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Abstract
The evolution of the electron-beam phase space distribution in laser-
driven RF guns is studied by taking into account both the time variation
of the RF field and space-charge effects. In particular, simple formulas are
derived for the transverse and longitudinal emittances at the exit of the
gun. Tilé’résults are compared and found to agree well with those from

simulation.



1 Introduction

Lasef-driven rf electron gxihs(l) are potential sources of"high'-current, low-
emittance, short bunch-length electron beams, which are reéﬁired for hiany
advanced accelerator applications, such as free;électfon lésers and injecl:tors
for high-energy machines. In such guns the tde.'sign of which was pioneered
at los Alamos National Laboratory(®) :;Lﬁd is currently being developéd at
several other laboratories(?34), a high-power laser beam illuminates a photo-
cathode surface placed on an end wall of an rf cavity. The emitted electrons
are accelerated immediately to a relativistic energy by the strong rfr field
in the cavity. The main advantages of this type of guh are that the time
structure of the electron beam is controlled by the laser, éliminating the
need for buhchers, and that the electric field in rf cavities ca.n‘be made very
strong, so'that the degrading effects due to space-charge repulsion can be
minimized. In this paper, .we analyze the beam dynamics: in the rf cavities
to obtain the éxpres‘sions for the transverse and -.longitudi.nal'emittaﬁces of
the electrpnv beams emerging from laser-driven of guns.

A study of electron-beam dynarhics in rf guns needs to take into account
several effects, éuch as those due to the time variation of fhe rf ﬁéld over
the durtatio'n. of ﬁ‘he acceleration period and over the duration of the electron
pulse and those aue to the space-charge repulsion. A rigorous analysis of
these effects is probably too complicated to be useful. The goal in this
paper is to obtain approximafe and simple expressioné that refain the main
physical effects. R '

In Section 2 we study the rf acceleration process. We simplify the calcu-



lation by assuming that only a single standing-wave component is present.
However, contrary to what is done for long linear accelerators(®), we do not
neglect the contribution from the reflected wave. We solve the rf accelera-
tion equation apprmcim#tely after noting that the variation of the rf phase
¢ = wt — kz + ¢o is significant only at the beginning of the acceleration
period. The result agrees reasonably well with exact calculations. Because
of the time-variation of the rf field, the electron distribﬁtion occubies curved
regions in phase-space. We calculate the longitudinal emittanée associated
with this effect.

In Section 3 we consider the effects of the rf acceleration on transverse
dynamics. Given that the longitudina.lvelectric field is uniform in the trans-
verse direction, the expression for the transverse force is xiniquely determined
from Maxwell’s equations.” The transverse momentum imparted to an elec-
tron is obtained by assuming that the electron’s transverse coord_inates re-
main constant during acceleration by the rf field. .VVVith this approximation,
a net transverse momentum transfer to electrons occurs ;ﬁly in-the vicin-
ity of the cavity exit. We calculate the transverse emitt;nce which arises
from the fact that electrons at different longitudinal positions near the exit
receive different transverse kicks due to the variation of the rf field.

Iﬁ Section 4 we ca]cula,te4the transverse and the longitudinal emittances
resulting from the space-charge effects. We simplify the calculation by as-
suming that all electrons move with identical velocity, so that the space-
éharge force is purely electrostatic in the frame of reference that moves with

the electrons. A further simplification is achieved by noting that the influ-



ence of the space-charge force is weighted by a factor 1/428, which heavily
. emphasizes the region of the cavity near the cathode where the electrons are
still non-relativisitic.

Section 5 contains further djscussiéns and conclusions. First, the paperis
summarized by recapitulating the main formulas derived therein. Then the
results of the analytical calculations are compared with those from numerical
simulation. The. agfeemeﬁt is found to be satisfactory. Finally, we conclude
by listing some of the effects not discussed in the paper.

Appe'ndix A contains a discussion of the scaling b;havior for the elec-
trostatic ﬁéld in the limit where the aspect ratio of the charge distribution
either vanishes or becomes large. Aﬁ understanding of the scaling behav-
jor is important for the dériva.tion of Section 4. .In the text; the shape of
the charge distribution was assumed to be Gaussian for the purpose of ex-
plicit calculations. In Appendix B, we list the relevant formulas for the case
where the charge distribution is uniform in a cylinder. Finally, Appendix
C contains a discussion of the correlation between the space—chirge and the
rf effects. It is found that the correlation is not negligible for transverse

emittance.
2 RF Acceleration and Longitudinal Phase Space
2.1 RF Acceleration

- Electrons generated at the cathode are accelerated by the rf field in a cavity.

The electric field along the axis will be assumed to be of the following simple



form: : .
| E, = Eocoskzsin(wt+ o) . )
Here Ej is the peak ac‘celera.ting field, X is the rf wa\}elength,.k =21/ cis
the velocity of light, w = ck, and ¢ is the rf phase as the particlev leaves the
cathode surface z = 0 at ¢ = 0. The field given by Eq.(1) can be considered
to be produced by a sequence of rf cells operating in the r-mode(?). The first
-cell is really a half cell bounded at one side by the c.athode: The coordinates
for the entrance and exit of the (3 + n)th cell are z = (n — 1/2))\/2 and
z = (n+1/2)A/2, respectively. See Fig. (1).

It is convenient to introduce the following quantity

z v : ) ’
=wt—krtdo=k [ (o= -1)d . 2
¢ w ‘Z + ¢0 "o (m ) z + ¢0 . ( )
Here o _ .
1 _ayp= léf)“l |
== GZ) - (3)
‘As usual, 7 is the electron’s relativistic energy divided by the rest energy

mc?, m being the electron mass. We have

ﬂ _ eEo
dz = 2me?

[sin(¢) + sin(¢ + 2kz)] . ~ (4)

The .rf acceleration in the cavity is completje}ly determined by the pair of
.equations.(2) and (4). We assume that electrons leave the cathode with no
kinetic energy, thus v = 1 at z = 0. Equations (2) and (4) are often solved
".by neglecting the second term in Eq.(4), which represents the backward-
propagating wave(®). Such an approximafion is valid for electrons in long
linear accelerators, where the effect of the reflected wave averages to zero.

In our present case, this approximation is not adequate.



To obtain a more appropriate approximation, we first note that the inte-
grand in Eq.(2) is significantly larger than zero only near the cathode surface
where the electrons-are still non-relativistic. In that region, Eq.(4) may also

be replaced by

d eFy . v .
d_z ~ n—w—gsm do . (4.2)

From this, we obtain an approximate expression ¥4 for v |,

¥ =14 2asin(¢o)kz (5)

where .
€E0 }
o= 2mc2k (6)

is a dimensionless parameter representing the strength of the accelerating

field. With the use of (4-a), Eq.(2) can be integrated with the result,

b= o VP 1-(G-D] 440 - (1)

We now insert Eq.(7) into Eq.(4) and integrate. the latter for a better ap-
proximation of . In so doing, we neglect the variation of ¢ with 2. The
result is

v = 1 + a|kzsing + %(cosq& —cos (¢ + 2kz)) . } (8)

The approximate solutions (7) and (8) of Egs. (2) and (4) are compare‘d
with the exact solution in Figs. (2) and (3) for several cases with o = 1
and different values of #0. The agreement is good for v [Fig.(2)]. For ¢ [see
Fig.(3)], the ‘agreement is fair provided:’that éo is not too small. A better

~“approximation to ¢ can be obtained by inserting Eq.(8), in-which ¢ is given



by Eq.(7),.into Eq.(2), and integrating the latter. However, this cannot be

done analyfica.lly, and we will not pu‘rsﬁe this approach further in this paper.
From Eq.(7), we see that the phase ¢ has the asymptotic value

,¢—*¢po=m'+¢o . )

We will show later that the transverse emittance ié minimized when ¢ is

7/2. The initial phase ¢ should then be chosen such that

(m N1 L
(‘2‘ - ¢o> singo =2~ . | (10)
2.2 ' RF Effects on Longitudinal Phase Space Distribution

The spread in the phase A¢ is related to the spread of the longitudinal
positiori by A¢p = —kAz. Therefore, particles with positive A¢ are located
in the trailing part of the electron bunch relative to those with negative Ag.

The longitudinal phase-space is characterized by the pair (z,p,), where

]

P = By _ (11)

is the dimensionless longitudinal momentum. After acceleration, 8 = 1 so
that p, =~ 7.

From Eq.(9), we find the asymptotic bunch compreséion factor

Apes . cosdy
Ado ~ 2asin®¢g (12)

Thus bunches will_iﬁ general be cbmpresséd in length du'rin.g‘thve accelera-
tion process. When 2o 'sin? ¢>0. < cos ¢, Eqﬁ(l?) predicts that the relative

‘positions of particles in z will reverse. However, this reversal is a result of



the approximation used in deriving Eq.(9), which becomes poor fdf'sm'éH
values of ¢o. A‘ numerical solution does not show such a reversal. The rf
effect on (¢,7) phase space can be derlved from Eq (8), which we have seen
[in Fig.(2)] to agree well with exact results(®).. Fi 1rst we consider the phase-
space distribution at the end of the (n+1/2)th cavity, where z = (2n+ 1))\-/4
and thus ‘

y = 1+a‘[(n+1/2)1rsin¢+cos¢] . (13)

As remarked earlier, we are interested in ¢ when it is about /2. The shape
of the ¢ — 7 distribution would look like Fig.(42) when the second term
in Eq.(13) is dominarit, v;fhile it would look like Fig. (4b) when the first
- term is dominant. In the middle of the (n + 1/2)th cavity, z = n)/2, so
Eq.(8) becomes 4 = nn asin ¢+ 1. Thus the phase space distribution around
¢ = 7 /2 will always look like:Fig.(éib).

We write

p: =(p)+Ap,, . z= (Z> + 4z, a o (14)

where (p:) and (z) are the average values of p and z, respectively. The

longitudinal emittance ¢, will be defined as(")

o = [{(Bp(A22) — (B2 = T\(BpPN(B9)) - (Ap)H(Ag)?
' (15)

where the angular brackets represent taking the average values. .
We assume that electrons are relativistic at the end of the (n+ 1/2)th

cav1ty, thus p can be replaced by 7 in Eq.(15). From Eq.(13) \ye obtain

() +Ay=1+al(n+1/2)wsin((¢) + Ag) + cos((¢) + Ag)] . (16)



Setting (¢) = 90° to minimize the transverse emittance(see Section'3), we

obtain by expanding Eq. (16)
' 1 9, &, 3
Ay=-ald- S0y - DA+ AP+, (D)
where vy is the value of (v) at the cavity exit. Introducing the rms quantities
Oay = ((A'Y)?)l/z’ oy = ko, = <(A¢)’2)‘1/2’
we obtain from Eq. (17)
Tay = @Oy = ako, . C . » '(18)

Inserting Eq.(17) into Eq.(15) (Ap & A7), we obtain ¢, in lthg lowest order
in A¢ P _
rfo 1 H)4 2
gl = 20 = DY((A8)(B9) (19)

The superscript r f refers to thelco,ntribution of tlhe time variation of the rf
field. There is also a contribution from the spaclze~charge effects, which will
be coﬁsidered later. The terms involving the ﬁ;st and the third terms in
Eq.(17) cancel and do not appear in Eq.(19). For é Gaussian distribution,
Eq.(19) becomes | , _

el = V3(7; - 1) ko (20)

3 RF Effects in Transverse Phase Space

Let the longitudinal electric field £, be a function of only z and ¢ and be in-
dependent of the transverse coordinates r (radius) and 8 (angle). Assuming

that the fields are independent of §, we determine from Maxwell’s equations



that(®)

r 0 r g ‘

Er = ~.-—§5;Ez, a.nd CB9 = "2_6'& z - ‘_ (21)

The radial force acting on an électron is given by

F, =e(E, — BcBy) . (22)
We now assume that E, is given by the somewhat more generai expression
than Eq.(1) v
: ' E, = E(z)coskzsin(wt + ¢o) . B (23)

One can show from the above equations that

F, =er {—%% (E(2) éin kz cos(wt + ¢o)) — % (%E(z)) cos kz sin(wt + o)
o+ g (d_d.;E(z)> sin kz.cos(w_t + ¢0)} . : - (24)

The equation describing the radial motion is

dp, 1 '
dt mcFr ' (25)

Here p, is the dimensionless radial momentum

ldr
Pr = dt (26)
We integrate Eq.(25) with respect to ¢ to obtain p,. In doing so, we assume
that the transverse deflection is émall so that t.heA radius r can be yegarded
as constaint. Since the first term in Eq.(25) [with Frv given by Eq.(?él)] is a
total time derivative of an expression that vanishes on the Ecggl}gde surface

and at the outside of the cavity exit, its integral vanishes. The contribution

of the second and third terms comes only from the region where dE(z)/dz is

10



non-vanishing, i.e, near the cavity exit. Thus the net mothentim transfer in
our approximation occurs only during the short interval that the electrons
cross the boundary between the cavity and the field-free region.- We take

E(z) to be of the form
E(2)=0(z; —2)Ey , (27)

where 6 is the step function and z = 2y is the coordinate of the exit of the
cavity. Thus, the second and third terms in Eq.(24) become delta functions

and one obtains
Pr = Pry + akr [B cos kzy sin(wt + ¢o) — sin kzy cos(wt + #0)],  (28)

| where a was introduced in Eq.(6). In the followmg, we assume (3, = 0 at

t = 0, thus dropping the first term of Eq. (28) Smce B = 1 near the cavity
exit, Eq.(28) becomes

pr = akrsing. (29)

Here ¢ is the rf phase at the exit of the cavxty Rewntmg Eq. (29) in cartesian

coordinates, we obtam
ps = By = (aksing)e , (30)

where z’ = dz/dz. The phase-space distribution given by Eq.(30) therefore
consists of a collection of lines with different slopes corresponding to different
¢, as illustrated in Fig.(5).

The normalized transverse emittance is(?)

€z = \/px ‘ pz‘ > . (31)

11



From Eqs.(30) and (31) we obtain

ef = ak(z \/(sm }) — sm<'¢>)2 . : (32)

Wrif.ing ¢ = (qS) + A¢>, a,nd a.ssummg that A¢ is sma.ll and symmetrlcally

dlstnbuted one obta.ms '

e;f::ak(x?)\/ [(cam - -§<<A¢>4>] cos2(g) + 3 (A9 — (A4 sin’(g)

This expression is i'ninimized when (¢>) = 90° with the value

ef = akiZ) \/<<A¢>)4> (Ag)2)?2 s(g)=90° - (33)

Away from the minimum, we have -

&f ~ak(@) (B9 [cos(@] 5 () £90°. (34)

If the distribution in A¢ is Gaussian, Eq.(33) becomes

6r,f _ ak($2)0¢2

z = \/5 9

In view of Egs. (29) and (30), the transverse moméntum is maximﬁm when

(¢) = 90°. : (35)

(¢) = 90 ,l.e., when the emittance is minimum. The rms angular dlvergence

oy isin that case given by
a
Op = —kog . - : (36
: 60

Thus it usually will be necessary to focus the beam immediately after leaving

the cavity.

12
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5

4 Space Charge Effects on Beam Emittance .

4.1~ ‘General charge distribution

A repulsive force attributable to space charge causes the emittance to in-

crease. To study this effect, we assume that all electrons are moving with’

the same velocity, v, in the z-direction. In the reference frame .r:nov‘ing with

the electrons, the electromagnetic interaction is completely described by a
purely electrostatic field E’. The field components in the laboratory frame
which give rise to the x- and 'z-compbnents of the force are given by the

Lorentz transformation
_ ’ v _
E;:=vE,, By,= 7c_zEz , E,=FE,
Here, By is the magnetic field. The components of the force are

.Fx = e(EI — 'U.By)z ‘SE; ',. Fz = eE; . : ‘(37)

" In the following, we aésume fhe charge distribution to be cyliﬁdfically sym-

metric, so that we do not need to consider F, separately.

Let us now consider the behavior of F' as v becomes large. The field E’
is a function of v since the bunch dimensions in the moving frame, d’, in the
transverse direction and d/, in the longitudinal d.irection, are related to the

corresponding bunch dimensions in the laboratory frame d; and d. by
d.=d; , d,=7d, ; 0 (38)

that is, the bunch in the moving frame appears to be elongated by a factor

~. In Appendix A, we have summaril‘zed the behavior of the electric field of

13



a general, stationary charge distribution in the limits when the aspect ratio
A’ = d /d], becomes either much smaller or much larger than unity. When
y-is inuch larger than the aspect ratio A in the laboratory frame, A’ = A4/y
‘becomes small. From Eqgs. (A.1) and"(38) it thén '-follows, for a typical point

within the charge distribution,
El:z: ~ 0(7_1)7 Elz ~ 0(7:—2) for y> A

Here f ~ O(7™) means that f scales as 4™ times some slowly varying function

such as (log 7)™. From these it follows tha.t
F~ 0(7‘2) for 7> A (39)

For cases where A is much larger than unity, we need to consider also the
case 1 < v € A. The aspect ratio in the moving frame A’ is then much
larger than unity, in which case we find from Eq. (A.2) that E'; and F',

are both O(1). To summarize these behaviors, it is convenient to write
: . |
F=5t() - (40)
The function f(7) behaves as follows:
()~ 0(1) , 7> A4 (41)

fe~0(7) and f:(7)~0(%) , 17« A, (42)

" The contribution to the electron’s dimensionless momentum due to the

space-charge force is given by

.(pz,py, Apz) =p= _W%C-/th / f(‘)/) dz . (43)

14



Let us assume for the time being that A < 1. From Eq.(41), we see that f(7)
is a slowly varying function of ~. Sincethe factor 1/728 in the integrand
decreases rapidly as the electron accelera_’cés (7 increa.sés’ from unity), the
function f(v) may be replaced by f (1) Also, Eq.(4.a) may be used to replace
the z-integration by a v-integration. Thus we obtain

»= @ [ )

The integration in the above can be done analytically as follows

/wﬂ-—— M1 —1—d =z sin"l(l)

LV B h ioae T 2T N

For 44 > 1, the integral becomes 7 /2. From Egs. (37) and (40), we obtain
(1) = eE*¢ where E* is the electrostatic field due to the charge distribtion

at rest in the laboratory frame. Thus we finally obtain

. 1 T .
. - ) ZE*® -
‘ P Eqgsin ¢g 2 - (45) .

It is convenient to introduce the normalized field €
s _ mo S "
E (37,1/,432) =T 6(‘7:’3/, AZ) . (46)
7 4meg | : » L .
Here (z,y,Az) is the position relative to the bunch center. The axial dis-

tance of the bunch center to the cathode center is z. In the above, ng is the

line density at the bunch center, i.e.,

n’OZ/p(z’yaO)dxdy ’

where p(z,y, z) is the volume density of the charge distribution. The nor-

malized field £ has the dimension of an inverse length. From Eqs.(45), (46),

15



(15) and (31) we obtain

se ™1 1 T
€ = —
' 4aksm¢OIA

—ui(A);i=z or z . (47)

'vHere, a is the dimensionless r f strehgth parameter introduced in Eq. (6)
‘I is the peak current, IA = 47reomc3/e = 17 000A known as the Alfvén

current a.nd

pe(4) = (€D — (€2 -2)? )
ua(4) = VBT — (e B (49)

The dimensionless functions p,;.(A) and p,(A) will be referred to as the
transverse and the longitudinal space-charge factors respectively. The an-
gular brackets in the above represent (as usual) taking the average over the

charge distribution. Thus, for example,
(€2) = / p(a,y, A)EL(s, 9, 02) da dydds

where @ is the total charge in the bunch.

The space-charge factors, being dimensionless, depend on the details of
the charge distribution ohly through the dimensioniess aspect ratio A. From
Egs.(A.1) and (46), it follows that

Ernm =2 0(1), 4—0

’
EO T,z

Thus, the space-charge factors can have at most a logarithmic singularity at
A=0: |
pz(A) ~0(1), p.(A)~0(1) . (50)

16



The limiting behavior of u;(A) as A increases to infinity is as follows: |

pa(A) ~ O(A7Y), pa(4) ~ O(47D), Amvoo . (51)

In deriving Eq.(47), we have_‘_assumed that A < 1 so that the function
f(7y) is slowly varying in ¥y fdr all vy > 1. According to Eq.(42), when A > 1,
the function f(v) in the region 1<v< A does not vary slowly with v. A
proper analysié of the space-éharge emittance in this case i'nvolves‘ integrat-
ing Eq.(43) exactly and evaluating emittances according to Egs. (15) and
(31). We have carried out such calculations and found that the result does
not differ significantly from those obtained by the approximate calculations;
the agreement was better than 5Qtransverse emittance and better than a
factor of two for the longitud'inal.-emi.ttances.‘ We ‘will therefore use the ap-
proximate formula, Eq.(47), for all values of A. The derivation leading to
Eq.(47), which is the main result of this sectiox.m', is'a refinement of a previ-
ous calculation(® in that the variation of the elgctron energy in the cavity

is correctly taken into account.
4.2 Gaussian charge distribution

We apply the general discussion in the above to the case where the charge

density is given by

1 12+ 2 Az . o
: R o aat =
p(z,y,Az) = poe 2[ oz 7—] , (52)

where pg is the charge density at the bunch center, and o (o;) is the rms

beam ‘size in the x (z) direction. Using ng = 2mpooZ, we obtain for the

17



space-charge field(®)

.Y z2+y? + Az? ]
Az) T /‘°° e 2'0%(1+(¢) T o2(1+4%() 53
E Y, = — ]
_l[(x7+y’)A2 4 Ao ]
£.( A7) Az /°° e 2t0i(¢+4%) T oZ(14() 54
2\Z,Y,Az2)= —5 ‘ .
v ? T+ O+ ) (54
Here A is the aspect ratio
oz
A=— .
= (55)

Iﬁ;erting Eqgs. (53) and (54) into Eqs. (48) and (49), we obtain

) 0 1
,uﬂM=A.“L£d“{m+ﬁﬁ+gﬂ4+g+@?

1
TG +GAD 12+ G+ <2>A211/2} (56)

- [/Ooo d¢ 2+ C)2(21+ CAz)l/z]z

: 0 oo 1
pi = [ da | d@{[(A2+cl>(A2+<2)+2A4+(<1+<2>A21

1
CFO+0) +2+ (G +C2)]3/2} (57)

o p 1 2
- Uo C(2A2+C)(2+C)3/2}
In the limit A — 0, p,(A) approaches the value

1 /
/J'I‘(O) = %log

and y,(A) diverges as (log A)2. These behaviors are consistent with Eq.(50).
Also, it is easy to verify that Eq.(51) is satisfied.

S I

1
— = ~0.203 ,
8

18



When Eq.(60) is evaluated numerically, the result can be approximated

by the following simple expression

1

34+5 (58)

/‘xa(A) =

Both pxz(A4) and pge(A) are plotted in Fig.(6).
Similarly, we plot in Fig.(7) the function u,(A). It can be approximated

by
1.1
1+4.54+29A2°

,Uza.(A) = (59)

The calculation of the space-charge factors in the case where the charge

is uniformly distributed in a cylinder is considered in Appendix B.

5 Summary, Comparison:and Conclﬁding Remarks.

5.1 Summary of the Formulas

The paper can be summarized by recapitulating the main formulas as fol-
lows: first, we have introduced the dimensionless parameter characterizing

the rf field strength by

o= eEo
T 2mc?k

6

The expressions for various quantities at the exit of an (% + n)-cell are as

follows: _

*

5.1.1 The phase and energy of the electron

¢s=do+ 2asin ¢

- 19



y=1+4af(n+1/2)rsing+cos¢g] . = (13)

*To minimize the transverse emittance and also to obtain maximum acceler-
ation, one would normally choose ¢y = 90°. We assume that this is case in

- the following. Equation (9) determines the initial phiase ¢q.

5.1.2 The rms energy spread o, and the angular divergence

oay = ako, (18)

L . v

op = —ako, . .. (36)
T

" Here o, and o, /c are the rms width and length in time of the laser pulse.

5.1.3 The emittances due to the rf effect are

r;_ akloio?

r T 9
o =VB(rp - DRSS L (20)

€ | (35) |

5.1.4 The er_nitfances due to the space-charge effect

e _®1 1 T

= (47
e = Lok singy In = () (47)

Here I4 = 17000 Amp and. I is the peak current. :The transverse and the

longitudinal space charge factors, pu, and p., are plotted in Figs. (6) and

(7).
The electron distribution is assumed to be Gaussian in the above. Ap-

‘pendix B gives results relevant for a uniform distribution (a cylinder).
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5.2 Comparison with Simulation

We cbnéid_er the (% +1)-cell gun under construction at Brookhé.veﬁ National
Laboratory and compare the analysis of this paper with the numericai sim-
ulation by McDonald(®, hereafter referred to as KM. The gun parameters
i . : _

eEy = 100MV/m, X = 10.5¢m.
The dimensionless r f strength o [Eq. (6)] corresponding tothis case is

a = 1.64. The optimum initial phase calculated from Eq.(9) by demanding

that the final phase ¢¢ be 90° is g = 71° as compared to ¢g = 68° in KM.

The final v calculated from Eq.(13) by setting n = 1, -¢ = 90°, and the
above value of o is vy = 8.7 as compared to 75 =9.2 in KM.
The rms bunch length is 0, = 0.6 mm or 0y = ko, = 3.6 x 10~2. From

Eq.(18), the corresponding rms energy spread is og = mc?oay = 30 keV

as. compared to o = 17 keViin- KM..- - -

The rms beam transverse size is 0, = 35mm. From Eq.(36), we obtain
the‘transverse angular divergence at the exit of the gun to be p, = ako, /vy =~
40 mrad, which is in rough agreement with Fig.(4) in KM.

The r f contribution to the transverse emittance from Eq.(35) is 1.1 mm-
mrad, as compared to 1.4 mm-mrad in KM (Table 1). The transverse space-
charge factor corresponding to the aspect ratio A = 3.5/0.6 = 6 is, from Fig.
(6), prz ~ 4 x 1072, From Eq.(47) and using I = ¢ x 1 nC/v/2x o, = 2004,
we obtain €° =4 mm-mrad, as compared to €° =6.2 mm-mrad obtained by
KM.

The longitudinal space-charge factor for A = 6 is about 0.01 from Fig.
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(8). The quantity €:°/y; determined from Eq.(47)-is about 1 x 1075 cm.
The longitudinal emittance due to the rf effect is about three times larger
than the space-charge emittance. The total phase-space area is in rough
agreement with the phase-space area.‘indicated by Fig.(5) of KM.

The agreement of our simple theory with the simulation calculation is

encouraging. Further comparison is reported in reference (10).
5.3 Further Remarks

In this paper, wev have developed an approximate but simple theory of elec-
tron beam dynamics in laser-driven rf guns and derived formulas for various
physically interesting quantities such as emittances. These formulas should
be useful in selecting initial parameters for the design of the gun.

There are several effects which are not taken into account in this sim-
ple treatment, such as field non-linearities, higher space harmonics, image-
charge effects, etc. The fact that the results of the simple theory agree
reasonably well with those of detailed simulation suggests that those ef-
fects are small. There are also contributions to the emittances from the
photo-emission process at the cathode surface. These contributions, which
are easy to incorporate into our expressions, are usually much smaller than
those considered in this paper.
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APPENDICES

A Scaling Behavior of the Electrostatic Field for
Limiting Charge Distribution
In thls Appendix, we denve the scaling behavior of the electric field at typ-
1cal points inside a stationary charge dlstmbutxon ‘The transverse and the
longitudinal dimensions of the charge distribution are denoted by djand
d; , respectively. In the limit the aspect ratio A’ = d;/d;, (a thin, cigar-
shaped distribution) the transverse field E, shbuld be of the order (1/¢) X
line density/d, , while the longitudinal ﬁeld E! should be of the order
Q/€o/(longitudinal dimension)?. Thus
Q 1 Q. (1 '
~ = Td and E] ~ _(;O d’2 ,A' = 0. (A1)
In the other limit, where A — oo, (a thin pancake), E’ is of the order

- (1/e€g) x surface density while E] ~ /(transverse dimension)?. Thus

E;N'Q—O —-17 andE;~Q0 % , A" = oo, - (A2)
d’, € \d, .

In the above, O(1/d.?) for example is a quantity of order 1/d.?, except

for a possible logarithmic factor such as (log A’)™, m = an integer.

B Formulas for Uniform Charge Distribution in
a Cylinder

The examples treated in the text are based on the Gaussian ‘charge distri-
bution. In this appendix, we list formulas for the case where the charge

distribution is uniform in a cylinder of radius a and length L.
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‘The relevant moments for the distribution are’ -

: 2 272 are ’
2 & 2 KL o K1
=T (A= (B9 =T (B.1)
Using these in Eqs. (19) and (3.3), we obtain
21372
e o 2OF L 4 ef 2 (-, B.2
'z 4m an 6::' 8\/1:5-(7f ) ‘ ’ ‘ ( )
2 ¢ [7 R_—2z_ ‘
Sx(z,y, Z) — ;r—(;,-;\/o d¢COS ¢10g (—}-z—-l-———;:), . (B3)

. 2 7’ : . : —
eE@n)= g ¢¢{R_—R+_+\/r2+zg_ e
v .(—rcos¢+'\/r2+zi)(a—rcos¢+R_) . '
+7 cos ¢ log — _ (B.4)
' (-rcos¢p+4/r2+22)(a—rcosd+ Ry)
Here r = /22 + y2 and

zy = z+L/2 Ry = Jr? +a? - 2racosdp+ 25 . (B.5)

The transverse space charge factor calculated from Egs. (B.3) and (48)
is plotted in Fig.(B.1). The aspect ratio in this case is A = 4/L;. It is
a,bqut 1/4 times that of the Gaussian case for all A except for A — 0,
where it vanishes rapidly. This is because the transverse space-charge field
becomes linear in the limit A — 0. The longitudinal space-charge factor for
the uniform charge distribution in the cylinder, calculgted from Egs. (B.4)
and (49), is plotted in Fig.(B.2). It is about as that of the Gaussian charge
distribution for small A but decreases rapidly as A becomes large.. Aga.ih,
this is due to the fact that the longitudinal space-charge field becomes linear

in this limit.
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C Correlation Between the RF and the Space-
Charge Effects

In the text, the contribﬁtions to the emittance of the rf effect and the
space-charge effect were stated separately. When the magnitudes of these
two contributions are comparable, the question, arises as to how these indi-
vidual contributioné should be combined to obta.iﬂ the .total emittance. It is
tempting to argue that the rf and the space-charge effects are independent
a,nd therefore that the total emittance is simply effects are in fact correlated,
and the total emittance cannot be separated into two indepéndent parts.

To see this for the transverse case, we write the total momentum p, as

4

pe =0 + 0¥, (C.1)

where pof and p2¢ are the transverse momentum due to the rf and space-

- charge effects, respectively. The total emittance can then be written as

e = V(&) + (22 + 2) ()2 . T (C2)

4

Here 7, is a dimensionless paramter characterizing the correlation given by

v

{taM)p% - p%) = (2 P W -2 } - (C3)

1

T 8C
el‘f 617

Tz =

Since both p7f and p3° are unique functions of the position variables, J in
the above will not in general vanish. Using the explicit expressions, Eqgs.

(30) and (45), we find

1 =1
e;fe;"tlIA

Tz =

{(9:2)(2:8,, sin ¢) — (z”sin ¢)(x€,)} (C4)
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Since ¢ = (¢) + A¢ = (¢) — kAz, we have, for example, .
(sin &x&‘z) = % /p(a:, y,Az)sin({(¢) — kAz)z€(z,y,Az) de dydAz (C.5)

For (¢) = 90°, Eq.(C.4) becomes

_(@ONEE) -~ Edey L
7= h BT By (@9

For the Gaussian distribution treated in Section 4.b, this becomes

1 o 1
j:cv— \/ilt-x_—(A)-./() dC(2+ C)2(2+A2C)3/2

(C.7)

Figure (C.1) gives a plot of 7, as a function of A. From the figure, we see

that the correlation is significant and that
0<Jx<1. (C.8)

From Egs. (C.2) and (C.8) it follows that

V0EN+ ()2 < e < f e3¢ . (C.9)

For the longitudinal case, we have expressions similar to Egs. (C.1),
(C.2) and (C.3), except that 2’s are replaced by z’s. Using the expressions

for p3f and ps° given respectively by Eqgs. (17) and (45), we obtain

_ ok {{AzE)((A2)") - ((A2)°)((A2)%.)}
3(vs—1) p=(A)V((A2))((A2)%)

For the Gaussian distribution considered in Section 4.b, this becomes

T (C.10)

= Va2 ; (C.11)
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where

) 1
z(A)/ @ e OPRATT()

T =

(c.12)

From F1g (C.2), we see that T is large, bemg about umty for A< 1.
However, the longitudinal correlation is small in general because of the factor

04 = ko, in Eq. (C.ll).
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-(1) Schematics of the RF lasergun ..~ . Lo

(2) Evolution of «v through the RF cavity for the cases a = 1.0, ¢g =
70° (a) and o = 1.0, ¢o = 30° (b). The solid lines are the exact
solutions, and the dotted lines are the approximate results obtained

by inserting Eq.(7) into Eq.(8).

(3) Evolution of ¢ through the RF cavity for the cases a = 1.0, ¢ =

- 70° (a) and @ = 1.0, o = 30° (b). The solid lines are the exact

solutiohs, and the dotted lines are the approximafce result given by
Eq.(7).
(4) Schematics showing distortion of the longitudinal phase space due

to the RF field

(5) Electron distribution in transverse phase space due to time-dependent

focussing of the RF field

'(6) The transverse space-charge factor pz(A4), The dotted line is the

-approximation pz, given by Eq.(61).
(7) The longitudinal space-charge factor u,(A)

(B.1) The transverse space-charge factors p;(A4) for uniform charge

distribution in a cylinder

(B.2) The longitudinal space-charge factors u,(A) for uniform charge

distribution in a cylinder
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Fig.(C.1) The transverse correlation factor J,(A4)

Flg j:((} .2) The longitudinal correlation factor jz(A)
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