonstrated the802
same turbulence over-production problem (e.g. Brown et al. 2016; Devolder et al. 2018; Liu803
et al. 2020). Results using “non-stabilized” variants of the k-ω model by Larsen & Fuhrman804
(2018), i.e. those having λ2 = 0 (their notation), would similarly fall into this category. In805
some other works employing standard two-equation models, the undertow velocity profiles806
and turbulence were simply not presented. For example, Lupieri & Contento (2015) utilized807
the k-ω SST model, but did not present undertow and turbulent kinetic energy predictions.808
However, the phase-averaged surface elevations for both spilling and plunging breakers near809
the breaking point were significantly under predicted, which would be consistent with a810
polluted pre-breaking region, causing the simulated waves to decay prematurely. Similarly,811
Chella et al. (2015) utilized a standard k-ω model to simulate breaking waves, but did not812
present detailed predictions of either undertow or turbulence. As turbulence models of this813
type were shown by Larsen & Fuhrman (2018) to be formally unstable, combined with814
the numerous simulations with similar models leading to turbulence over-production noted815
above, there would seem to be little doubt as to the inherent instability in the nearly potential816
flow leading up to wave breaking in their model. It is worth mentioning that some recent817
notable works using two-equation turbulence closure models have attempted to improve the818
accuracy of breaking wave modelling by focusing on the air-water interface region near the819
surface. For example, Devolder et al. (2018) added buoyancy production terms to the k-ω and820
k-ω SST models, to account for density gradients near the air-water interface. Additionally,821
Liu et al. (2020) applied a free surface jump condition to the k-ω SST model, while also822
separately considering a variant incorporating buoyancy production as in Devolder et al.823
(2018), to simulate the experiments of Ting & Kirby (1994, 1996). Their works showed that824
such features could improve prediction of the breaking point relative to standard models825
without these features. However, over-production of turbulence prior to breaking still clearly826
persists in these models, which is especially apparent in the spilling case, as can clearly827
be seen e.g. in figure 17 of Liu et al. (2020). This is also clear from results of Larsen &828
Fuhrman (2018) and Larsen et al. (2020) using “non-stabilized” models, but where buoyancy829
production was still included, as also discussed by Fuhrman & Larsen (2020). These results830
thus collectively indicate that, while inclusion of buoyancy production will cause a local sink831
of turbulent kinetic energy near the free surface (and thus may be beneficial), it does little832
to stabilize two-equation turbulence models (and hence avoid turbulence over-production) in833
the nearly potential flow core region prior to breaking as a whole.834
(ii) Turbulence over-production eliminated prior to breaking, but undertow poorly835

predicted in the inner or outer surf zone. This category consists of CFD simulations836
using turbulence models which avoid turbulence over-production prior to breaking, but837
typically yield poor undertow velocity structure and/or magnitude in either the outer or838
the inner surf zone e.g. Mayer & Madsen (2000), Jacobsen et al. (2012, 2014), Larsen &839
Fuhrman (2018), and Fuhrman & Li (2020). This category can be further sub-divided into840
those turbulence closure models which incorporate a conventional stress-limiter on the eddy841
viscosity (corresponding to λ1 > 0 in the notation of Larsen & Fuhrman 2018), and those842
which do not (corresponding to λ1 = 0, again in their notation).Mayer&Madsen (2000)made843
the first attempt to control the instability inherent in the standard k-ω model through ad-hoc844
modification of the production terms (i.e. the production terms in the k andω equations were845
modified to be based on the rotation-rate tensor instead of the strain-rate tensor). Jacobsen846
et al. (2012, 2014) adopted the modification of Mayer & Madsen (2000), such that the847
turbulence over-production in the potential flow region prior to breaking was avoided, while848
also incorporating a conventional stress-limiter on the eddy viscosity. The resulting model849
yielded reasonable prediction of the undertow velocity structure in the spilling breaking case850
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of Ting & Kirby (1994), both prior to breaking and in the outer surf zone, but unfortunately851
resulted in exaggerated undertow magnitudes (by approximately a factor of two) in the852
inner surf zone. Larsen & Fuhrman (2018) discussed theoretical inconsistencies with the853
modification proposed by Mayer & Madsen (2000) (namely, that it leaves the Reynolds854
stress tensor doubly-defined) and instead formally stabilized two-equation models through855
re-formulation of the eddy viscosity. Fuhrman & Li (2020) adopted a similar approach and856
stabilized the realizable k-ε model. The “stabilized” model results of Larsen & Fuhrman857
(2018) with the conventional stress-limiter on (λ1 > 0) were qualitatively similar to those858
of Jacobsen et al. (2012), with undertow velocity profiles quite accurate prior to breaking859
and in the outer surf zone, but exaggerated in the inner surf zone. Larsen & Fuhrman860
(2018) additionally conducted simulations where their “stabilized” closure models had the861
conventional stress-limiter switched off (λ1 = 0 in their notation). This variant produced862
quite accurate undertow profiles in the inner surf zone, but at the expense of grossly over-863
predicted turbulence levels and erroneous undertow structure in the outer surf zone. From this864
comparison, it seems clear that the classical Boussinesq approximation utilized within two-865
equation turbulence closure models (even with advanced features, such as stress-limiters)866
is not capable of yielding the correct evolution of the flow resistance beneath breaking867
waves over the entirety of the surf zone, even in the relatively calm conditions associated868
with spilling breaking. Experience with “stabilized” closure models in the CFD simulation of869
plunging breaking waves (Larsen et al. 2020; Sumer& Fuhrman 2020) has likewise produced870
results that are generally consistent with those described above. As such, while the models871
cited above avoid over-production of turbulence in potential flow regions prior to the onset872
of breaking, none can reasonably claim to have accurately simulated the breaking process873
(including accurate evolution of the undertow velocity profile) across the entirety of the surf874
zone in either the spilling or plunging cases of Ting & Kirby (1994, 1996).875
(iii) Results simulated with other CFD approach such as LES and SPH with a sub-876

grid scale turbulence model. We finally discuss results from a third category, consisting877
of models not working within the confines of Reynolds-averaged Navier-Stokes equations.878
Watanabe & Saeki (1999) applied LES with a sub-grid scale model to simulate breaking879
waves. However, their model was only qualitatively validated. Christensen (2006) simulated880
both spilling and plunging breaking wave experiments of Ting & Kirby (1994, 1996) with881
LES and two different sub-grid scale models, one in terms of the Smagorinskymodel, and the882
other based on the k-equation. However, compared to the present results, the breaking points883
were not accurately captured and the turbulence levels were in general too high compared884
to experiments of Ting & Kirby (1994, 1996). Zhou et al. (2017) also conducted LES with885
a Lagrangian dynamic sub-grid closure model. Their model over-predicted the turbulent886
intensity especially near the surface. The undertow velocities were more or less similar to the887
work of Jacobsen et al. (2014) which have been classified into category (ii) above. Makris888
et al. (2016) applied an SPH approach with a Smagorinsky-type sub-particle scale approach,889
which is similar to the LES concept. Their study on a weakly plunging breaker showed clear890
underestimation of the ensemble-averaged surface elevation at the incipient breaking region891
compared to the experiment of Stansby & Feng (2005). Lowe et al. (2019) also conducted an892
SPH simulation for breaking waves, and it was found that the turbulent kinetic energy was893
over-predicted with this approach, even with no sub-particle scale turbulence closure models894
included. This over-prediction was even greater with inclusion of a sub-grid scale model.895
They specifically highlighted the need for further improvement in sub-grid scale turbulence896
models within the surf zone.897
In contrast to those models discussed above, the present study marks the first time that the898

Wilcox (2006) stress-ω Reynolds stress model has been utilized to simulate the multiphase899
wave breaking process. As can be seen from the results presented and discussed above, this900
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approach solves several of the problems which have consistently plagued other comparable901
models of breaking waves over the past two decades. Most notably, the present results902
have demonstrated, for both spilling and plunging breaking cases: (1) no turbulence over-903
production prior to breaking, (2) accurate prediction of the breaking point, (3) reasonable904
(though certainly not perfect) evolution of turbulence quantities within the surf zone, and (4)905
undertow velocity profile structure and magnitudes for the spilling breaker are in line with906
measurements from pre-breaking regions all the way to the outer and inner surf zones, while907
for the plunging breaker the undertow results are largely improved comparing to the best908
two-equation model of Larsen & Fuhrman (2018), especially in the inner surf zone. Hence,909
the present model seemingly provides the most accurate and consistent (for both spilling910
and plunging cases) description of the turbulent wave breaking process achieved with CFD911
models to date.912
Indeed, many of the issues faced by the comparable CFD models discussed above are913

rather naturally avoided with the stress-ω turbulence closure. As proved in Section 2, this914
model is formally (neutrally) stable in the potential flow region beneath non-breaking surface915
waves. Hence, it avoids (without any modification) the over-production of turbulence prior916
to breaking plaguing the standard two-equation models in category (i) above. Following917
Devolder et al. (2018) and Larsen & Fuhrman (2018), we have additionally added buoyancy918
production to this model, such that these benefits are likewise retained. Finally, the stress-ω919
model breaks free of the Boussinesq approximation, and hence the eddy viscosity concept920
(and associated complications such as stress-limiters) altogether. Rather, the Reynolds stress921
is allowed to evolve according to its own governing equation, resulting in a model that is both922
theoretically superior, and more capable of predicting the dynamic variations in the flow923
resistance that arise between the outer and inner surf zones. This freedom seems to solve the924
problem consistently encountered by the models falling into category (ii) above, where users925
were seemingly faced with having to choose between accurate undertow profiles in either926
the outer or inner surf zone. It is finally worth mentioning that, by still working within the927
confines of Reynolds-averaged equations, the stress-ωmodel additionally avoids the practical928
resolution issues that are commonly faced and raised in LES applications, while also avoiding929
any need for sub-grid scalemodelling, as described in relation to category (iii) above. It would930
thus seemingly offer an attractive compromise that has been under-utilized to date, providing931
a turbulence model that is dynamic enough to handle the inherently complicated surf zone932
at reasonable computational expense.933

5. Conclusions934

The present work has considered the Reynolds stress-ω model of Wilcox (2006), as a935
new candidate for providing turbulence closure in the CFD simulation of breaking waves936
with Reynolds-averaged Navier-Stokes equations. We have first conducted novel stability937
analysis of this model, formally proving that it is neutrally stable in the potential flow region938
beneath non-breaking surface waves. Unlike simpler two-equation models in their standard939
forms (see Larsen & Fuhrman 2018), this model should therefore not lead to unphysical940
exponential growth of turbulence during the shoaling process leading up to incipient breaking.941
Comparison with prior analysis of two-equation models has also definitively shown that their942
instability arises as a result of the widely-utilized Boussinesq approximation. The stability943
of the stress-ω model in potential flow regions has been directly confirmed through CFD944
simulations involving a progressive surface wave train.945
As coastal waves (both breaking and non-breaking) also involve a wave boundary layer946

at the sea bottom, the stress-ω model has subsequently been applied to simulate unsteady947
oscillatory turbulent wave boundary layer flow, as measured by Jensen et al. (1989). The948
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computational results are generally in line with those measured, with notable improvement949
over two-equation turbulence closures apparent in the deceleration stage, where e.g. the k-ω950
turbulence model fails to accurately capture the turbulence kinetic energy and the Reynolds951
shear stress distribution. The stress-ω model has improved the accuracy for predicting the952
anisotropic Reynolds normal stress and Reynolds shear stress components within the wave953
boundary layer.954
This work has culminatedwith CFD simulations employing the stress-ω turbulence closure955

model in the simulation of both the spilling and plunging breaking wave cases of Ting &956
Kirby (1994, 1996). Surface elevation envelopes, turbulence characteristics and undertow957
velocity profiles have been predicted with consistent accuracy maintained from pre-breaking958
all the way into the inner surf zone in both cases. Comparison with the stabilized k-ω model959
of Larsen& Fuhrman (2018) demonstrates that bothmodels predict Reynolds normal stresses960
(and turbulent kinetic energy) that are reasonably in line with measurements. Both models961
likewise predict similar undertow velocity profiles prior to breaking and in the outer surf zone.962
In the inner surf zone, however, the Larsen & Fuhrman (2018) k-ω model predicts undertow963
velocity profiles that are exaggerated by approximately a factor of two in magnitude relative964
to measurements, a feature that has similarly plagued several other two-equation turbulence965
closure models in the literature. The stress-ω model, on the other hand, generally results in966
undertow velocity profiles that are reasonably accurate (both in the uniformity of structure967
and magnitude) throughout the surf zone. These differences have been shown to stem from968
predictions in the Reynolds shear stresses within the inner surf zone, which are significantly969
larger with the stress-ω model (near the surface in the spilling case, more distributed across970
the depth in the plunging case). This in turn results in greater flow resistance in the inner surf971
zone. Based on a survey of previous CFD simulations of breaking waves in the literature,972
we conclude that the stress-ω model considered herein is seemingly the first demonstrating973
the collective ability to: (1) naturally avoid turbulence over-production prior to breaking,974
(2) accurately predict the breaking point, (3) provide reasonable evolution of turbulent975
normal stresses across the surf zone, while also providing (4) accurate undertow structure976
and magnitude from pre-breaking regions all the way to the outer and inner surf zones for977
the spilling breaking waves, and improvement for the plunging breaking waves compared to978
previous numerical simulations. It may therefore be useful for other studies involving various979
aspects of breaking waves, as it seems to have been under-utilized in the literature to date.980
The authors are freely releasing their source code implemented in the OpenFOAM framework,981
to hopefully help make such applications more accessible, as described in more detail in the982
next section.983
While the present work has focused primarily on analysis and applications of the Wilcox984

(2006) stress-ω model, a stability analysis of the Launder et al. (1975) (LRR) Reynolds985
stress-ε turbulence closure model in the potential flow region beneath non-breaking waves986
is also novelly considered in Appendix B, for completeness. Similar to our findings for the987
stress-ωmodel, the stress-εmodel is likewise proved to be neutrally stable. This has similarly988
been confirmed through CFD simulation of a propagating wave train, similar to Section 3.1.989
The likely explanation of the turbulence over-production experienced by Brown et al. (2016)990
is also provided there.991

Availability of source codes992

The source code implemented and utilized in the present work is publicly available at: https:993
//github.com/LiYZPearl/ReynoldsStressTurbulenceModels. This includes our im-994
plementations of all turbulence models utilized within, namely the Wilcox (2006) stress-ω995
and k-ω models, for use in both single- and two-phase flow simulations (including buoyancy996

https://github.com/LiYZPearl/ReynoldsStressTurbulenceModels
https://github.com/LiYZPearl/ReynoldsStressTurbulenceModels
https://github.com/LiYZPearl/ReynoldsStressTurbulenceModels
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production terms). In case of the k-ωmodel, the two-phase flow implementation also includes997
stabilization of the model as described in Larsen & Fuhrman (2018), deemed the LF18model998
within. The OpenFOAM set-ups for the simulations presented herein of the turbulent wave999
boundary layer, as well as both spilling and plunging breaking wave cases, are likewise1000
provided as tutorials.1001

Acknowledgement1002

The first author acknowledges financial support from the European Union’s Horizon 20201003
research and innovation program, Marie Sklodowska-Curie Grant No. 713683 (COFUND-1004
fellowsDTU, H. C. Ørsted Postdoc project SUBSEA: SimUlating Breaking waves and1005
SEdiment trAnsport with stabilized turbulence models). The third and the last authors1006
acknowledge financial support from the Independent Research Fund Denmark (project1007
SWASH: Simulating WAve Surfzone Hydrodynamics and sea bed morphology, Grant No.1008
8022- 00137B). This support is greatly appreciated.1009

Declaration of interests1010

The authors report no conflict of interest.1011

Appendix A. Buoyancy production term for the Wilcox (2006) stress-ω model1012

In this appendix we will derive the buoyancy production term for use in the Wilcox (2006)1013
stress-ω turbulence closure model equation (2.1). The derivation of the buoyancy production1014
term starts from the exact form given in Burchard (2002, p. 18):1015

Bi j =
1
ρ0

(
giu′j ρ

′ + gju′iρ
′

)
(A 1)1016

FollowingBurchard (2002, p. 37), the correlation between the fluctuating velocity and density1017
can be written as1018

u′j ρ
′ = −α∗b

k
ω

∂ρ̄

∂xj
(A 2)1019

where k/ω here effectively plays the role of the eddy viscosity. Invoking (A 2) within (A 1),1020
the buoyancy production term becomes:1021

Bi j = −α
∗
b

k
ω

Ni j (A 3)1022

where Ni j is from (2.5). This matches the term seen within (2.1).1023
Note that taking half the trace of Bi j above leads to:1024

Bk = −
1
2

Bii = α
∗
b

k
ω

N2, N2 =
gi

ρ0

∂ρ̄

∂xi
. (A 4)1025

This matches the buoyancy production term utilized in the k-ω turbulence closure model by1026
Larsen & Fuhrman (2018). They showed that requiring the steady-state Richardson number1027
to be smaller than 0.25 (Schumann &Gerz 1995; Burchard 2002) corresponds to a minimum1028
value α∗

b
= 1.36. This value has similarly been adopted within the Wilcox (2006) stress-ω1029

model (which did not originally include a buoyancy production term) in the present work.1030
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Appendix B. Stability analysis of the Launder et al. (1975) stress-ε model1031

The stress-ε closure model of Launder et al. (1975) (called the LRR stress-ε model in the1032
present work), with additional buoyancy production terms (derived similar to above), may1033
be written in full as:1035

∂ρ̄τi j

∂t︸︷︷︸
Time variation

+ ūk
∂ρ̄τi j

∂xk︸   ︷︷   ︸
Convection

= − ρ̄Pi j︸︷︷︸
Production

+
2
3
ρ̄εδi j︸  ︷︷  ︸

Dissipation

− ρ̄Πi j︸︷︷︸
Pressure-strain

+ ρ̄
Cµ
Pr

k2

ε
Ni j︸       ︷︷       ︸

Buoyancy production

−Cs
∂
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[
ρ̄k
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(B 1)1036
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+ ū j
∂ρ̄ε

∂xj︸ ︷︷ ︸
Convection

= ρ̄C1ε
ε

k
τi j
∂ūi
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where1041

Πi j = C1
ε

k
(τi j +

2
3

kδi j) − α̂(Pi j −
2
3

Pδi j) − β̂(Di j −
2
3

Pδi j)
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1
3
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0.125

ε

k
(τi j +

2
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]
k3/2

εn
.

(B 3)1042

The last term on the right-hand side of (B 3) is the LRR stress-ε wall-reflection term, where1043
n is the distance normal to the surface. In the above ε is the turbulence dissipation rate, and1044
Pi j and Di j are respectively defined in (2.7) and (2.8). The closure coefficients are (Gibson1045
& Launder 1978):1046

Cµ = 0.09, C1 = 1.8, C2 = 0.60
α̂ = (8 + C2)/11, β̂ = (8C2 − 2)/11, γ̂ = (60C2 − 4)/55
Cs = 0.11, Cε = 0.18, C1ε = 1.44
C2ε = 1.92, C3ε = −0.33, Pr = 0.85

(B 4)1047

withC3ε = −0.33 and (the Prandtl number) Pr = 0.85 adopted from the standard k-ε closure1048
model.1049
Similar to the Wilcox (2006) stress-ωmodel, the governing equations for the LRR stress-ε1050

model defined in (B 1) and (B 2) can be simplified for stability analysis purposes in the 2D1051
potential flow region beneath propagating surface water waves. An additional assumption is1052
made that the term for the near-wall effect in the pressure-strain correlation is negligible.1053
This is justifiable in the potential flow region above the bottom boundary layer. Following1054
the derivation in Section 2.2, the analogous resulting simplified k, τ12 and ε equations for1055
the LRR stress-ε model are:1056

∂k
∂t
= 2τ12S12 − ε (B 5)1057
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1058
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3
−

4
3
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4
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)
kS12 − C1

ε

k
τ12 (B 6)1059

∂ε

∂t
= 2C1ε

ε

k
τ12S12 − C2ε

ε2

k
(B 7)1060

To perform a stability analysis on the three-equation system above, it turns to be convenient1061
to utilize two utility variables, namely Ψ = k/τ12 and Ξ = ε/τ12. The equations for these1062
quantities work out to be:1063

∂Ψ

∂t
=
∂(k/τ12)

∂t
=

(
4
3
α̂ +

4
3
β̂ − γ̂ −

4
3

)
︸                    ︷︷                    ︸

−8/15

Ψ
2S12 + (C1 − 1)Ξ + 2S12 (B 8)1064

∂Ξ
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−8/15

ΨΞS12 + (C1 − C2ε)
Ξ2

Ψ
+ 2C1ε

Ξ

Ψ
S12 (B 9)1065

Setting both (B 8) and (B 9) equal to zero, their (constant) asymptotic equilibrium values can1066
be found as:1067

Ψ∞ = ±

√
6 ·

C1 + C1ε − C1C1ε − C2ε

(C2ε − 1)(4α̂ + 4β̂ − 3γ̂ − 4)
≈ ±2.277 (B 10)1068

1069
Ξ∞

S12
=

2(C1ε − 1)
C2ε − 1

≈ 0.957 (B 11)1070

Thus the fix points for the nonlinear ODEs (B 8)–(B 9) are (Ψ∞,Ξ∞) = (±2.277,0.957S12).1071
To check for formal stability of these two fixed points, the Jacobian matrix for (B 8)–(B 9) is1072
defined as1073

J =


∂

∂Ψ
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(
∂Ξ

∂t

)  (B 12)1074

After invoking the right-hand sides of (B 8)–(B 9) in the above, in addition to the model1075
closure coefficients, this becomes:1076

J =


−1.067S12Ψ 0.8
0.12Ξ2

Ψ2 − 0.533S12Ξ −
2.88S12Ξ

Ψ2 −0.533ΨS12 +
2.88S12

Ψ
−

0.24Ξ
Ψ

 (B 13)1077

After linearizing about the fixed points (Ψ∞,Ξ∞), the eigenvalues of J are found to be1078
(−2.012,−0.4663)|S12 |. As these are negative, the fixed points correspond to stable nodes,1079
similar to what was found for the stress-ω model.1080
Now inserting these fixed points (Ψ∞,Ξ∞) back into (B 5) and (B 6) and simplifying, then1081

leads to the following linearized equation for the exponential growth rate for k:1082

Γ∞ =
1
k
∂k
∂t
=

2S12 − Ξ∞

Ψ∞
(B 14)1083
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Substituting the closure coefficients finally yields:1084

Γ∞ = (C2ε − C1ε)

√√√
2
3
·

(
4α̂ + 4β̂ − 3γ̂ − 4

)
(C2ε − 1)(C1 + Cε − C1C1ε − C2ε)

· |S12 | ≈ 0.458 · |S12 | (B 15)1085

As discussed in Section 2.2, since 〈S12〉 = 0 in the idealized potential flow region beneath1086
propagating waves, then Γ∞ will (on average) likewise be zero. Therefore, this proves that,1087
similar to the Wilcox (2006) stress-ω model, the LRR stress-ε model is neutrally stable in1088
the ideal potential flow region beneath non-breaking surface waves.1089

While the model analyzed above has not been the main focus of the present work, for1090
the sake of completeness the progressive wave train simulations from Section 3.1 have also1091
been repeated using the LRR stress-ε model, maintaining the same schemes and settings as1092
before (maximum Courant number Co = 0.05). The results for the free surface elevations are1093
presented in figure 25(a, simulated with buoyancy production terms on) and figure 25(b, with1094
buoyancy production terms off). They are unsurprisingly identical and similar to those from1095
the Wilcox (2006) stress-ω model (figure 3a). The period- and depth-averaged k/k0 time1096
series are presented in figure 25(e). The black solid line (with buoyancy production terms1097
on) has an immediate decrease of k, while the black dashed line (with buoyancy production1098
terms off) has a zero growth of k in the early stage and then decreases at the same rate1099
as the solid line. Both simulations are stable, confirming our analysis. It is noted that the1100
simulations with the Wilcox (2006) stress-ω model and LRR stress-ε model are essentially1101
consistent with buoyancy production terms on (comparing figures 3 and 25 in the black1102
solid lines). Conversely, the wave trains simulated with buoyancy production terms off are1103
different in the growth rate, i.e. the Wilcox (2006) stress-ω model has a zero growth rate1104
in general (figure 3b, black dashed-dotted line), while the LRR stress-ε model has a zero1105
growth in the beginning and a decreasing k later on (figure 25e, black dashed line). This1106
slight difference may due to the wall-reflection term in the LRR stress-ε model which could1107
be interesting to investigate in detail in future work. These results, combined with those1108
in the main text, thus demonstrate that RSM models (both stress-ω and stress-ε variants)1109
are generally (neutrally) stable in the idealized potential flow region beneath non-breaking1110
surfacewaves. They should therefore not be expected to suffer from the problem of unphysical1111
over-production (exponential growth) of turbulence in potential flow regions prior to wave1112
breaking, common to many two-equation turbulence closure models in their standard forms,1113
as shown by Larsen & Fuhrman (2018).1114

A final remaining open question (which we shall now attempt to close) is: Why then did1115
Brown et al. (2016) experience pronounced over-production of turbulence prior to spilling1116
breaking in their CFD simulation using the LRR stress-εmodel? In this context, it is important1117
to emphasize that for the analysis (predicting neutral stability) above to hold in practice, a1118
CFD model must maintain the nearly potential flow region beneath a surface wave with1119
sufficient accuracy such that 〈S12〉 ≈ 0. If this is not the case, since Γ∞ ∼ |S12 | in (B 15), then1120
our analysis suggests RSMs may, in fact, still be prone to unphysical exponential growth of1121
turbulence beneath non-breaking waves, if they do not solve the flowwith sufficient accuracy.1122
We hypothesize that this is precisely what has occurred in the simulation of Brown et al.1123
(2016) mentioned just above. Note that Brown et al. (2016) utilized a significantly larger1124
maximum Courant number (Co = 0.2, hence numerical time step) than considered herein1125
(the present results have uniformly used Co = 0.05). Moreover, Larsen et al. (2019) have1126
specifically demonstrated that such large Courant numbers can indeed lead to pronounced1127
inaccuracies in the resulting flowkinematics (hence S12), even beneath computed free surfaces1128
that may otherwise appear reasonable. To test this hypothesis, we will repeat our simulation1129



39

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

-0.5

0

0.5

1

0 10 20 30 40 50 60 70 80 90 100

10
-4

10
0

10
3

Figure 25: Computed time series of (a)–(d) surface elevations and (e) depth- and
period-averaged turbulent kinetic energy beneath wave trains simulated with the LRR
stress-ε model. The results depicted as blue dashed lines in (d) and (e), with Co = 0.20
and without buoyancy production terms, are chosen to match most closely those used by

Brown et al. (2016).

of the wave train above, but now with Co = 0.2, while also switching schemes to those stated1130
by Brown et al. (2016). We consider two otherwise-identical simulations, having buoyancy1131
production terms both on (Pr = 0.85, as before) and off (Pr = ∞, as in Brown et al. 2016).1132
These results are respectively also shown as the pink (dashed-dotted) and blue (dashed)1133
lines in figure 25. For the case believed to most-resemble the setup used by Brown et al.1134
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(2016) (blue dashed lines in figure 25d,e) it is seen that, due to accumulated numerical1135
errors in the velocity kinematics, the turbulence indeed begins to grow exponentially already1136
by t/T = 10. By t/T = 20 the turbulence has reached several hundred times the initial1137
level, becoming large enough to cause unphysical decay of the wave train. A similar (but1138
delayed) process occurs for the case with buoyancy production terms on (figure 25c,e, pink1139
dashed-dotted lines). Based on these results, it seems clear that the over-production of pre-1140
breaking turbulence experienced by Brown et al. (2016) with the LRR stress-ε model can1141
be attributed to numerical inaccuracies in the velocity kinematics (hence S12) during their1142
simulated shoaling stage. These inaccuracies can be attributed to the larger Courant number1143
used, in accordance with what has been shown previously (there without a turbulence model)1144
by Larsen et al. (2019). Because buoyancy production terms create a sink of turbulence in1145
the air-water interface region, their inclusion may delay the onset of this problem, but will1146
not eliminate it. Similar issues could be expected with the stress-ωmodel if accurate velocity1147
kinematics are not maintained in nearly-potential flow regions beneath surface waves, since1148
similarly Γ∞ ∼ |S12 | in (2.28), though the predicted growth rate would be smaller due to the1149
lower coefficient in front of |S12 |.1150

Appendix C. Alternative stability analysis of the stress-ω model using eigenvalues1151

During the peer review process of the present paper, it became apparent that the stability of1152
the turbulence closure models could be equivalently analyzed based on eigenvalues of the1153
Jacobian matrix, after linearizing about the fixed points. We will hence briefly outline this1154
procedure in what follows for the stress-ω closure model.1155
The Jacobianmatrix for the simplified stress-ωmodel governing equations in (2.18)–(2.20)1156

is defined by:1157
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(C 1)1158

After invoking the right-hand sides of (2.18)–(2.20) in the above, in addition to the model1159
closure coefficients, this becomes:1160

J =


−0.09ω 2S12 −0.09k
0.53S12 −0.162ω −0.162τ12

−
1.04S12τ12ω

k2
1.04S12ω

k
1.04S12τ12

k
− 0.1416ω

 (C 2)1161

Further invoking k = Ψτ12 and linearizing about (i.e. inserting) the fixed points from (2.23)–1162
(2.24), the eigenvalues of J are found to be: (−1.675,−0.5891,0.2831)|S12 |. It is seen that1163
the critical (third) eigenvalue matches precisely the asymptotic growth rate Γ∞ from (2.28),1164
confirming our analysis in the main text.1165
Although we will not present full details for the sake of brevity, we have also conducted1166

an analogous stability analysis of the LRR stress-ε model equations defined in (B 5)–(B 7).1167
Should the interested reader wish to repeat said analysis, we find that the eigenvalues of1168
the Jacobian matrix, after linearizing about the fixed points for this system, correspond to:1169
(−1.555,−0.008060,0.4583)|S12 |. It is again seen that the critical (third) eigenvalue matches1170
precisely the growth rate Γ∞ from (B 15).1171
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