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RF and Space-Charge Effects 

in Laser-Driven RF Electron Guns 

Kwang-Je Kim. 

Accelerator and Fusion Research Division 

Lawrence Berkeley Laboratory · 

University of California 

Berkeley, CA 94720 

September 23, 1988 

Abstract 

The evolution of the electron-beam phase space distribution in laser­

driven RF guns is studied by taking into account both· the time variation 

of the RF field and space-charge effects. In particular, simple formulas are 

derived for the transverse and longitudinal emittances at the exit of the 

gun. The· results are compared and found to agree well with those from 

simulation. 
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1 Introduction 

Laser-driven rf electron guns(l) are potential sources of high-current, low-

'. 

emittance, short bunch-length electron beams, which are required for many 

~dvanced accelerator applications, such as free-electron lasers and injectors 

for high-energy machines. In such guns the design of which was pioneered 

at los Alamos National Laboratory(l) and is currently being developed at 

several other laboratorie8(2
•
3

•
4
), a high-power laser beam illuminates a photo­

cathode surface placed on an end wall of an rf cavity. The emitted electrons 

are accelerated immediately to a relativistic energy by the strong rf field 

in the cavity. The main advantages of this type of gun are that the time 

structure of the electron beam is controlled by the laser, eliminating the 

need for bunchers, and that the electric field in rf cavities can be made very 

strong, so 'that the degrading effects due to space-charge repulsion can be 

minimized. In this paper, we analyze the beam dynamics in the rf cavities 

to obtain the expressions for the transverse and longitudinal. emittances of 

the electr<;m beams emerging from laser-driven rf guns. 

A study of electron-beam dynamics in rf guns needs to take into account 

several effects, such as those due to the time variation of the rf field over 

the duration of the acceleration period and over the duration of the electron 
' 

pulse and those due to the space-charge repulsion~ A rigorous analysis of 

these effects is probably too complicated to be useful. The goal in this 

paper is to obtain approximate and simple expressions that retain the main 

physical effects. :;\. 

In Section 2 we study the rf acceleration process. vVe simplify the calcu-
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lation by assuming that only a single standing-wave component is present. 

However, contrary to what is done for long linear accelerators(5
), we do not 

neglect the contribution from the reflected wave. We solve the rf accelera­

tion equation approximately after noting that the variation of the rf phase 

<P = wt - kz + <Po is significant only at the beginning of the acceleration 

period. The result agrees reason'ably well with exact calculations. Because 

ofthe time-variation of the rf field, the electron distribution occupies curved 

regions in phase-space. vVe calculate the longitudinal emittance associated 

with this effect. 

In Section 3 we consider the effects of the rf acceleration on transverse 

dynamics. Given that the longitudinal electric field is uniform in the trans­

verse direction, the expression for the. transverse force is uniquely determined 

from Maxwell's equations. The transverse momentum imparted to an elec­

tron is obtained by assuming that the electron's transverse coordinates re­

main constant during acceleration by the rf field. With this approximation, 

a net transverse momentum transfer to electrons occurs only in the vicin­

ity of the cavity exit. We calculate the transverse emittance which arises 

from the fact that electrons at different longitudinal positions near the exit 

receive different transverse kicks due to the variation of the rf field. 

In Section 4 we calculate the transverse and the longitudinal emittances 

resulting from the space-charge effects. We simplify the calculation by as­

suming that all electrons move with identical velocity, so that the space­

charge force is purely electrostatic in the frame of reference that moves with 

the electrons. A further simplification is achieved by noting that the influ-
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ence of the space-charge force is weighted by a factor lh 2/3, which heavily 

emphasizes the region of the cavity near the cathode where the electrons are 

still non-relativisitic. 

Section 5 contains further discussions and conclusions. First, the paper is 

summariied by recapitulating the main formulas derived therein. Then the 

results of the analytical calculations are compared with those from numerical 

simulation. The agreement is found to be satisfactory. Finally, we conclude 

by listing some of the effects not discussed in the paper. 

Appendix A contains a discussion of the scaling behavior for the elec­

trostatic field in the limit where the aspect ratio of the charge distribution 

either vanishes or becomes large. An understanding of the scaling behav­

ior is important for the derivation of Section 4. In the text, the shape of 

the charge distribution was assumed to be Gaussian for the purpose of ex­

plicit calculations. In Appendix B, we list the relevant formulas for the case 

where the charge distribution is uniform in a cylinder. Finally, Appendix 

C contains a discussion of the correlation between the space-charge and the 

rf effects. It is found that the correlation is not negligible for transverse 

emittance. 

2 RF Acceleration and Longitudinal Phase Space 

2.1 RF Acceleration 

Electrons generated at the cathode are accelerated by the rf field in a cavity. 

The electric field along the axis will be assumed to be of the follo:wing simple 
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form: 

.f: z = Eo cos kZ sin ( wt + ¢>0 ) · (1) 

Here Eo is the peak a~celerating field, A is the rf wavelength, k = 21r /A, c is 

the 'velocity of light, w =· ck, and ¢>0 is the rf phase as the particle leaves the 

cathode surface z = 0 at t = 0. The field given by Eq.(1) can be considered 

to be produced by a sequence of rf cells operating in the 7r-mode(2). The first 

·cell is really a half cell bounded at one side by the cathode: The coordinates 

for the entrance and exit of the 0 + n)th cell are z = ( n - 1/2)A/2 and 

z = ( n + 1/2)A/2, respectively. See Fig. (1 ). 

It is convenient to introduce the following quantity 

¢ = wt - kz + <Po = k [ ( ~ - 1) dz +<Po (2) 

Here 

(3) 

As usual, "Y is the electron's relativistic energy divided by the rest energy 

mc2
, m being the electron mass. vVe have 

d"'f eEo . . 
-d = -

2 2 
[sm( ¢>) + sm ( ¢> + 2kz)] 

z me 
(4) 

The rf acceleration in the cavity is completely determined by the pair of 
J 

equations (2) and (4). We assume that electrons leave the cathode with no 

kinetic energy, thus "Y = 1 at z = 0. Equations (2) and ( 4) are often solved 

by neglecting the second term in Eq.( 4), which represents the backward­

propagating wave(s). Such an approximation is valid for electrons in long 

linear accelerators, where the effect ofthe reflected wave averages to zero. 

In our present case, this approximation is not adequate. 
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To obtain a more appropriate approximation, we first note that the inte­

grand in Eq.(2) is signific~ntly larger than zero only near the cathode surface 

where the electrons-are still non-relativistic. In that region, Eq.(4) may also 

be replaced by 

d1 eEo . 
-. ~ -- sm <Po 
dz. mc2 

From this, we obtain an approximate expressioni for 1 

i=1+2asin(</>o)kz, 

where 

eEo 
a=----,--

. 2mc2k 

(4.a) 

(5) 

(6) 

is a dimensionless parameter representing the strength of the accelerating 

field. With the use of ( 4-a), ;Eq.(2) can be integrated with the result 

(7) 

vVe now insert Eq.(7) into Eq.(4) and integrate the latter for a better ap­

proximatiqp. of 1. In so doing, we neglect the variation of </> with z. The 

result is 

1 = 1 +a [kzsin</> +~(cos</>- cos(¢>+ 2kz))] (8) 

The approximate solutions (7) and (8) of Eqs. (2) and ( 4) are compared 

with the exact solution in Figs. (2) and (3) for several cases with a = 1 

and different values of ¢>0 . The agreement is good for 1 [Fig.(2)]. For¢> [see 

Fig.(3)], the ·agreement is fair provided that <Po is not too sma:11. A better 

approximation to¢> can be obtained by inserting Eq.(8), in·which ¢>is given 
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by Eq.(7),into Eq.(2), and integrating the tatter. However, this cannot be 

done analytically, a~d we will not pursue thi~ approach further in this paper. 

From Eq.(7), we see that the phase <P has the asymptotic value 

1 
<P -+ <Poo = 2 . . <P + <Po . 

asm o 
(9) 

We will show later that the transverse emittance is xp.inimized when <Poo is 

1r /2. The initial phase ¢o should then be chosen such that 

'(1r . ) 1 --<Po sin <Po=- . 
, . 2 2a 

(10) 

2.2 - RF Effects on Longitudinal Pha~e Space Distribution 

The spread in the phase tl</J is related to the spread of the lopgitudinal 

position by tl</J = -ktlz. Therefore, particles with positive tl</J are located 

in the trailing part of the electron bunch relative to those with negative tl</J. 

The longitudinal phase-space is characterized by the pair (z,pz), where 

Pz = /3! (11) 

is the dimensionless longitudinal momentum. After acceleration, f3 ::::: 1 so 

that Pz :=::::I· 

- ' 
From Eq.(9), we find the asymptotic bunch compression factor 

tl</Joo cos <Po -. - = 1 - ---=--
tl<Po 2a sin2 <Po 

(12) 

Thus bunches will in general be compressed in length during, the accelera" 

tion process. When 2a sin2 <Po ::; cos ¢0 , Eq:(12) predicts that the relative 

positions of particles in z will revers~. However, this reversal is a result of 

7 



the approximation used in deriving Eq.(9), which becomes poor for small 

values of </>o. A numerical solution does not show such a reversal. The rf 

effect on ( </>, 'Y) phase space can be derived from Eq.(8), which we have seen 

[in Fig.(2)] to agree well with exact results(6
). First, we consider the phase­

space distribution at the end of the (n+1/2)th cavity, where z = (2n+1)A/4 

and thus 

'Y = 1 +a [( n + 1/2}rr sin</>+ cos</>] . (13) 

As remarked earlier, we are interested in ¢ when it is about 1r /2. The shape 

of the (p - 'Y distribution would look like Fig.( 4a) when the second term 

in Eq.(13) is dominant, while it would look like Fig. (4b) when the first 

term is dominant. In the middle of the (n + 1/2)th cavity, z = nA/2, so 

Eq.(8) becomes 'Y = 1rn asin ¢+ 1. Thus the phase space distribution around 

</> = .'/l" /2 will always look like Fig.( 4b ). 

We write 

Pz = (p) + b..pz, Z = (z) + ~z , (14) 

where (Pz) and (z) are the average values of p and z, respectively. The 

longitudinal emittance Ez will be defined as(7
) 

€z = V((.6.pz)2)((~z)2)- (.6.p)2(.6.z)2 = lV((.6.pz)2)((~¢)2) _ (.6.p)2(.6.¢)2 , 

(15) 

where the angular brackets represent taking the average values. 

We assume that electrons are relativistic at the end of the ( n + 1/2)th 

cavity,thus p can be replaced by 'Yin Eq.(15~. From Eq.(13) \ye 9btain 

("!) + -6."1 = 1 +a [( n + 1/2)7r sin((¢) + .6.¢) +cos((¢)+~¢)] (16) 
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Setting(¢>)= 90° to minimize the transverse emittance(see Section.3), we 

obtain by expanding E~. (16) 

. 1 2 a . 3 
~~=-a~¢>- 2('"fJ -1)(A4>) + 3 !(~4>) + .. · , (17) 

where 'YJ is the value of(!) at the cavity exit. IntroduCing the rms quantities 

we obtairt from Eq. (17) 

(18) 

Inserting Eq.(17) into Eq.(11?) (~p::::: ~!),we obtain Ez in th~ lowest order 

in~</> 

(19) 

The superscript r f refers to the contribution of the time variation of the rf 

field. There is also a contribution from the space-charge effects, which will 

be considered later. The terms involving the first and the third term.s in 

Eq.(17) cancel and do not appear in Eq.(19). For a Gaussian distribution, 

Eq.(19) becomes 

(20) 

3 RF Effects in Transverse Phase Spa,ce 

Let the lpngitudinal electric field Ez be a function of only z and t and be in­

dependent of the transverse coordinates r (radius) a~d B (angle). Assuming 

that the fields are indepe~dent of B, we determine from Maxwell's equations 
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that<5> 

r 8 . r 8 
E = .,...--E and eB9 = --E 

r 2 8z Zl 2e 8t · z 
(21) 

The radial force acting on an electron is given by ·. 

Fr = e(Er- j3eB9) . (22) 

We now assume that Ez is given by the somewhat more general expression 

than Eq.(1) 

Ez ·= E(z) cos kz sin (wt + c/>o) · (23) 

One can show from the above equations that 

Fr = er {-
2

1
e! (E(z) sinkz cos(wt + c/>o))- ~ (:z E(z)) cos kz sin(wt +c/>o) 

+ % (:z E(z)) sin kz cos(wt + ¢>0 )} 

The equation describing the radial motion is 

dpr __ 1_F, 
dt -me r 

Here Pr is the dimensionless radial momentum 

1 dr 

Pr = ~~ dt 

. (24) 

(25) 

(26) 

We integrate Eq.(25) with respect tot to obtain Pr· In doing so, we assume 

that the transverse deflection is small so that the radius r can be regarded 

as constant. Since the first term in Eq.(25) [with Fr given by Eq.(24)) is a 

total time derivative of an expression that vanishes on the cathode surface 
. ~ ·'; '1 1 

and at the outside of the cavity exit, its integral vanishes. The contribution 

of the second and third terms comes only from the region where dE(z)/dz is 

10 
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non-vanishing, i.e, near the cavity exit. Thudhe net momentum transferi'n 

our approximation occurs only during the short interval that the electrons 

cross the boundary between the cavity and the field-free region.· We t(!.ke 

E(z) to be of the form 

E(z) = B(zJ- z)Eo , (27) 

whe;re (} is the step function and z = ZJ is the coordinate of the exit of the 

cavity. Thus, the secoird, and third terms in Eq.(24) beGome delta functions 

and one obtains 

Pr =Pro + akr [,6 cos kz 1 sin(wt + ¢o) -sin kz1 cos(wt + ¢o)], (28) 

where a was introduced in Eq.(6). bt the followin_g, we assume f3r = 0 at 
' ·, 

t = 0, thus droppi+tg the first term of Eq.(28). Since f3 ~ 1 near the cavity 

exit, Eq.(28) becom,es 

Pr = akrsin¢ .. (29) 

Here¢ is the rf phase at the exit of the cavity. Rewriting Eq.(29) in cartesian 

coordinates, we obt;u11. 

Px=;::f3!x.'=(aksin¢)x, (30) 

where x' = dxjdz. The phase-space distribution given by Eq.(30) therefore 

consists of a collection of lines with different slopes corresponding to different 

¢,as illustrated in Fig.(5). 

The normalized transverse emittance is(7
) 

(31) 

il 



From Eqs.(30) and (31) we obtain 

(32) 

. . . . 

Writing </> = (</>) + f:l.</>, and assuming that f:l.</> is small and symmetrically 
,~ _:, <. 

distributed, one obtains 

This expression is minimized when (</>) = goo with the value 

Away from the minimum; we have 

(34) 

If.the distribution in A</> is Gaussian, Eq.(33) becomes 

(35) 

In view of Eqs. (2g) and (30), the transverse momentum is maximum when 

(</>)=goo, i.e., when the emittance is minimum. The rms angular divergence 

CTx' is in that case given by 

(36) 

Thus it usually will be necessary to focus the beam immediately after leaving 

the cavity. 
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4. Space Charge ~ffects on Bearn Emittal}ce 

4.1· General charge distrib1,1tion 

A repulsive force attributable to .space charge causes the emittance t~ in-
. . 

crease. To study this effect, we assume that all electrons are mov!ng with 

the same velocity, v, in the z-direction. ~n the reference frame moving with 

the electrons, the el~ctromagnetic interaction is completely described by a 

purely electrostatic field E'. The field components in the laboratory frame 

which give rise to the x- and z-components of the force are given by the 

Lorentz transformation 

Here, By. is the magnetic field. The components of the force are 

·(37) 

In the following, we assume the charge distribution to be cylindrically sym-

metric, so that we do not need to consider Fy separately. 

Let us now consider the b~havior 9f F as 1 beco:q1es large. The field E' 

is a function of 1 since the bunch dimensions in the moving frame, d'z in the 

transverse direction and d~ in the longitudinal direction, are related to the 

corresponding bunch dimensions in the laboratory frame dx and dz by 

(3~) 

that is, the bunch in the moving frame appears to be elongated by a factor 

I· In Appendix A, we have summarized the behavior of the electriC field of 
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a general, statio)lary charge distribution in the limits when the aspect ratio 

A'= d~/d~ becomes either much smaller or much larger than unity. When 

~'Y is much larger than the aspect ratio A in the laboratory frame, A' = 'Ah 

'becomes small. From Eqs. (A.1) and (38) it then follows, for a typical point 

within the charge distribution, 

Here f"' 0( 'Yn) means that f scales as 'Yn times some slowly varying function 

such as (log 'Y )m. From these it follows that 

' 

F "' 0( 7-
2

) for 'Y ::P A. (39) 

For cases where A is much larger than unity, we need to consider also the 

case 1 ::; 'Y ~ A. The aspect ratio in the moving frame A' is then much 

larger than unity, in which ~ase we find from Eq. (A.2) that E':z: and E'z 

are both 0(1). To summarize these behaviors, it is convenient to write 

(40) 

The function f( 'Y) behaves as follows: 

f( 7)"' 0(1) , 'Y ::p A ( 41) 

· The contribution to the electron's dimensionless momentum due to the 

space-charge force is given by 

~ 

1 J 1 J 1 (p:z:,Py,.6.pz) = p =- Fdt = -
2 2

f3f(7)dz 
· · me me 'Y 

(43) 

14 
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Let us assume for the till"l-e being that A :S 1. From Eq.(41), we see that f(!) 

is a slowly varying function of"'· Sin~e the factor 1/"!2{3 in the integrand 

de~reases rapidly as the electron accelerates ( 7 increases from unity), the 

function f(7) may be. replaced by f(1). Also, Eq.(4.a) may be used to replace 

the z-integration by a "!-integration. Thus we obtain 

1 [' d"f p = f(1) - . 
e.eosin</>o 1 7 2/3 

(44) 

The integration in the above can be done analytically as follows 

1-y' ~~ = 1-y' v'l ~ 
1172 

~ 2 d7 = [ ~- sin- 1 (~ 1 )] 

For "1! ~ 1, the integral becomes tr/2. From.Eqs. (37) and (40), we obtain 

f(1) ::: eE8c where Esc is the electrostatic field due to the chargedistribtion 

at rest in the laboratory frame. Thus we finally obtain 

1 1rEsc p= ' 
Eosin <Po 2 

(45) 

It is convenient to introduce the normalized field c 

Esc(x, y, .6.z) = ~ E(x, y, .6.z) . 
. 4trfo 

( 46) 

Here (x, y, .6..z) is the position relative to the bunch center. The axial dis­

tance of the bunch center to the cathode center is z. In the above, n0 is the 

line density at the bunch center, i.e., 

no= j p(x, y, 0) dx.dy 

where p(x, y, z) is the volume density of the charge distribution. The nor­

malized field c has the dimension of an inverse length. From Eqs.( 45), ( 46), 
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(15) and (31) we obtain 

eic = ~_!_- 1 _!_J.Li(A); i = x or z . 
4 ak sin</>o IA 

(47) 

Here, a is the dimensionless r f strength paranieter introduced in Eq.(6), 

' 
I is the peak current, lA = 4uomc3 I e = 17' OOOA known as the Alfven 

current, and 

J.Lx(A) = V(c;}(x2
}- (Ex· x)2 , 

J.Lz(A) = V(c;}(!::;.z2}- (cz · !::;.z} 2 

(48) 

(49) 

The dimensionless functions J.L~(A) and J.Lz(A) will be referred to as the 

transverse and the longitudinal space-charge factors respectively. The an­

gular b~ackets in the above represent (as usual) taking the average over the 

charge distribution. Thus, for example, 

(c;} = ~ j p(x,y,!::;.z)E;(x,y,~z)dxdyd!::;.z , 

where Q is the total charge in the bunch. 

The space-charge factors, being dimensionless, depend on the details of 

the charge distribution only through the dimensi1;mless aspect ratio A. From 

Eqs.(A.1) and (46), it follows that 

Q 
Ex,z"' -d -0(1), A-t 0 . 

€o x,z 

Thus~ the space-charge factors can have at most a logarithmic singularity at 

A= 0: 

J.Lx(A)"' 0(1), Jl.z(A)"' 0(1) . (50) 
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The limiting behavior of JLj(A) as A increases to infinity is as follows: . 

In deriving Eq.(47), we have assumed that A ::; 1 so that the function 

f(!) is slowly varying in 1 for all1 ~ 1. According to Eq.(42), when A~ 1, 

the function f( 1) in the region 1 ::; 1 < A does not vary slowly with /· A 

proper analysis of the space-charge emittance in this case involves integrat-

ing Eq.( 43) exactly and evaluating emittances according to Eqs: (15) and 

(31). We have carried out such calculations and found that the result does 

not differ significantly from those obtained by the approximate calculations; 

the agreement was better than 5Qtransverse emittance and better than a 

factor of two for the longitudinaLemittances. We ~will therefore use the ap.: 

proximate formula, Eq.( 4 7), for all values of A. The derivation leading to 

Eq.(47), which is the main result of this section, is a refinement of a previ­

ous calculation(8
) in that the variation of the electron energy in the cavity 

is correctly taken into account. 

4.2 Gaussian charge distribution 

We apply the general discussion in the above to the case where the charge 

density is given by 

(52) 

where Po is the charge density at the bunch center, and ax (az) is the rms 

beam ,size in the x ( z) direction. Using no = 211" poa;, we obtain for the 

17 



space-ch;trge field(9
) 

Here A is the aspect ratio 

A ~ C!x - . 

Inserting Eqs. (53) and (54) into Eqs. (48) and (49), we obtain 

· It;( A) = fooo d(1 fooo d(2 { [(1 + (1)(1 + (2~ + 2 + (1 + (2]2 

x [(1 + (1A2)(1 + (~A 2 )
1 

+ 2 + ((1 + (2)A2)112} 

- [fooo d( (2 + ()2(2\ (A2)1/2 r 
Jt~(A) = fooo d(1 fooo d(2 { [(A2 + (1)(A2 + (2) ~ 2A4 + ((1 + (2)A2] 

1 . } 

X [(1 +(1)(1 + (2) + 2 + ((1 + (2)]3/2 

- [loco d( (2A2 + ()
1

(2 + ()3/2] 

2 

In the limit A-+ 0, Jtx(A) approaches the value 

Jtx(O) = 
1 4 1 
-lao----~ 0.203 
v'3 °3 8 ' 

(53) 

(54) 

(55) 

(56) 

(57) 

and Jtz(A) diverges as (IogA)2. These behaviors are consistent with Eq.(50). 

Also, it is easy to verify that Eq.(51) is satisfied. 

18 
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When Eq.(60) is evaluated numerically, the result can be approximated 

·by the following simple expression 

1 
J.Lxa(A) = 3A + 5 

Both J.Lx(A) and J.Lxa(A) are plotted in Fig.(6). 

(58) 

Similarly, we plot in Fig.(7) the function J.Lz(A). It can be approximated 

by 

(A)- 1.1 
J.Lza - 1 + 4.5A + 2.9A2 

(59) 

The calculation of the space-charge factors. in the case where the charge 

is uniformly distributed in a cylinder is considered in Appendix B. 

5 Summary, Comparison: and Concluding Remarks. 

5.1 Summary of the Formulas 

The paper can be summarized by recapitulating the main formulas as fol-

lows: first, we have introduced the dimensionless parameter characterizing 

the rf field strength by 

eEo 
a=--

2mc2k 
(6) 

The expressions for various quantities at the exit of an U + n)-cell are as 

follows: 

5.1.1 The phase and energy of the electron 

1 
¢>J=¢>o+

2 
. ¢> , (9) 

a sm o 
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1 = 1 +a [(n + 1/2)Trsin¢> +cos¢>] (13) 

·To minimize the transverse emittance and also to obtain .maximum acceler-

ation, one would normally choose ¢>J = 90". We assume that this is case in 

. the following. Equation (9) determines the initial phase ¢>0 • 

5.1.2 The rms energy spread at:.-y and the angular divergence 

a 6.-y = aka z , (18) 

1 
ax' = -aka x 

/j 
(36) 

Here ax and az/c are the rms width and length in time of the laser pulse. 

5 .. 1.3 The emittances due to the rf effect are 

(35) 

(20) 

5.1.4 The emittances due to the space-charge effect 
. ' ' ' 

sc . 7r 1 1 I (A) 
E - -----J.L 
x,z - 4 ak sin if>o fA x,z 

( 47) 

Here fA = 17000 Amp and. I is the peak current. The transverse and the 

longitudinal space charge factors, J.Lx and J.Lz, are plotted in Figs. ( 6) and 

(7). 

The electron distribution is assumed to be Gaussian in the above. Ap-

·pendix B gives results relevant for a uniform distribution (a cylinder). 
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5.2 Comparison with Simulation . 

We consider the ( ~ + 1 )-cell gun under _construction at Brookhaven National 

Laboratory and compare the analysis of this paper with the numerical sim­

ulation by McDonald(2
), hereafter referred to as KM. The gun parameters 

are 

eEo = 100MVfm, .X= 10.5cm. 

The dimensionless r f strength a (Eq. (6)] corresponding to 'this case is 

a = 1.64. The optimum initial phase calculated from Eq.(9) by demanding 

that the final phase <I>J be 90° is </>o = 71° as compared to </>o = 68° in KM. 

The final 1 calculated from Eq.(13) by setting n = 1, · </> :;: 90°, and the 

above value of a is11 = 8.7 as compared to /J = 9.2 in KM. 

The rms bunch length is az = 0.6 mm or a,p = kaz = 3.6 X 10-2. From 

Eq.(18), the corresponding rms energy spread is CJE = mc2a 6 -y = 30 keV 

as compared to CJE = 17 keVin KM~ 

The rms beam transverse size is ax = 35mm. From Eq.(36), we obtain 

the transverse angular divergence at the exit of the gun to be Px = akaxfl ~ 

40 mrad, which is in rough agreement with Fig.(4) in KM. 

The r f contribution to the transverse emittance from Eq.(35) is 1.1 mm­

mrad, as compared to 1.4 mm-mrad in KM (Table 1). The transverse space­

charge factor corresponding to the aspect ratio A= 3.5/0.6 ~ 6 is, from Fig. 

(6), J.Lx "'4 X 10-2
• From Eq.(47) and using I= c X 1 nC/V'fi. az ~ 200.4, 

we obtain E;c =4 mm-mrad, as compared to E;c =6.2 mm-mrad obtained by 

KM. 

The longitudinal space-charge<factor for A = 6 is about 0.01 from Fig. 
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(8). The quantity f;c hJ determined from Eq.(47) is about 1 x 10-5 em. 

The longitudinal emittance due to the r f effect is about three times larger 

than the space-charge emittance. The total phase-space area is in rough 

agreement with the phase-space area indicated by Fig.(5) of KM. 

The agreement of our simple theory with the simulation calculation is 

encouraging. Further comparison is reported in reference (10). 

5.3 Further Remarks 

In this paper, we have developed an approximate but simple theory of elec­

tron beam dynamics in laser-driven rf guns and derived formulas for various 

physically interesting quantities such as emittances. These formulas should 

be useful in selecting initial parameters for the design of the gun. 

There are several effects which are not taken into account in this sim­

ple treatment, such as field non-linearities, higher space harmonics, image­

charge effects, etc. The fact that the results of the simple theory agree 

reasonably well with those of detailed simulation suggests that those ef­

fects are small. There are also contributions to the emittances from the 

photo-emission process at the cathode surface. These contributions, which 

are easy to incorporate into our expressions, are usually ·much smaller than 

those considered in this paper. 
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APPENDICES 

A Scaling Behavior of the Electrostatic Field for 

Limiting Charge Distribution 

In this Appendix, we derive the scaling behavior of the electric field at typ-

ical points inside a stationary charge_distribution. The transverse and the 

longitudinal dimensions of the charge distribution are denoted by d~and 

d~ , respectively. In the limit the aspect ratio A' = d~/ d~ (a thin, cigar­

shaped distribution) the transverse field E~ should be of the order (1/ ~ 0 ) x 

line density/d~ , while the longitudinal field E~ should be of the order 

Qj£0 /(longitudinal dimension)2
. Thus 

E~ ,._, Q 0 (d,1d,) and E~"" Q 0 (-h) ,A'-+ 0. 
fo x z fo dz 

(A.1) 

In the other limit, where A-+ oo, (a thin pancake), E~ is of the order 

(1/£0 ) X surface density while E~"" /(transverse dil:nension)2
• Thus 

·Q (1) Q (1) ,· E~ ,._, -0 -
2 

and E~"" -0 -
2 

,A -+ oo. 
tQ d~ tQ d~ 

(A.2) 

In the above, 0(1/d~
2
) for example is a quantity of order 1/d~ 2 , except 

for a possible logarithmic factor such as (logA')m, m = an integer. 

B Formulas for Uniform Charge Distribution in 

a Cylinder 

The examples treated in the text are based on the Gaussian 'charge distri-

bution. In this appendix, we list formulas for the case where the charge 

distribution is uniform in a cylinder of radius a and length L. 
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The relevant moments for the distributiC:m are 

Using these in Eqs. (19) and (33), we obtain 

and 

( ) 2 x 11!' d (R-- z_) C x X, Y, Z = -. - </> COS </>log , 
rra r o R+- z+ 

Ez(x, y, z) = -.;. r d</> {R-- R+ + jr2 + 4- jr 2 + z: 
rra Jo 

( -r cos 4> + j r 2 + 4 )(a - r cos 4> + R_) } 
+rcos<f>log--------~r=====----~--------

( -r cos 4> + j r2 + z: )(a - r cos 4> + R+) 

Here r = Jx 2 + y2 and 

Z± = z±L/2 R± = Jr2 + a2 - 2ra cos 4> + zi 

(B.1) 

(B.2) 

(B.3) 

(B.4) 

(B.5) 

The transverse space charge factor calculated from Eqs. (B.3) and (48) 

is plotted in Fig.(B.l). The aspect ratio in this case is A = A/ L1 . It is 

ab~ut 1/4 times that of the Gaussian case for all A except for A -;. 0, 

where it vanishes rapidly. This is because the transverse space-charge field 

becomes linear in the limit A -;. 0. The longitudinal space-charge factor for 

the uniform charge distribution in the cylinder, calculated from Eqs. (B.4) 

and ( 49), is plotted in Fig.(B.2). It is about as that of the Gaussian charge 

distribution for small A but decreases rapidly as A becomes large .. Again, 

this is due to the fact that the longitudinal space-charge field becomes linear 

in this limit. 
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C - Correlation Between the RF and the Space­

Charge Effects 

In the text, the contributions to the emittance of the r f effect and the 

space-charge effect were stated separately. When the magnitudes of these' 

two contributions are comparable, the question arises as to how these indi-

vidual contributions should be combined to obtain the total emittance. It is 

tempting to argue that the r f and the space-charge effect's are independent 

and therefore that the total emittance is simply effects are in fact correlated, 

and the total emittance cannot be separated into two independent parts. 

To see this for the transverse case, we write the total momentum Px as 

(C.l) 

where p~f and p;c are the transverse momentum due to the r f and space­

charge effects, respectively. The total emittance can then be written as 

(C.2) 

Here .Jx is a dimensionless paramter characterizing the correlation given by 

(C.3) 

Since both p~f and p;c are unique functions of the position: variables, .Jx in 

the above will not in general vanish. Using the explicit expressibns, Eqs. 

(30) and ( 45), we find 

.Jx = -
1

1 
_:II {(x2)(xEx sin</>)- (x2 sin </>)(xcx)} 

E~ E;c 4 A 
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..,., 

Since </> = (</>)+b.</>= (</>)- ktlz, we have, for example, 

(sin ~X ex) = ~ lp(x, y, D.z) sin((</>)- kl::.z)xEx(x, y, D.z) dx dydb.z (C.5) 

For(</>)= 90°, Eq.(C.4) becomes 

:! _ ((b.</>)2)(xcx)- (x · Ex(b.</>)2
) 

x- J.Lx(A)j((b.</>)4)- ((b.</>)4)2 . 
(C.6) 

For the Gaussian distribution treated in Section 4.b, this becomes 

(C.7) 

Figure (C.1) gives a plot of .:lx as a function of A. From the figure, we see 

that the correlation is significant and that 

0 < Jx < 1. (C.8) 

From Eqs. (C.2) and (C.8) it follows that 

(C.9) 

For the longitudinal case, we have expressions similar to Eqs. (C.1), 

(C.2) and (C.3), except that x's are replaced by z's. Using the expressions 

for p~f and p~c given respectively by Eqs. (17) and ( 45), \ve obtain 

ak { (6.zcz)((6.z)4
)- ((6.z)2)((6.z?cz)} 

Jz = 3(rj- 1) Jlz(A)J((6.z)4)((6.z)2) 
(C.10) 

For the Gaussian distribution considered in Section 4.b, this becomes 

(C.ll) 
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where 

(C.12) 

From Fig. ( C.2), we see that Jz is large, being, about u,nity for A :::; 1. 

However, the longitudinal correlation is small in general because of the factor 

· <r,p ~ k<rz in Eq. (C.li). 
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Figure Captions ···-

Fig. ( 1) SGhematics of the RF laser gun 

Fig. (2) Evolution of 7 through the RF cavity for the cases a: :::t 1.0, <Po = 

70° (a) and a: = 1.0, <Po = 30° (b). The solid lines are the exact 

solutions, and the dotted lines are the approximate results obtained 

by inserting Eq.(7) into Eq.(8). 

Fig. (3) Evolution of¢ throu~h the RF cavity for the cases a: = 1.0, <Po = 

70° (a) and a: :::; 1.0, ¢0 = 30° (b). The solid lipes are the exact 

solutions, and the dotted lines are the approximate result given by 

Eq.(7). 

Fig. ( 4) Schematics showing distortion of the longitudinal phase space due 

to the RF field 

Fig. (5) Electron distribution in transverse phase space due to time-dependent 

focussing of the RF field 

Fig. (6) The transverse spac~-charge factor ,Ux(A), The dotted line is the 

·approximation ,Uxa given by Eq.(61). 

Fig. (7) The longitudinal space-charge factor ,Uz(A) 

Fig. (B .1) The transverse space-charge factors ,Ux(A) for uniform charge 

distribution in a cylinder 

Fig, (B. 2) The longitudinal space-charge factors J.Lz(A) for uniform cha,rge 

distribution in, a cylinder 
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Fig. (C .1) The transverse correlati0n factor .J:z:(A) · 

Fig. (C. 2) The longitudinal correlation factor .Jz(A) 
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Evolution of 1" through RF cavity · 
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Evolution of phase through RF cavity 
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