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RF-Based Human Activity Recognition Using
Signal Adapted Convolutional Neural Network

Zhe Chen∗, Chao Cai∗, Tianyue Zheng∗, Jun Luo∗, Jie Xiong‡, Xin Wang §

Abstract—Human Activity Recognition (HAR) plays a critical role in a wide range of real-world applications, and it is traditionally
achieved via wearable sensing. Recently, to avoid the burden and discomfort caused by wearable devices, device-free approaches
exploiting Radio-Frequency (RF) signals arise as a promising alternative for HAR. Most of the latest device-free approaches require
training a large deep neural network model in either time or frequency domain, entailing extensive storage to contain the model and
intensive computations to infer human activities. Consequently, even with some major advances on device-free HAR, current
device-free approaches are still far from practical in real-world scenarios where the computation and storage resources possessed by,
for example, edge devices, are limited. To overcome these weaknesses, we introduce HAR-SAnet which is a novel RF-based HAR
framework. It adopts an original signal adapted convolutional neural network architecture: instead of feeding the handcraft features of
RF signals into a classifier, HAR-SAnet fuses them adaptively from both time and frequency domains to design an end-to-end neural
network model. We apply point-wise grouped convolution and depth-wise separable convolutions to confine the model scale and to
speed up the inference execution time. The experiment results show that the recognition accuracy of HAR-SAnet substantially
outperforms the state-of-the-art algorithms and systems.

Index Terms—Human Activity Recognition, Convolutional Neural Network, Wireless, Impulse Radio
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1 INTRODUCTION

HUMAN Activity Recognition (HAR) has attracted a
significant amount of attentions in the past decade

due to its great value in a wide range of real-world ap-
plications, such as health care [1], [2], fall detection [3]–
[5], and smart home [6], [7]. There are generally two types
of solutions for HAR: device-based and device-free. Device-
based solutions rely mostly on wearable devices such as
smartphones and smart watches. However, these solutions
often cause discomfort and extra burden. To overcome
the weaknesses, device-free solutions utilizing cameras and
Radio-Frequency (RF) signals have later come into view. Re-
cently, camera-based HAR systems have achieved successes
in several outdoor scenarios thanks to deep learning, but
they may not be well-accepted in indoor environments due
to the severe privacy concerns [6]. Different from camera-
based solutions, RF-based approaches do not raise privacy
concerns, and are not affected by temperature or light-
ing conditions. Therefore, RF-based solution has become
a promising candidate for indoor HAR, leading to a large
amount of research contributions recently [8]–[16].

The basic principle of RF-based HAR systems is that the
propagation paths of RF signals are affected by human body
movement, causing the reflected signals to exhibit distinct
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features pertaining to different activities. Consequently, we
can exploit these unique features to distinguish different
activities, hence significant progress on RF-based HAR has
been achieved in the past few years [8]–[14], [16]–[19].
Among all wireless signals used for HAR, Wi-Fi is the most
popular one owning to the ubiquitous deployment [8]–[15].

Though promising, several major challenges still exist
with the state-of-the-art Wi-Fi-based approaches, hindering
the adoption of these systems in real life:

• Narrow Wi-Fi channel bandwidth leads to limited
resolution in differentiating activity patterns.

• While preprocessing the raw signal collected from
the hardware helps removing the signal noise, the
important signal feature containing the activity in-
formation may also get lost.

• Low computation capability edge devices have diffi-
culty to achieve real-time HAR.

• Edge devices with limited memory cannot support a
large neural network running on it.

Furthermore, although Wi-Fi infrastructure is ubiquitously
deployed, the CSI information employed for HAR cannot
be retrieved from most commodity Wi-Fi hardware but only
from the Intel 5300 and several specific Atheros Wi-Fi cards,
limiting the practical adoption of Wi-Fi-based approaches.

In this paper, to address the above challenges, we
employ a Commercial Off-The-Shelf (COTS) Ultra-Wide
Band (UWB) radio module for HAR. Compared with Wi-
Fi, UWB radio has a much larger channel bandwidth and
thus a much higher time resolution. We show that the UWB
module has a comparable cheap price as the Wi-Fi card but
can achieve a much better performance in terms of both
HAR accuracy and robustness.
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For HAR, another big issue is how to extract stable
and unique features related to each activity. However, these
features depend highly on the individuals: body size and
personal habits can cause large variations [18], [19] in the
features extracted. Fortunately, resorting to Convolutional
Neural Network (CNN), the complex features of various
types of signals such as images and video have been effec-
tively extracted [20], [21]. In other words, CNN opens a new
paradigm for HAR, whose power has been demonstrated
in various RF-based HAR systems [13], [14], [16], [21]–[23].
Whereas most of exiting systems consider either time or fre-
quency domain information for HAR, we propose to employ
both time and frequency domain information to achieve
more accurate and more robust performance. Essentially,
we employ two CNN branches to learn the feature rep-
resentations of time and frequency domains, respectively.
Then, RF features from both time and frequency domains
are fused together to infer human activities. Therefore, our
system utilizes the information extracted from RF signals to
the fullest extent.

A big issue hindering the real-life adoption of CNN-
based approaches is the high computational cost and large
storage memory requirement. In the Internet-of-Things (IoT)
era, the resource-constrained edge nodes or devices usu-
ally do not have such a powerful computational power
and the storage memory is also limited. Take the popular
Raspberry Pi Zero W as an example, it has a 1 GHz, single-
core CPU (ARMv6) and 512MB RAM [24]. Therefore, imple-
menting the proposed RF-based CNN model on a resource-
constrained edge device poses a significant challenge. To
this end, we customize each CNN block in our signal
adapted CNN model structure. In contrast to conventional
camera images that all unoccluded key-points of the human
are recorded, RF signals only get reflected from a subset
of the human body parts and the number of reflection
points is usually less than seven [25]. Due to the sparsity of
RF signals, we employ dilated convolutions [26] to encode
more effective features from RF spectrograms. Moreover,
we avoid large CNN model block, such as ResNet [20]
or full connections [27] that incur larger computation and
storage overhead. Instead, we resort to efficient designs such
as channel split, grouped convolutions, depth-wise convo-
lutions, and point-wise convolutions. As a result, HAR-
SAnet contains only lightweight components to efficient
reduce both computation and storage complexity, making
our design work well on the less powerful edge devices.

We design HAR-SAnet and evaluate its performance on
ARM-based edge devices. We productize our system and it
is now ready for sale [28]. We test HAR-SAnet with over
thirty persons aged 20-45 years performing seven types of
activities, including bending, falling, lying down, standing
up, sitting down, squatting down, and walking. The exper-
iment results show that HAR-SAnet not only demonstrates
high recall and precision, but also achieves HAR in real time
with a small millisecond level end-to-end latency on ARM-
based resource-constrained edge devices. To summarize, we
make the following contributions.

• To the best of our knowledge, we propose the first
real-time HAR prototype involving a carefully de-
signed hardware and a signal processing pipeline

tailored to resource-constrained edge devices.
• To improve the accuracy, our signal adapted neural

network model innovates in taking into account in-
formation from both time and frequency domains.

• We design, implement, and productize HAR-SAnet.
Extensive experiments are conducted to evaluate the
system performance in diverse environments. The re-
sults show that our system can achieve high accuracy
for HAR in real-world environments.

The paper is organized as follows. In Sec. 2, we explain
the practical challenges of existing RF-based HAR systems.
Then, we describe the details of system design in Sec. 3. In
Sec. 4, we present the implementation details as well as the
experiment results. The related work is discussed in Sec. 5,
followed by a conclusion in Sec. 6.

2 WI-FI OR UWB?
In this section, we show the practical challenges with WiFi-
based HAR systems, and we also briefly demonstrate the
superiority of adopting UWB-based technologies.

2.1 Limited Resolution
802.11 Wi-Fi is a narrowband technology employing only
20MHz-80MHz channel for data communication. To differ-
entiate human activities, time-frequency analysis such as
Short-Time Fourier Transform (STFT), and Wavelet Trans-
form (WT) are used to produce a time-frequency spectro-
gram to differentiate different human activities. However,
the channel bandwidth fundamentally limits the time do-
main signal resolution: with a larger bandwidth, the signals
have a higher chance to be separated in time domain [29].
Consequently, signals reflected from different body parts
have a higher chance to be separated and richer informa-
tion about each body parts can be obtained. Nevertheless,
even with the latest IEEE 802.11ac Wi-Fi standard [30], the
channel bandwidth is still quite limited (80MHz) given the
need for fine-grained HAR.
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(a) Sitting down.
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(b) Squatting down.

Fig. 1. The time-frequency spectrograms of two similar activities ob-
tained via WT based on Wi-Fi CSI.

To better understand the limitation of Wi-Fi in terms of
sensing resolution, we use the Intel 5300 Wi-Fi card [31] to
collect a few data samples of activities at a 400Hz sampling
rate. We employ WT method to transform the signal to time-
frequency spectrograms. Fig. 1(a) and Fig. 1(b) illustrate
such spectrograms of two activities: sitting down and squat-
ting down. We can see that both spectrograms of these two
activities have very similar “hot” zones with higher energy.
As those hot zones are to be extracted as features via deep
learning, it is error-prone to distinguish these two activities
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(a) Sit down: the 22-nd fast-time
index.
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(b) Squat down: the 22-nd fast-
time index.
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(c) Sit down: the 35-th fast-time
index.
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(d) Squat down: the 35-th fast-
time index.

Fig. 2. The time-frequency spectrograms of two similar activities ob-
tained via WT based on our UWB radio.

using these spectrograms as input, especially when there is
interference and noise. Therefore, Wi-Fi, with a narrowband,
can hardly separate motions from different human body
parts. Since the narrow bandwidth leads to limited time
resolution, Wi-Fi-based systems usually process the signal
input only in frequency domain.

To combat such limitations, we propose to employ UWB
signals to obtain much richer features for more fine-grained
sensing, and we demonstrate the power of UWB signals in
Fig. 2. Owing to the large bandwidth that allows for sending
very narrow pulses (which is impossible with the narrow-
band Wi-Fi), the motions of an activity can be “sensed” by
multiple pulses. We randomly select two fast-time indices
of a pulse with each fast-time index containing 400 slow-
time samples, and we employ the WT method on slow-time
samples to obtain the time-frequency spectrogram. For more
details of fast-time and slow-time, please refer to Sec. 3.2. We
can clearly see that, for the 22-nd fast-time index as shown
in Fig. 2(a) and Fig. 2(b), the shape of the hot zones are very
different for sitting and squatting. This difference is further
amplified for the 35-th fast-time index illustrated in Fig. 2(c)
and Fig. 2(d). Essentially, the larger bandwidths we have,
the richer and more distinctive features we can obtain to
help classify activities more accurately.

2.2 Crowded Channels

Another practical issue with Wi-Fi-based sensing is that the
Wi-Fi channels are usually very crowded [32]. The accuracy
of HAR is not only related to the proposed model, but
also the quality of data. If the recorded signal has lots
of interference and noise, even though the model is very
powerful, good performance can hardly be achieved.

For existing Wi-Fi-based HAR systems, researchers usu-
ally control a dedicated Wi-Fi access point to send clean
controlled Wi-Fi packets for HAR. This is not practical
in real life because the controlled Wi-Fi packets occupy
the precious channel for data communication of the Wi-
Fi AP. The uncontrolled Wi-Fi packets can hardly be used
for HAR due to the random size, random time of arrival,

and interference/noise from the surrounding Wi-Fi devices,
bluetooth devices, and microwave appliances. Moreover,
smart devices (e.g., smart speakers) also adopt Wi-Fi chan-
nels to transfer the contents for services. Although channel
hopping can improve the signal quality, it may greatly affect
the ongoing data communication [33]. Therefore, it is safe to
predict that Wi-Fi channels will become even more crowded
in the future and they should not be competent candidates
for HAR systems to achieve robust performance.

3 SYSTEM DESIGN

3.1 System Overview

HAR-SAnet leverages RF signals for passive HAR. It is built
on a UWB radio and an edge device such as Raspberry
Pi [24] or ROCK Pi [34] as shown in Fig. 3. Both the UWB
transmitter and receiver are collocated so it is convenient for
them to be integrated into a single edge device. Note that,
for Wi-Fi-based approaches, the transmitter and receiver are
always two separated devices that are usually located at
different locations. This integration also allows the edge
device to directly control the UWB radio and to run the
proposed algorithms for activity recognition. For software
component, HAR-SAnet has two main algorithm modules.

• Signal Processing Module: This module includes the
denoising process and motion detection. After the
reflections from the target are received by the UWB
radio and delivered to the edge device, we employ a
cascading filter to denoise the RF reflections. Motion
detection is designed to determine when the neural
network model should be activated because non-
activity samples may degrade the classifying perfor-
mance of the model.

• Signal Adapted CNN: To the best of our knowledge,
there is no CNN model design to accommodate
both time and frequency domain information of RF
signals for sensing. Therefore, we design a novel
CNN structure to learn features from both time
and frequency domains and to use these features
for HAR. To realize a real-time activity recognition
on edge device, a lightweight signal adapted CNN
block is designed via employing efficient convolu-
tions such as depth-wise dilated convolution, point-
wise grouped convolution, etc.

UWB Radio + Edge Device

Human Activities

Ceiling

Processing	RF	signals

Signal	Adapted	CNN

Software

Fig. 3. An overview of HAR-SAnet.
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In the next few sections, we present the proposed RF chan-
nel model first, and then elaborate on each component of
HAR-SAnet separately.

3.2 Modeling RF Channel

In this section, we introduce the operations of UWB radio
module. UWB impulse radio module works via transmitting
pulse signal modulated by a carrier frequency. Note that
“pulse” is loosely used, and the transmitted signal is not
truly a pulse but has a very narrow width in the time
domain. HAR-SAnet employs a commodity UWB radio
module XETHRU [35] to capture RF signals reflected from
targets. The system diagram of XETHRU from baseband
transmitted signal sk(t) to received signal ybk(t) is illustrated
in Fig. 4. The radio architecture is different from typical In-
phase and Quadrature (IQ) sampling [35]. It only uses an
in-phase single carrier frequency for upconversion, but IQ
sampling at receiver for downconversion.

h(t)
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1

− sin 2𝜋𝑓+𝑡
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𝑐𝑜𝑠 2𝜋𝑓+𝑡

𝑦1(𝑡)

ℜ[𝑦16 𝑡 ]

𝑥1(𝑡)𝑠1(𝑡)

ℑ[𝑦16 𝑡 ]

Fig. 4. System diagram from the baseband transmitting signal sk(t) to
the baseband received signal ybk(t).

The transmitted signal, Gaussian pulse can be ex-

pressed as s(t) = Vtx exp(− (t−Tp
2 )2

2σ2
p

) where Vtx is the
pulse amplitude, Tp is the signal duration, and σp =

1
2πB−10dB(log10(e))

1/2 is the standard deviation that deter-
mines the -10 dB bandwidth. After upconversion, transmit-
ted signal in time domain at the k-th frame is given as

xk(t) = s(t− kTs) · cos(2πfc(t− kTs)) (1)

where fc is the carrier frequency, the operation · means a
scalar product, Ts = 1

fp
is the duration of the frame where

fp is the pulse repetition frequency, and s(t − kTs) = s(t).
For simplicity, we denote t = t

′
+ kTs with t

′ ∈ [0, Ts],
and E.q (1) can be written as xk(t) = s(t) · cos(2πfct).
The transmitted signal xk(t) is illustrated in Fig. 5(a), and
its frequency response is shown in Fig. 5(b). The carrier
frequency is 7.3 GHz, and bandwidth is 1.4 GHz.
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(b) Frequency domain.
Fig. 5. The transmitted signal xk(t).

The Channel State Information (CSI) hk(t) with multi-
paths in a typical indoor environment is shown as following

hk(t) =
P∑
p=1

αpδ
(
t− τp − τDp (kTs)− τmDp (kTs)

)
(2)

where αp is the propagation attenuation of the p-th reflec-
tion path signal, τp is the time delay due to signal propa-
gation, τDp (kTs) is the time delay caused by the large-scale
body movement (e.g., the human walking) and τmDp (kTs)
represents the time delay caused by small-scale body move-
ment (e.g., the chest respiration movement). Moreover, for
a transmitter-receiver collocated UWB radio, τp =

2Rp

c ,
τDp (kTs) =

2vpkTs

c , and τmDp (kTs) =
2βp(1−cos(2πγpkTs))

c
where Rp is the distance between target and the UWB
radio, c is the signal propagation speed in the air, vp is
the target movement speed, βp is the small-scale target dis-
placement (e.g., the chest displacement during respiration
is around 0.5cm) which is usually smaller than one wave-
length of radio wave and γp is the movement frequency of
target. Moreover, the range resolution is inversely related to
the channel bandwidth and is calculated with the following
equation ∆r = c

2B whereB is the bandwidth of UWB radio.
Hence, it is easy to calculate the time delay resolution as
∆τ = 1

2B . Thus, the received signals can be expressed as

yk(t) = hk(t) ∗ xk(t)

=
P∑
p=1

αp cos(2πfc(t− kTs − τp − τDp (kTs)− τmDp (kTs))

· s(t− kTs − τp − τDp (kTs)− τmDp (kTs)) + n(t) (3)

where n(t) is Gaussian noise with variance ε2 and the sym-
bol ∗ is convolutional operation. In practice, since kTs � t,
the signal yk(t) is sampled in two dimensions: fast-time t
and slow-time kTs. The receiving baseband signals ybk(t) are
obtained after IQ downconversion. We have

ybk(t) =
P∑
p=1

αpe
2πfc(τp+τ

D
p (kTs)+τ

mD
p (kTs))

· s(t− kTs − τp − τDp (kTs)− τmDp (kTs)) + n(t).(4)

Different human activities exhibit different τp, τDp (kTs), and
τmDp (kTs) in ybk(t). Therefore, the received UWB signal
contains richer features for HAR.
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Fig. 6. The matrix of receiving baseband signals.

Let t = lTn represent the l-th discrete sample via Analog
to Digital Conversion (ADC) where Tn is the sampling
interval. Thus, the discrete baseband signals are ybk(lTn).
The received signals can be formed as a matrix along with
fast-time and slow-time shown in Fig. 6. In general, fast-time
axis indicates time delays caused by range distance, and the
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slow-time axis is used to estimate Doppler information via
a long time window observation.

3.3 Processing RF Signals
Before feeding data into the neural network, the noise
caused by hardware and environment needs to be removed
to enhance signal quality. In addition, since our CNN model
is proposed for HAR, signal samples in the non-activity
scenario are removed from the training and inference stages;
otherwise such samples may introduce errors in classifica-
tion. Consequently, the RF signal processing has three main
steps: i) phase noise reducing, ii) signal SNR enhancement,
and iii) motion detection.

3.3.1 Phase Noise Reducing
The ADC of UWB signals introduces Sampling Timing Off-
set (STO) caused by imperfect sampling clock. The signal
phase perturbed by such STO will affect the Doppler and
Micro Doppler information. Doppler and Micro Doppler are
observed via slow-time kTs. If the reflection is from a static
object, the phase introduced by both Doppler and Micro
Doppler is zero. In Fig. 7(a), two subsequent raw RF signals
frames (slow-time) yk(t) with phase noise caused by STO
are reflected from a same static object. The baseband signal
after IQ downconversion ybk(t) with two subsequent frames
are shown in Fig. 7(b). We can see that the amplitude of
the second frame with phase noise has jitter, but ideally, the
amplitudes of two frames should be the same. For HAR, the
static objects may be considered as moving because of this
phase noise.
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Fig. 7. Signals with phase noise.

The phase of an object with jitter is Ωp + ∆ω(t − kTs).
The phase jitter caused by STO at the radio receiver is
∆ω(t− kTs), and the phase of signal reflected from a object
is Ωp. Our objective is to reduce the phase jitter ∆ω(t−kTs).
To achieve this objective, firstly, we need to find a reflector

signal from a static object as the reference. For instance, we
can choose the pulse with maximum amplitude. Secondly,
for the K frames, we can calculate the mean phase ω̂ of
that pulse. Then, we calculate the difference between ω̂ and
phase of the reference signal at the k-th frame. Finally, we
adjust the phases of all samples in fast-time with the above
difference. We can see that the phase with time domain
noise correction is much more stable as shown in Fig. 8. In
practice, since our system is mounted on the ceiling, the max
peak of reflection is always the floor with the largest Radar
Cross Section (RCS). Therefore, one may readily identify
such reflections out of those from other static objects to
correct the phase. As the variation in phase is very small,
it barely affects the inference results of our neural network,

due to the large motions of human activities. However, this
variation could make the training phase unstable, resulting
in a longer convergence time.

3.3.2 SNR Enhancement
The raw receiving baseband signals are corrupted by noise
as shown in Fig. 9(a). The noise brings in errors in the neu-
ral network model. Specifically, if not properly addressed,
the random noise will be learned by the neural network
model that tends to overfitting. Consequently, we leverage
a cascading filter to remove noise and enhance the SNR of
the received baseband signal. The cascading filter includes
a low-pass filter and a smoothing filter. We first adopt a
Finite Impulse Response (FIR) low pass filter with 26 taps
and a hamming window. Then a smoothing filter with 5-
point window is applied to smooth the output from the FIR
low pass filter. Fig. 9(b) illustrates the signal output after
cascading filter, showing noise being greatly suppressed.

3.3.3 Motion Detection
Before feeding data to the classifier, we face two practical
issues: i) detect the human motion within a certain range
and ii) identify the starting point of a human activity. Fortu-
nately, we observe that, due to the high temporal resolution,
a human activity naturally spans several fast-time samples
and the peak power indicates a motion after removing the
static background reflections. As a result, the peak power
enables us to detect the human motion on one hand, while
its fast-time index also signals the start of a human activity
on the other hand. Next, we explain the design principle for
motion detection module.

We remove the static environment via background sub-
traction [36]. The standard deviation and peak-average
detection algorithm are employed to detect human mo-
tions. The standard deviation SD is calculated as√∑N

n=1(vi − v̄)2/(N − 1) where {v1, v2, · · · , vN} are the
observed values. For l-th pulse in fast-time, we calculate
the standard deviation. The standard deviation vectors
{SD1, SD2, · · · , SDL} are obtained as shown in Fig. 10.
There are multiple peaks in Fig. 10, and each peak indicates
one movement in the environment. The key insight is that
the wireless signals are impacted by objects in motion, and
the standard deviation of each sample in fast-time is larger
when there are motions. However, not only human create
motions, but also electronic fans, air conditioners, pets, etc.
Consequently, we design the peak-average detection algo-
rithm to avoid false alarms. Since the noise level changes
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Fig. 9. SNR enhancement can improve the quality of signals.

both spatially and temporally, we cannot use a fixed thresh-
old to detect human motion. Luckily, there is an observation
that human targets always perform larger activities than the
interferers. Consequently, the larger standard deviation in
the position is human motion. The process of the algorithm
is illustrated in Fig. 12. It is clear to see that the noise floor
threshold thmotion can be estimated by averaging the values
at all noise floor positions, and the value val at a testing
position is compared with coef · thmotionwhere coef is a
constant to adjust the threshold. Empirically, we choose
coef = 1.5 in our design. The detection output of data
used in Fig. 10 is shown in Fig. 11 which indicates a human
motion is detected.

3.4 Signal Adapted Convolutional Neural Network

The conventional CNN is designed for computer vision
[21]. Although many researchers directly apply such neural
network to extract features for wireless sensing applications
[3], [12], [14], [15], [22], they only utilize features in time or
frequency domain [37]. Most Wi-Fi based approaches em-
ploy frequency domain information because Wi-Fi signals
contain less time domain information due to low time reso-
lution. Recently, a few works such as [38] consider both time
and frequency domain information to design HAR systems,
but their system are not an end-to-end learning system.
They only use neural network to deal with frequency do-
main, and extract features from time domain in a handcarft
method. More importantly, the previous works usually need
a powerful computer to run the CNN model and infer the
activities. Such computation-heavy CNNs have difficulties
to be run on resource-constrained edge devices. We thus
propose a signal adapted CNN to address the above two
challenges in this section.

We take the unique property of RF signals into consider-
ation to design a lightweight CNN. The dominant reflections
come from different body parts as the person moves over
time. For instance, different from camera, at each time slot,
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Fig. 12. The procedure of peak-average detection algorithm.

the received signals only reflect back from a subset of
body parts. To deal with these issues, we make our CNN
model aggregate information from both time and frequency
domains to extract the features for different activities. In our
design, one slow-time frame contains a total of 60 fast-time
samples, which are the delay profile of a single pulse. The
slow-time frames are sampled at 400Hz; they are respective
signal delay profiles of consecutive pulses. Consequently, a
400 × 60 spectrogram in time domain is taken as input. To
obtain frequency domain information of signals, we perform
Fast Fourier Transform (FFT) instead of WT. The reason is
that if we perform WT on each fast-time index, the data size
is 400× 60×W , where W is the number of wavelet series,
usually in the scale of 50-60. Such a large data size will incur
a huge computation overhead.

Our signal adapted CNN is a two-stream (time and
frequency) CNN architecture composed of two parts. The
simplest way to fuse two spectrograms of time and fre-
quency is to put those spectrograms into different two chan-
nels of an image, and then we can feed them to the CNN.
However, in this way, the time and frequency spectrograms
will correspond to different pixels in the image. Therefore,
in our design, we use separated branches to extract features
from spectrograms of time and frequency, respectively as
shown in Fig. 13. In this architecture, each branch does not
share the CNN layer weights with the other. Each branch
has multiple efficient CNN blocks to abstract high level
features, and three blocks are adopted in HAR-SAnet. Each
CNN block output is followed by an activation function
ReLU that is computed via the function f(x) = max(0, x).
Then, two branches are aggregated via a concatenation
operation⊕ and put into fully connected layers fFNN(T⊕F )
where the symbol T represents the features of time, and the
symbol F illustrates that of frequency. Finally, a softmax
function shown as following is employed to achieve prob-
ability prediction for each class f sm

i (X) = exi∑K
j=1 e

xj , where

X = {x1, · · · , xK} is the input vector. In the end, the input
vector is normalized by the sum of all exponential functions.
Finally, we use the cross entropy L = −

∑C
c=1 yc log(pc) as

the loss function in our system where C is the total number
of classes and pc is the probability of the c-th class.

For resource-constrained edge device, we need to im-
plement multiple efficient CNN blocks to build the above
signal adapted model. To build an efficient model, we resort
to the power of convolution factorization. The key idea is to
employ a factorized version such as depth-wise separable
convolution which consists of depth-wise convolution and
point-wise convolution [39] or group convolution [40] to
replace the traditional full convolutional operation. We as-
sume a standard convolution operation with an input X ∈
RW×H×cin , a convolutional kernel K ∈ Rk×k×cin×cout ,
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and an output Y ∈ RW×H×cout . For each output of a
filter W , the mathematical formulation of traditional CNN,
point-wise convolution, depth-wise convolution and group
convolution, respectively are

Conv(W ,X)(i,j) =
k∑
l=1

k∑
m=1

cin∑
c=1

W(i,j,c) ·X(i+l,j+m,c) (5)

PConv(W ,X)(i,j) =

cin∑
c=1

Wc ·X(i,j,c) (6)

DConv(W ,X)(i,j) =

k∑
l=1

k∑
m=1

W(i,j,c) ·X(i+l,j+m,c) (7)

GConv(W ,X)(i,j) =

k∑
l=1

k∑
m=1

cin/G∑
c=1

W(i,j,c) ·X(i+l,j+m,c). (8)

Moreover, the depth-wise separable convolution is

SConv(Wp,Wd,X)i,j = PConvi,j(Wp,DConv(i,j)(Wd,X)).
(9)

According to Eq. (5), we realize that for each filter, the
size of effective receptive field is k × k, and the number
of learning parameters are k2cin. For a number of cout
filters, we have a total of k2cincout parameters for the
convolutional kernel. Also, point-wise convolution in Eq. (6)
and depth-wise convolution in Eq. (7) show that the total
number of parameters are cincout and k2cin, respectively.
Therefore, when we use depth-wise separable convolutional
operation, according to Eq. (9), the number of parameters is
significantly decreased to k2cin + cincout [39], by smartly
combining depth-wise and point-wise convolutions.

Our efficient block architecture is illustrated in Fig. 14
based on a reduce-split-transform-merge rule. We use a 1×1
group convolution to reduce the number of parameters of
channels from cincout to cincout

G . There are 3 layers in each
CNN block. Note that different groups can be computed in
parallel. To reduce the amount of computations, the channel
split module divides the input features into two branches.
One branch is applied with the k × k depth-wise separable
convolution, and the other is concatenated with the output
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Fig. 13. Our convolutional neural network design.
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Fig. 14. The CNN block in HAR-SAnet. GConv divides different sets
of channels to perform convolution operation independently; these in-
dependent group computing can be paralleled. Channel split separates
input channels equally to each SConv.

of the first branch. Finally, we use a point-wise convolution
to enable the information communication among different
channels. The features of wireless signals are not like the
camera images, and they are sparse in the spectrograms.
Hence, the dilated convolution [26] is applied in our net-
work block to enable large effective receptive fields.

4 IMPLEMENTATION AND EVALUATION

4.1 Implementation

Our hardware prototype includes a power supply, a 5V fan,
an SoC (System on Chip) module with Rockchip 3308 [34]
and a UWB radio module as shown in Fig. 15. We employ a
cheap commodity UWB radio XETHRU [35] to transmit and
receive UWB signals. The UWB radio is connected to the
edge device (SoC board) via Serial Peripheral Interface (SPI).
The hardware PCB is small with a size of 10.1 × 10.6 cm2

illustrated in Fig. 16. Our signal adapted CNN model is im-
plemented on TensorFlow [41], and our model is converted
into a compressed flat buffer with 32-bit floats using Ten-
sorFlow Lite. Thus, the model can be deployed on mobile
and edge devices. Note that for fair comparisons with other
models, we also convert other models via TensorFlow Lite.

4.2 Evaluation

4.2.1 Evaluation Setup
To test the generalization of our system, we ensure that
the training data and test data are different except for the
comparison study. It means that we collect data from 7
environments shown in Fig. 18, and only data from two
environments are used for training. The data of the rest 5
environments are used for testing. We collected a large data
set. The number of training samples (activities) is 15,000,
and that of testing samples (activities) is 40,000. Seven com-
monly seen activities are considered in this paper including
bending (B), falling (F), lying down (L), standing up (SU),
sitting down (SD), squatting down (SQ), and walking (W).
The HAR-SAnet hardware is mounted on the ceiling to
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Fig. 15. HAR-SAnet’s hardware components. Fig. 16. The PCBs of UWB radio and SoC board. Fig. 17. Experiment setup.

Fig. 18. Seven environments where training and testing datasets are collected.

classify the activities as shown in Fig. 17. The height of
mounted UWB transceiver is about 2.7m above the ground.

To evaluate our system, we use Accuracy, Precision, Recall
and F1 score as the metrics. For simplicity, we use TP, FN,
TN, and TP to represent True Positives, False Negatives,
True Negatives and False Positives respectively. Precision is
the ratio of the number of correctly classified activities to the
number of all classified activities i.e., p = TP

TP+FP . Recall is
the fraction of correctly classified activities over all activities
of that, i.e., r = TP

TP+FN . F1 score = 2pr
p+r is the harmonic

mean of precision and recall.

4.2.2 Activity Recognition

We evaluate the performance of HAR-SAnet with new
targets in new environments which are not included in
the training process. In this experiment, we use a 3 × 3
kernel, and to emulate the the real scenario, we mix a
large amount of no human activity samples with activity
samples. We plot the results in TABLE 1. Even HAR-SAnet
does not train in the new environments with new human
targets, the results show that HAR-SAnet can still achieve
an average of 0.965 in recall and 0.969 in precision. HAR-
SAnet demonstrates the capability of working with new
targets in new environments without further training. We
also compare our design with other state-of-the-art schemes
such as XGBoost [42] and SVM that are not based on neural
network. We train all models with the same training sets.
We can clearly see from TABLE 1 that HAR-SAnet achieves
much better performance than XGBoost and SVM in terms
of all the metrics. Although XGBoost also performs reason-
ably well, HAR-SAnet outperforms it because CNN-based
HAR-SAnet can capture complex time-frequency patterns
in high-dimensional data input.

We further compare HAR-SAnet with the state-of-
the-art Wi-Fi-based system. We implement Wi-Fi-based
CrossSense [27] in which STFT-like analysis is used to ex-
tract features. We mount one Wi-Fi transmitter equipped

TABLE 1
HAR-SAnet’s average evaluation results in UWB radio.

Precision Recall F1 Score
HAR-SAnet 0.969 0.965 0.967

XGBoost [42] 0.851 0.856 0.852
SVM (Linear) 0.452 0.460 0.455

TABLE 2
HAR-SAnet’s average evaluation results in Wi-Fi.

Precision Recall F1 Score
HAR-SAnet (Wi-Fi) 0.792 0.800 0.796

CrossSense (Wi-Fi) [27] 0.671 0.618 0.643

with Intel 5300 card on the ceiling to transmit, and em-
ploy another Wi-Fi device equipped with Intel 5300 card
to receive signals on the floor. The Wi-Fi transmitter is
mounted 2.7 m above the ground. Note that CrossSense
employed multiple transmitters and receivers while we
use only one transmitter and receiver. While CrossSense
achieves a good performance with their own dataset which
employs multiple transceiver pairs, with our dataset with
only one transceiver pair, we can see that HAR-SAnet
achieves a much better performance than the state-of-the-art
CrossSense as shown in TABLE 2. The reason is that even
though CrossSense employs transfer learning to achieve
cross-site sensing capability, the unique advantage of HAR-
SAnet is the motion detection module. The data samples
without any movement can be easily detected and removed
via motion detection module, and HAR-SAnet only focuses
on those data samples with human activities. On the other
hand, CrossSense is not able to exclude those non-activity
samples. More importantly, HAR-SAnet with UWB radio is
able to provide a much higher time delay resolution and
thus finer-grained Doppler information can be obtained.
Due to the 40 MHz narrow-band, the time delay resolution
of of Wi-Fi Intel 5300 card is 25 ns, and the corresponding
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Fig. 19. The power delay profile of
sitting down.
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Fig. 20. The Doppler-Range pro-
file of sitting down.
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Fig. 21. The power delay profile of
squatting down.
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Fig. 22. The Doppler-Range pro-
file of squatting down.

distance resolution is as large as 7.5 m. It is thus very
hard to distinguish the miniscule motions of body parts
with similar distance with respect to the sensing hardware.
Moreover, when the Wi-Fi card is mounted on the ceiling,
the Doppler shifts caused by velocities of human sitting
down and squatting down are very similar. We plot the
time and frequency spectrograms of the UWB signals for
squatting down and sitting down from Fig. 19 to 22. We can
see that the spectrograms of both time and frequency can be
employed to easily distinguish sitting down and squatting
down. It demonstrates that HAR-SAnet can extract rich
features to enable a fine-grained HAR.

4.2.3 Impacts of Kernel Sizes
We also evaluate the effect of different kernel sizes on HAR-
SAnet. The results are shown in TABLE 3. The interesting
insight here is when the kernel size increases, the perfor-
mance improves first. However, if we keep increasing the
kernel size to 9 × 9, the precision starts decreasing. The
reason is that a larger kernel size has a larger receptive field,
hence HAR-SAnet with a larger kernel size can capture more
features. But if the receptive field is too large, HAR-SAnet
will end up capturing useless noise in the spectrograms,
thus the performance degrades.

TABLE 3
Different convolution kernel sizes impact on HAR-SAnet.

Kernel size Precision Recall F1 Score
3× 3 0.969 0.965 0.965
5× 5 0.980 0.980 0.978
7× 7 0.984 0.980 0.984
9× 9 0.982 0.979 0.982

4.2.4 Impacts of Height
We mount UWB transceiver at different heights including
2.2 m, 2.7 m, and 3.5 m to evaluate the system performance.
We train the model with a 3×3 kernel size using the datasets
collected at the height of 2.7 m, and test the performance at
the other two heights. The results are shown in TABLE 4.
All results for height 2.2 m are very close to those for 2.7 m.

TABLE 4
Different heights impact on HAR-SAnet.

Height Precision Recall F1 Score
2.2m 0.957 0.957 0.957
2.7m 0.969 0.965 0.965
3.5m 0.930 0.922 0.926

However, for the height of 3.5 m, the results are slightly
worse. We believe the reason is that the reflected RF signals
from human body become weaker when the sensing device
is mounter higher, introducing slightly more errors in HAR-
SAnet.

4.2.5 Motion Detection

We use two metrics to evaluate the accuracy of motion
detection: True Positive Rate (TPR) and False Alarm Rate
(FAR). TPR is the ratio between the number of times when
HAR-SAnet correctly detects the human motion and the
total number of observed motions. FAR is the ratio of
the number of times when HAR-SAnet wrongly detects a
motion to the number of times when there is no motion.
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Fig. 23. Motion detection range with true positive rate.

HAR-SAnet can detect motions successfully within the
horizontal range of 5 meters. When a target enters this
range, his or her motion can be accurately detected. The TPR
results are shown in Fig. 23. We calculate each TPR bar in
Fig. 23 using 200 activity samples collected at different po-
sitions but with the same distance. The target moves away
from the sensing hardware from 1m. We can see that as long
as the distance between the target and the sensing device
is below 5m, the motion detection accuracy is always 100%.
We the distance is increased to 7 meters, the TPR value starts
to decrease. The reason is that the transmission power of all
UWB devices is regulated by the Federal Communications
(FCC) in the US and the European Telecommunications
Standards Institute (ETSI) in the Europe. The maximum al-
lowed mean equivalent isotropically radiated power (EIRP)
spectra density is -41.3 dBm/MHz [43], and is only around
0.1% of the density allowed for Wi-Fi [44], [45]. Thus, the
radio coverage range is now in the scale of room level. In
the future, we plan to explore the possibility of employing
LoRa signal to significantly increase the sensing range to
building level.

We also measure the FAR of HAR-SAnet. The FAR is
very low at a rate of 0.083 false alarms per hour. We record
the human motions to measure the FAR in 24 hours a day
when no one moves in the sensing range. During one week,
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there are only a total of 14 false alarms. We believe these rare
false alarms are due to the suddenly increasing noise levels.

4.2.6 Ablation Study
Our signal adapted CNN structure includes two branches
that deal with time and frequency domain features, re-
spectively. To better understand the effectiveness of our
model, we need to conduct ablation study under the same
experiment condition. To fairly study each branch of our
model, we use the same signal adapted CNN architecture
to evaluate a single domain. The results are illustrated in
Fig. 24. The precision of time domain is 0.88, and that of the
frequency domain is 0.91. Our signal adapted model com-
bines both time and frequency domains into two branches,
and is able to obtain a much higher precision of 0.97. Similar
to precision, the recall and F1 score of our signal adapted
model outperform other single domain designs. Our model
improves over single time and single frequency domain by
an average of 10% and 6.5%, respectively. Hence, consid-
ering information from both time and frequency domains
is effective in improving the performance of the neural
network design.

4.2.7 Comparison with the state-of-the-arts
In this section, we study the efficiency of various CNN
blocks in HAR-SAnet. We compare the CNN block adopted
by HAR-SAnet with three state-of-the-art baseline blocks:
MobileNetv1 [39], MobileNetv2 [46] and a traditional CNN
(tCNN) with three layers [38]. We train all these models
with the same datasets, and test them on edge device in
real time scenarios. MobileNetv1 and MobileNetv2 are state-
of-the-art CNN design for mobile and edge devices from
Google. We use them to replace the CNN block in HAR-
SAnet, and measure the execution time and energy cost
of the whole system. We use TensorFlow Lite to compress
HAR-SAnet, MobileNetv2, MobileNetv1, and tCNN into 8-
bits representations. We use SoC module to infer 1000 ac-
tivities and record the execution time of each inference. The
boxplots of those model execution time and energy cost are
shown in Fig. 25, and Fig. 26, respectively. We also present
the accuracy, average execution time, and energy cost per
inference in TABLE 5, where accuracy is the ratio of correctly
classified activity samples over all samples. It is observable
that HAR-SAnet achieves a comparable (actually slightly
better) accuracy while bearing a much lower complexity (8
to 3 times lower than others).

TABLE 5
Comparison of several network architectures over complexity (time and

energy) and classification accuracy.

Complexity (s) Energy (µJ) Accuracy
HAR-SAnet 0.016 5.80 0.974

MobileNetv1 [39] 0.071 15.40 0.960
MobileNetv2 [46] 0.044 24.92 0.963
Traditional CNN 0.111 38.57 0.967

We have also looked at the theoretical complexity char-
acterized by the Float-Point OPerations (FLOPs) metric,
which has surprisingly shown a similar count (around 0.08
million FLOPs) for all four CNN blocks. It appears that,

though different CNN blocks share similar FLOPs, their
runtime complexity differ a lot. The reason is that the
CNN computing is not only determined by the computing
operations, but also by memory swap. For instance, tCNN
spends more time in memory swap than the other blocks
designed specifically for running on edge device.

5 RELATED WORK

Past work on activity recognition can be grouped into
two categories: wearable-based and non-wearable-based
schemes. For wearable-based schemes, notable examples in-
clude smartphones and accelerometers [47]–[49]. However,
people, especially the elderly are usually reluctant to wear
wearables because of skin irritation and they often forget to
wear the devices [1], [4]. On the other hand, non-wearable
scheme was proposed to address the above limitations.
Camera-based solutions [50], [51] can achieve accurate activ-
ity recognition, but the privacy and narrow field of view are
the issues hindering their wide deployment. Audio-based
solutions [5], [52], [53] can achieve highly accurate sensing
performance due to the low propagation speed in the air.
However, these systems are vulnerable to the acoustic noise
and interference around us and the sensing range is usually
very limited (below 1m).

Our work is most related to RF-based solutions. Exist-
ing work on device-free HAR can be divided into three
categories: Received Signal Strength Indicator (RSSI)-based,
CSI-based and radar-based solutions. The RSSI-based solu-
tions rely on the fact that the human activities can cause
signal strength change. RSSI-based HAR systems leverage
the unique signal strength changes to classify activities [8],
[54], [55]. However, since the RSSI readings are very coarse,
such systems can only recognize the coarse-grained human
activities, and the achieved accuracy is relatively low.

Recently, CSI-based solutions have attracted a lot of
attentions in RF-based HAR [8]–[14], [17], [56]. These so-
lutions apply the STFT or wavelet transforms to estimate
the signal changes caused by target velocity [9], [12]. They
expect that the velocities of different body parts can be
used to classify the activities via machine learning or deep
learning. However, CSI-based solutions pose some signifi-
cant limitations. For instance, the limited Wi-Fi bandwidth
cannot separate reflections from different body parts. Hence,
the features which can be used to distinguish activities are
limited. Moreover, CSI readings can only be retrieved from
two types of commodity 802.11n Wi-Fi cards (Intel 5300 [31]
and Atheros 9390 network interface cards (NICs) [57]).

Radar technology is also leveraged to classify human
activities [3], [16], [18], [19], [21], [22], [58]. The authors
in [16], [18], [19], [22] use one-dimensional feature such
as Micro-Doppler or Doppler information to recognize hu-
man activities. Thus, same as CSI-based solutions, one-
dimensional feature limits the performance of HAR. Some
other work [3], [21], [59] employ a specialized hardware,
USRP to implement a Frequency-Modulated Continuous-
Wave (FMCW) radar system with a large antenna array to
classify human activities and demonstrate high accuracy
of activity recognition. However, these specialized devices
are usually expensive and there is a huge gap in terms of
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price and functionality between the software-defined radio
hardware platform and cheap COTS hardware. We would
like to realize HAR with cheap commodity hardware.

Furthermore, most of existing research work employ a
powerful computer to realize HAR. It is not always practical
because most edge devices have a limited storage and a
limited computational power. HAR-SAnet is not only a
COTS solution but also designs lightweight neural network
model for resource-constrained edge devices. Last but not
least, we believe that the UWB radio can be further utilized
to drive other sensing applications, such as replacing Wi-Fi
for indoor localization [60], [61] and already being applied
to vibration and vital sign monitoring [62], [63].

6 CONCLUSION

In this paper, we propose a HAR system hosted on COTS
UWB radio. Owing to the large bandwidth of UWB radio,
our system can obtain richer motion features from RF sig-
nals compared to Wi-Fi-based solutions. To make our sys-
tem work with resource-constrained edge device, a signal
adapted convolutional neural network model is designed
to extract features and classify activities without handcraft.
The system is evaluated in multiple real-life environments
and comprehensive experiments demonstrate that HAR-
SAnet can obtain a precision of 96.9% and a recall of 96.5%.
We believe the proposed methods can benefit a large range
of other sensing applications. In the future, we plan to
extend HAR-SAnet to MIMO UWB radio systems to explore
the boundary of the sensing capability.
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