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ABSTRACT Wireless information networks have become a necessity of our day-to-day life. Over a billion

Wi-Fi access points, hundreds of thousands of cell towers, and billions of IoT devices, using a variety of

wireless technologies, create the infrastructure that enables this technology to access everyone, everywhere.

The radio signal carrying the wireless information, propagates from antennas through the air and creates a

radio frequency (RF) cloud carrying a huge amount of data that is commonly accessible by anyone. The

big data of the RF cloud includes information about the transmitter type and addresses, embedded in the

information packets; as well as features of the RF signal carrying the message, such as received signal

strength (RSS), time of arrival (TOA), direction of arrival (DOA), channel impulse response (CIR), and

channel state information (CSI). We can benefit from the big data contents of the messages as well as the

temporal and spatial variations of their RF propagation characteristics to engineer intelligent cyberspace

applications. This paper provides a holistic vision of emerging cyberspace applications and explains how they

benefit from the RF cloud to operate.We begin by introducing the big data contents of the RF cloud. Then, we

explain how innovative cyberspace applications are emerging that benefit from this big data.We classify these

applications into three categories: wireless positioning systems, gesture and motion detection technologies,

and authentication and security techniques. We explain how Wi-Fi, cell-tower, and IoT wireless positioning

systems benefit from big data of the RF cloud. We discuss how researchers are studying applications of RF

cloud features for motion, activity and gesture detection for human-computer interaction, and we show how

authentication and security applications benefit from RF cloud characteristics.

INDEX TERMS Motion detection, gesture detection, authentication, security, cyberspace, smart world, RF

cloud.

I. INTRODUCTION

The holistic view of wireless data communications for office

information networking emerged in the mid-1980’s [1], [2]

and the IEEE 802.11 standardization activity for wireless

local area networking, commercially known as Wi-Fi, began

in late 1980s to address this industry. Today, when we arrive

at a hotel registration desk, the first fundamental questions we

ask related to our basic needs are: Where is my room?Where

is the restaurant? And how can I connect to the Wi-Fi? Over

a billion Wi-Fi access points deployed worldwide connect

our mobile, personal, and fixed devices to the Internet and

cyberspace. They have become an essential part of our lives

to the extent that some people take Wi-Fi as the foundation

The associate editor coordinating the review of this manuscript and

approving it for publication was Qilian Liang .

FIGURE 2. Density of Wi-Fi access points in Bay Area, Manhattan and
Seattle, and the RF cloud data generated around them, including
information packets and data embedded in features of RF signal
propagation.
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of human needs, where Maslow’s hierarchy of human needs

lands on (Figure 1, [3], [4]).1

In the late 1990s the IEEE 802.15 standardization

activities began and introduced Bluetooth, ZigBee, and Ultra-

Wideband (UWB) technologies for personal area network-

ing [5]. Radio Frequency Identification (RFID) technologies

have emerged as the icon of supply chainmanagement, inven-

tory control, and many other applications [6]. More recently,

with the emergence of millimeter wave (mmWave) technol-

ogy for Wi-Fi and cellular networks, leading manufacturers

such as Texas Instruments have introduced short range radar

sensor devices employing this technology [7]. Today, the

RF signal radiating from over a billion Wi-Fi access points,

several hundred thousands of cell towers, and trillions of

IoT devices using Bluetooth, ZigBee, UWB, mmWave, and

RFID technologies invites innovative opportunistic big data

application developments for cyberspace [8]. The RF signals

radiating from these devices create an RF cloud reachable

to any device with an RF front end to sense their signals.

The features of these RF signals such as received signal

strength (RSS), time of arrival (TOA), direction of arrival

(DOA), channel impulse response (CIR), and channel state

information (CSI), provide a fertile ground for numerous

innovative opportunistic cyberspace applications.

This paper provides a visionary overview of these emerg-

ing cyberspace applications and explains how they benefit

from RF cloud to operate. We first discuss the big data

contents of features of the RF cloud. Then, we explain how

innovative cyberspace applications are emerging to benefit

from the big data in these features. We begin with explaining

opportunistic wireless positioning benefitting from big data

from the RF cloud. Then, we explain how researchers are

studying applications of these features for motion, activity

and gesture detection as well as authentication and security

to open a new horizon for human-computer interaction.

II. BIG DATA IN THE RF CLOUD

Figure 2 explains the concept of RF cloud for Wi-Fi access

points in a database of a Wi-Fi positioning system in the Bay

Area, Manhattan, and Seattle [9]. The big data embedded

inside the RF cloud are divided into two types: 1) the data

in the information packets to exchange information among

wireless devices, and 2) the data related to the multipath char-

acteristics of RF signals carrying this information. The data

embedded in RF propagation features reflects the structure

of the environment surrounding the source and destination

antennas of the RF devices.

We can also divide wireless devices into two gen-

eral classes, wireless communication devices and radars

(Figure 3). Wireless communication devices (Figure 3a)

transmit symbols, each carrying a limited number of bits

of information in binary format. The transmitted packet of

information consists of a bundle of these symbols carrying

1This paper is based on an invited keynote speech with the same title as
this paper, presented by the lead author at Cyberspace Congress (CyberCon),
Beijing, China, on Dec 17, 2019.

an information packet destined to a receiver with information

about the system and the devices, which are beneficial for

any receiver to gain cyber intelligence. These packets are

broadcast and they are accessible to all other devices in the

coverage area of the transmitter. In indoor and urban areas

where wireless communication devices operate, the received

signal arrives through different paths, bouncing off objects

between the transmitter and the receiver. As such, the signal

contains information related to the objects in the environ-

ment, embedded in the characteristics of the RF propagation

channel between the transmitter and the receiver. Modern

wireless devices measure these characteristics to enhance

the quality of the wireless communication link. That way,

characteristics of the RF propagation channel are available

to end-users. Radars (Figure 3b), similar to communication

devices, also transmit electronic waveforms. However, the

transmitter and receiver are located in the same location and

the received waveforms are compared with the transmitted

symbols to measure the characteristics of the paths reflected

from surrounding objects in the environment.

Receivers in both radars and wireless communication

devices can measure the magnitude, phase, and time of flight

of multiple paths reflected from surrounding objects in the

environment. As objects move in the environment, the data

associated with paths fluctuate and an intelligent receiver can

use this to design motion-related cyberspace applications for

positioning, tracking, motion and gesture detection, authenti-

cation, and security. In recent years, many cyber intelligent

applications have evolved benefitting from the contents of

data broadcast from wireless devices and the data associated

with RF channel characteristics measured by RF receivers.

A. DATA CONTENTS OF FLOATING PACKETS

Figure 4a shows typical fields in a packet used for wireless

communications. It consists of a preamble, starting delim-

iter (SD), destination/source addresses (DA/SA), control bits,

information data, and a checksum code. The length of the

packet depends on the information length and the rest of the

data is considered as the overhead of the packet. Figure 4b

shows the type of data contents in each field of a packet. The

header is different in different technologies and it contains

data on the type of technology used for the packet commu-

nication. Addresses contain data about the source and desti-

nation and can associate the packet to the physical location

of the source. In wireless communications, coverage of the

devices is limited. As a result, when we read a packet from a

transmitter, we knowwe are at a certain distance from its loca-

tion. Control data contains information on communication

links, and sometimes channel information that can be used for

environmental monitoring. The data itself and the checksum

code is aimed for communication applications. This data does

not contain any special information for intelligence, however,

they affect the length of the packet and variations of the length

contain information. For example, variation of the length

of data arriving from a specific device can reflect unique

behavior of the source as a measure for authenticity.
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FIGURE 1. Maslow’s hierarchy of human needs and its perceived relation to Wi-Fi [3], [4].

FIGURE 3. Two classes of wireless devices: (a) wireless communication
devices, with transmitter (Tx) and receiver (Rx) in different locations, and,
(b) Radars with integrated Tx and Rx.

FIGURE 4. (a) Typical fields in a wireless communication packets, (b)
typical common data in floating packets.

B. DATA CONTENTS IN FEATURES OF RF PROPAGATION

Motion in the environment affects RF propagation features

including the received signal strength (RSS), embedded in

the amplitude of the carrier of the received signal, and time

of flight or time of arrival (TOA), which is embedded in the

phase of the carrier of the received signal. The TOA can also

be measured using the envelope of the carrier signal but it is

much less reliable than that obtained from the measurement

of the phase of the signal. Using multiple antennas, we can

also extract direction of arrival (DOA) by utilizing the differ-

ences among the TOAs in antenna arrays. The quality of TOA

ranging for measuring the distance between a transmitter and

a receiver is superior to RSS based ranging. However, TOA-

based ranging is extremely sensitive to excessive multipath

propagation conditions and if it is not controlled, it may

performworse than RSS-based ranging.Multipath conditions

increase as we go into partitioned spaces: in open space areas

there is no multipath, in suburban areas we have some mul-

tipath, in dense urban areas multipath increases significantly,

and in indoor areas it is extensive. If the receiver is capable

of measuring the characteristics of the individual multipath

components, there is an opportunity to take care of multipath

effects using signal processing algorithms [10].

The Channel Impulse Response (CIR) for wireless devices

operating in multipath indoor and urban areas is commonly

represented by:

h(αi; τi; θi, ψi) =

N
∑

i=1

αie
jθiδ(t − τi)δ(ψ − ψi), (1)

where (αi; τi; θi;ψi) are the magnitude, TOA, phase, and

DOA of the i-th path. In this equation the TOA is related to

the phase of the arriving path by:

τi =
θi

2π fc
=
d

c
, (2)

where fc is the carrier frequency of the signal, d is the length

of the path, and c is the speed of light.

We can calculate the RSS of the received signal from:
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We can easily measure the RSS from a transmitting wireless

device without any synchronization with the source, while

measurement of TOA needs tight synchronization between

the devices as well as some additional signal processing.

As the objects or the wireless devices move in the envi-

ronment or we change the frequency of operation, charac-

teristics of the multipath features fluctuate drastically and

cause fading in the received signal. In the wireless commu-

nication literature, this phenomenon is discussed under tem-

poral, frequency-selective and spatial fading [11]. By taking
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FIGURE 5. Overview of the TI’s mmWave Radar, (a) the physical
appearance, (b) abstraction of CIR. (c) A typical measure of
range-amplitude profile.

the Fourier Transform of these fluctuations we can measure

the speed of movement of the objects. Different wireless

devicesmeasure some of these parameters for enhancing their

communication quality and those measurements are available

for development of other cyberspace applications, which we

present in this paper.

1) RF DATA CONTENT OF RADARS

The popularity of millimeter Wave (mmWave) technology

operating at around 60GHz for the 5G and 6G cellular net-

works has enabled implementation of low-cost short-range

radars at these frequencies. The Texas Instruments mmWave

sensor radar device is a popular example of such devices

operating at 76-81 GHz [7]. This compact and low-cost radar,

shown in Figure 5, emits chirp signals to capture distance,

velocity and angle of objects surrounding the device. This

information includes the RSS, TOA, DOA and velocity of

motion of these objects. This mmWave radar features a flat

8×8Multiple-Input-Multiple-Output (MIMO) array antenna

enabling the device to capture refined spatial information

from detected objects. Operation at high GHz has enabled the

device to have a small array and advancements in microelec-

tronics has integrated this device in a finger-sized package.

Availability of this device in the market initiated a number

of interesting research projects in micro-gesture detection.

We will discuss more details on research on these topics in

section III.B.

FIGURE 6. Overview of DecaWave EVK100 UWB wireless communication
and ranging system, (a) physical appearance, (b) a typical Channel
Impulse response measurement, with abstraction of CIR.

Figure 5 shows the basics of TI’s radar characteristics.

Figure 5a shows the physical appearance of the device with

sizemetrics. Fig. 5b illustrates a sample range-amplitude pro-

file captured by the radar receiver from different surrounding

objects, representing the CIR. In this measurement, the first

peak associates with the gesture of a hand kept close to

the device and other major peaks are reflection from the

environment located at longer distances.

2) RF DATA CONTENT OF WIRELESS COMMUNICATIONS

The enormous success of the wireless communication indus-

try has nurtured a number of successful technologies that

include, Wi-Fi, cellular, Bluetooth, ZigBee and UWB [11].

In addition to the common data available in the floating

packets (Section II.B.1), devices using these technologies

also have access to data from features of RF propagation

reflecting motions in the environment. All of these devices

support measurement of the RSS. As a result, RSS of Wi-Fi,

Bluetooth and ZigBee have found their ways in a variety of

cyberspace applications.

Other devices measure the CIR with different levels of pre-

cision. UWB devices provide an accurate estimate of the CIR

suitable for opportunistic applications in human-computer

interfaces. The popularity of UWB technology operating at

around 3-10GHz for positioning and communication applica-

tions has enabled implementation of low-cost UWB devices.

The DecaWave’s EVK1000 UWB positioning system is a

good example of these devices [12]. This small size, low-cost

accurate indoor positioning system (Figure 6) uses UWB sig-

nals to measure the CIR between a transmitter and a receiver

and position a device in an unknown location using known

location of several reference devices. Figure 6a shows the

physical appearance of the device, Figure 6b illustrates a typi-

cal measurement of the CIR, and detected direct and reflected

paths. In addition to accurate positioning applications for a

system consisting of several reference points and a tag, the

CIR between any two transmitters and receivers provides
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FIGURE 7. A typical wireless communication scenario using MIMO and
multiple CIR and DOA information.

multi-channel data stream that is useful for human-computer

interaction and other cyberspace applications.

Today, orthogonal frequency division multiplexing

(OFDM) is the most popular wireless communication tech-

nology for Wi-Fi and cellular networks. An OFDM signal

consists of a large group of narrowband transmission systems

modulated over neighboring carrier frequencies. In theory,

if we have N-carriers, we have N-streams of magnitudes

and phases. However, unlike the CIR multiple data streams,

the multiple streams of OFDM data are highly correlated.

It is possible to obtain CIR from OFDM signals and most

OFDM receivers estimate the CIR to enhance the quality

of transmission [11]. However, users should notice that the

quality of CIR estimates is proportional to the bandwidth and

UWB systems provide a much better estimate of CIR.

Wireless communication systems with MIMO antennas,

shown in Figure 7, are commonly used in Wi-Fi and cellu-

lar networking technologies. These systems are capable of

providing for multiple streams of CIR and DOAs. MIMO

antenna systems transmit multiple streams through different

paths at different arrival angles, each carrying the magnitude

and phase of the signal. In theMIMO literature, these streams

of information are referred to as Channel State Information

(CSI) [13]. The CSI is another rich signal space with multi-

ple streams, which has been popular in recent literature for

motion related cyberspace application development. Table 1

summarizes the features of signals embedded in the RF cloud

of wireless devices.

3) RF DATA CONTENT OF COMMUNICATION DEVICES

Digital wireless communications take place through symbol

transmissions, each symbol carrying a group of informa-

tion bits. As shown in Figure 8a, transmitted symbols are

represented by a signal constellation. Due to the thermal

noise, carrier synchronization error, and nonlinearities of the

receiver amplifiers, the received symbols arrive around the

targeted transmitted symbol and the signal constellation has

TABLE 1. Summary of signals and features in RF cloud.

FIGURE 8. (a) Transmitted and, (b) received signal constellation reflecting
frequency offset and nonlinearities of the device.

a frequency offset (Figure 8b) [11]. The statistical pattern of

the noise around the transmitted symbol changes with non-

linearity of the receiver electronic that is unique to any device.

We can benefit from these unique electronic features of the

communication devices obtained from statistical behavior of

the received symbols in the signal constellation to identify a

device type.

III. OPPORTUNISTIC CYBERSPACE APPLICATIONS

OF RF CLOUD

Section II described the RF cloud and its big data con-

tents. We showed that the RF cloud radiating from wireless

devices surrounding is a valuable source of information.

Each wireless device has a unique address and if fixed, a

unique location, and it radiates an RF signal with different

coverage, which changes its features with motions. One can

create a database of these addresses and the available signal

features (RSS, TOA, DOA, CIR and CSI) associated with the

addresses to develop opportunistic cyberspace applications.

Section III describes examples of these cyberspace applica-

tions, which have evolved around the RF cloud from wireless

devices. The most widespread cyberspace applications of RF
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cloud are related to indoor positioning using wireless sig-

nals of opportunity [10]. Other applications using RF cloud

include gesture and motion detection and using signals of

opportunity for authentication and security. We provide an

overview of these three categories of RF cloud applications

in the next three subsections.

A. WIRELESS POSITIONING WITH RF CLOUD DATA

In late 1990s, indoor geolocation science and technology

began to evolve to extend the coverage of Global Positioning

System (GPS) to indoor areas [14], [15]. The high cost of

dense infrastructure, needed for proper operation of these sys-

tems, moved this industry towards opportunistic positioning

using RF cloud data from the existing Wi-Fi access point

infrastructure [16], [17]. A Real Time Localization System

(RTLS) industry, with a limited vertical market, evolved

around this idea for applications in specific areas, such as

museums, warehouses, and hospitals. Fingerprinting of the

RF cloud for RTLS systems are done manually by surveying

inside the building for the site of application. Manual sight

survey is expensive and that restricts scaling to large areas of

coverage. In the mid-2000s the Wireless Positioning System

(WPS) industry evolved around the same idea with a new

method for fingerprinting. In WPS, the RF cloud finger-

printing takes place by driving in the streets and tagging the

collected data using a GPS receiver. This automated process

enabled WPS systems to scale to metropolitan areas. For

that reason, WPS was adopted for the original iPhone and it

became integrated in all smart phones and smart devices since

[9]. In the remainder of this section, we explain how WPS

works and how it is evolving to enhance the opportunistic

wireless positioning industry.

1) WI-FI RSS POSITIONING AND WPS

Today, the most popular positioning system is WPS, which

is the main positioning engine for hundreds of thousands of

applications on smart devices. Skyhook, Google, and Apple

own the three majorWi-Fi location databases of access points

(APs) for these systems. The database of Skyhook, the pio-

neer of the technology, receives over a billion hits per day and

includes close to a billion Wi-Fi access point addresses with

their estimated locations. In the original WPS systems, cars

driving in the streets of a city collected the RSS fingerprint

of Wi-Fi devices identified by their MAC addresses provided

in the floating beacon packets and tags them with the GPS

readings of the locations. Intelligent algorithms process the

big database of these readings to estimate the location of

any device from its Wi-Fi readings in an unknown location.

Therefore, WPS relies on GPS because it is a database asso-

ciating Wi-Fi addresses with GPS readings in the streets. The

advantage of WPS is that it works indoors, where GPS does

not work.

Initially cars driving in the streets of different cities col-

lected the database. Then, organic RSS reading data from

devices searching for their unknown location augmented the

database of access point addresses and locations. The accu-

racy of WPS systems are typically around 10-15 meters [9],

which is on the order of the average coverage of Wi-Fi. This

accuracy is adequate for turn-by-turn navigation of cars in

streets to differentiate building addresses from each other in

urban areas. To increase the precision of WPS for indoor

positioning applications, demanding a few meter accuracy

to differentiate different rooms from each other, we need

indoor manual fingerprinting, similar to RTLS, and that is

expensive.

2) LOCATION INTELLIGENCE: AN OUTCOME OF WPS

GPS is a physical real time system providing position infor-

mation based on current readings of TOA from satellites.

WPS is a cyberspace information system built on a big

database and an intelligent search engine with intelligent

algorithms.

Each time we agree that an application on our smart device

can use our location address, we send a packet to the WPS

database and WPS knows our device location. With around

one billion hits per day, WPS service providers can extract

cyberspace intelligence about our location. We can use this

new outcome ofWPS technology to implement location-time

traffic analysis, geo-fencing (for supporting elderly people,

animals, prisoners, and suspicious people), real-world con-

sumer behavior analysis, location certification for security

and privacy, positioning IP addresses, and customizing con-

tent and experiences [10]. These are secondary outcomes of

WPS technology, enabling other cyberspace applications for

location intelligence.

3) FUTURE DIRECTIONS OF WPS

As wementioned in section III.A.1, the current state of the art

WPS technology without indoor fingerprinting has 10-15m

accuracy. For accuracy in the range of meters, we need expen-

sive indoor site surveys and fingerprinting. Typical smart

devices carry a number of other sensors such as accelerom-

eter, gyroscope, magnetometer, barometer, step counter and

compass. These devices provide information on speed and

direction of movements of the device. Using hybrid AI algo-

rithms, we can integrate these motions related information

with the absolute position estimate from the WPS to enhance

the positioning and to refine the tracking in indoor areas [10],

[18]–[20].

Wi-Fi access points are installed in office buildings approx-

imately 30 meters apart. In a typical office building such as

Atwater Kent Laboratory at the Worcester Polytechnic Insti-

tute (approximately 50mX100m), each floor is covered only

with 3-7 Wi-Fi access points. That is why we need finger-

printing to increase the precision to a few meters to differen-

tiate rooms from each other. With the increase in ‘smartness’

of office buildings, every room of this building has at least

two IoT devices controlling the light and the temperature. IoT

devices use Bluetooth Low Energy (BLE), ZigBee or other

active RFID technologies, which have smaller coverage than

Wi-Fi. Smaller coverage indeed helps the precision. Imagine

we have an RFID with coverage of one meter, if we read its

VOLUME 8, 2020 89981



K. Pahlavan et al.: RF Cloud for Cyberspace Intelligence

signal, we know our location with one-meter accuracy. With

such density of deployment of small coverage IoT devices, we

may not need indoor fingerprinting anymore. It can be shown

that the precision of Wi-Fi positioning in a typical building

(e.g. WPI’s Atwater Kent Laboratory), with three Wi-Fi APs

in 90% of locations is better than 15 meters, while with only

eight randomly distributed IoT devices in that floor this preci-

sion comes close to two meters [21], [22]. In practice, design

of such systems is practical because all devices measure their

RSS and they are connected to the Internet, therefore they can

pass that information to a positioning database to enhance the

precision of positioning.

4) CELL TOWER RSS POSITIONING

RSS based Wi-Fi positioning is a device-based positioning

system. The metric data used for positioning is collected

by the device independent from the communication network

provider. We can apply this technology to cell tower posi-

tioning using fingerprinting of cell towers [23]. The advan-

tage of this approach for cell tower positioning is that the

positioning system takes advantage of cell towers from all

cellular providers without any specific coordination. The

positioning service provider drives in the streets to identify

cell towers and develop a database of their fingerprints tagged

with the GPS location. Then using the RSS readings of the

cell towers around a device, the service provider can come

up with a position estimate for the device. The device needs

to have a cellular chipset to read the RSS values of the cell

towers.

As comparedwithWi-Fi positioning, the density of cellular

networks is far less: we have billions ofWi-Fi access points as

compared with hundreds of thousands of cell towers world-

wide. Therefore, the accuracy of these RSS based cell-tower

positioning systems (CPS) is around 100-250 meters, which

is significantly lower than WPS [9], [23]. However, CPS has

a more comprehensive coverage, which includes highways as

well as urban areas. The original iPhone did not include GPS

and it used CPS as a backup for WPS for these areas. With

the increase in density of deployment in 5G and 6G cellular

networks, the gap between precision of WPS and CPS should

reduce significantly. This intuitive observation needs to be

justified by empirical research data.

5) CELL TOWER TOA POSITIONING

WPS, CPS and GPS are device-based positioning systems,

in which the device measures the features of the RF cloud

for positioning. Another approach to positioning is network-

based positioning, where cell towers or access points measure

the features of RF signals from the device and send that

to a central computational server to locate the device. The

first popular application of this approach was the Uplink-

Time Difference of Arrival (U-TDOA) positioning systems,

designed in 2G cellular networks to comply with FCC regula-

tions for E911 services for cell phones [10]. These TOAbased

systems utilize the difference between arriving signals from

a cell phone to locate the device. One of the advantages of

this approach is that we can locate a device without its active

participation in the positioning process.

The U-TDOA provides for approximately 100m precision

for E-911 service using existing cell tower signals [24]. This

level of precision is not adequate for many popular indoor

and urban area positioning and navigation applications, but it

has a comprehensive coverage, which makes it appealing for

emergency response.

The U-TDOA was a patch solution to position because

2G standard organizations had not included positioning in

their agenda. If we consider positioning as a part of the

standardization of communication protocols, we should be

able to achieve higher precisions using TOA and DOA tech-

nologies. The fundamental challenge for TOA based systems

are sensitivity to multipath effects and need for atomic clock

synchronization to achieve sub-meter precision. By integrat-

ingGPS clockwith the cellular system standards, we can have

a practical solution for synchronization, but multipath effects

are serious, in particular with indoor areas [12].

Ultra-wideband transmission controls the effects of mul-

tipath arrivals by isolating them from one another, antenna

beamforming focuses the transmission to a single path, and

we can design algorithms for positioning in the absence

of direct path [25]. The emerging 5G and 6G cellular sys-

tem with massive MIMO and mmWave technologies ben-

efit from ultra-wide band transmission as well. In theory,

these characteristics of 5G/6G technologies can enable high

precision TOA based positioning. However, implementation

of these systems to make it available for precision sen-

sitive positioning applications needs algorithm and system

design with focus on performance evaluation in realistic

positioning application scenarios. In general, standards orga-

nizations are focused on the increase in capacity, which

directly affect the user experience. They need to increase

their attention to positioning and navigation as a fundamen-

tal enabling technology for millions of applications. More

details on design and performance evaluation of positioning

systems are available in the lead author’s recent book in this

area [10].

B. MOTION, ACTIVITY & GESTURE DETECTION

WITH RF CLOUD

Motions of the wireless device or objects close to the antennas

of the wireless devices cause temporal fluctuations of charac-

teristic of RF cloud features measured at the receiver anten-

nas. Recently, a number of researchers have studied these

characteristics of RF cloud from wireless devices for activity,

motion and gesture detection. This area of research expects

to revolutionize human-computer interaction and introduce a

variety of other cyber space applications by taking advantage

of the variations in RF cloud features due to motions in the

environment.

1) DETECTION OF RF FEATURES DUE TO MOTION

Wireless communication receiversmeasure features of the RF

cloud reflecting motions in the environment. Signal process-
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FIGURE 9. The temporal variations of RSS for a receiver antenna in
proximity of a transmitting antenna and its Doppler Spectrum and
Spectrogram (a) with no-motion, (b) with a hand with natural motions, (c)
with a moving hand between the antennas.

ing techniques help detect these motions and prepare them for

cyberspace application development. Figure 9 illustrates the

temporal variations of RSS of a receiver antenna in proximity

of a transmitting antenna. The figure also shows the Fourier

transform of the signal representing the Doppler spectrum

and the short-term Fourier transform representing its spectro-

gram. Figure 9a shows a situation with no-motion, Figure 9b

shows a situation with a hand held between the two anten-

nas, and Figure 9c shows the results when the hand moves

between the antennas. As the speed of motions increases, the

bandwidth of the Doppler spectrum and the contrast of colors

in the spectrogram increases.We can benefit from this change

in depiction of the RSS characteristics, to develop hand

motion related applications. All modern wireless devices

measure RSS andmany other features of the RF cloud that are

available and accessible with software, opening an interesting

area for motion related cyberspace applications.

ThemmWave radar development environment (Fig. 5) also

supports other aspects helpful in classification of motions.

Figure 10 shows the range-velocity profile of the device

illustrating motions of the finger in different directions. The

mmWave sensor extracts velocity information, and consoli-

dates it with the range data to form the range-velocity pro-

file. Figure 10a shows a hand, which is a strong reflector,

at close distance from the radar and its corresponding pro-

file. Figure 10b and 10c demonstrate that the finger move-

ment creates radical velocities relative to the radar, and thus

mirrored in the profile below. These depictions of motions

open an opportunity for micro-gesture detection from finger

motions.

2) MOTION RELATED CYBERSPACE APPLICATIONS

In recent years, a number of researchers have benefited

from RF cloud features to introduce innovative cyberspace

applications. As a simple example, using an algorithm mea-

suring variations of the RSS above its average value, one

could detect the number of people attending a class [26], or

FIGURE 10. Range-velocity Profile of TI’s mmWave Radar with (a) the
hand staying still in front of the radar device (b) a finger tilting backward
(c) a finger tilting forward.

monitor newborn babies in a hospital [27]. More complex

cyberspace applications using opportunistic signals available

in the RF cloud is achievable by using artificial intelligence

algorithms and taking advantage of more complex features of

the signal, such as CIR, CSI, TOA, and DOA. In recent years,

a number of research laboratories have pursued this idea.

At the Worcester Polytechnic Institute, variations of the

RSS of body-mounted sensors is used for activity monitoring

of first responders to find out if a fire fighter carrying a device

is standing, walking, laying down, crawling, or running

[28]–[30]. These states of motion reflect the temporal behav-

ior of the fire fighter, revealing the seriousness of the situation

she or he is facing. The work in [28] uses traditional charac-

teristics of the fading, such as coherence time, rms Doppler

spread, and threshold crossing rate of the RSS of simple

devices such as Bluetooth, to differentiate different motions

and the work presented in [29] integrates AI algorithms into

the motion detection process. The work presented in [30]

benefits from more complex CSI signals of Wi-Fi devices

along with more complex AI algorithms such as Long-short-

term-memory Regressive Neural Network (LSTM-RNN), to

increase the capacity of the system in differentiating different

motions on a flat floor or when climbing the stairs. As we

explained in section II.B.2, CSI provides multiple streams of

RSS and more diversified variations of the signal. In [31],

the research group demonstrates the use of mmWave radar

in tracking the motion of a finger, opening up further study
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in gesture-based application controls in the human-computer

interaction (HCI) research area.

Researchers at the University of Washington [32] have

used Wi-Fi signals for hand gesture recognition to differen-

tiate nine different hand motions. Multiple RSS stream from

different channels of the OFDM signal of Wi-Fi are depicted

by a spectrogram to generate frequency-time characteristics

color images. The AI algorithm classifies the image to detect

the nine gestures of the hand motion. At Michigan State

University [33], the CSI of a Wi-Fi signal is use for keystroke

detection. When typing a certain key, the hands and fingers

move in a unique formation and direction, there is a unique

pattern of CSI RF fingerprint. By training an AI algorithm,

they have detected the keystrokes of the keyboard user. At

the Massachusetts Institute of Technology [34], researchers

have used radar signals similar to the Wi-Fi signals with

multiple antennas, for human pose estimation through walls

and occlusions. They demonstrated detection of multiple

human postures through the walls using the RF signal and a

neural network algorithm. They used visual data captured by

a camera during the training period for the AI algorithm. At

Stanford University [35], commodity Wi-Fi signals are used

for tracking hand motion for virtual reality applications to

replace existing infrared devices.

In parallel with academic studies, practical applications of

RF signals for motion and gesture detection and tracking are

emerging in industry. As an example, Google [36] uses RF

radar signals at mmWave frequencies obtained from antenna

arrays, for micro-motion tracking of hand and finger gestures

for applications such as connection less winding or rolling

over the surface of a wristwatch. RF signal variations can

replace any application using mechanical sensors. For exam-

ple, the interactive electronic games commonly use mechan-

ical sensors such as an accelerometer, and an accelerometer

mounted on the gait of a patient has been used to measure

the extent of progress in Parkinson decease [37], [38]. The

RF cloud of UWB devices, measuring the CIR, can replace

many of these mechanical sensors and be used in interactive

electronic gaming [39], to help visually impaired [40]; and to

provide gait motion detection.

Building on the advances in motion, activity and gesture

detection using RF Cloud, researchers have begun to explore

the possibilities for future HCI applications. Early work

explored using unmodified GSM signals to enable recogni-

tion of eight tapping gestures, four hover gestures and two

sliding gestures around a mobile device, to enable incoming

call management as well as phone navigation from a dis-

tance [41]. More recent work, has demonstrated an mmWave

gesture recognition pipeline [36] as well as the recognition of

eleven gestures with short-mmWave radar with a goal of them

being used in human-computer interaction [42]. Other work

explored mmWave gesture recognition for in-car infotain-

ment control [43]. Radar signals have also been explored for

automatically classifying everyday objects to support various

applications including a physical object dictionary that looks

up objects that are recognized, context-aware interaction,

FIGURE 11. Security architecture for applications involved in the RF
clouds.

as well as future applications such as automatic sorting of

different types of waste, assisting the visually impaired and

smart medical uses [44]. Using radio signals and one external

sensor hanging on the wall, researchers have demonstrated

that gait velocity and stride length, which are important health

indicators, can be monitored, enabling health-aware smart

homes [45]. Taking advantage of indoor WiFi signals to iden-

tify motion direction, researchers have created a contactless

dance ‘‘exergame’’ [46] as well as sign language gesture

recognition [47]. Other work demonstrated that 5GHz WiFi

can be used to achieve decimeter localization accuracy of up

to four users as well as activity recognition of up to three users

doing six different activities [48].

C. SECURITY AND AUTHENTICATION WITH RF CLOUD

In recent years, several researchers have shown interest in

developing authentication and security applications bene-

fitting from big data embedded in the RF cloud. These

researchers look into various kind of devices, including

Wi-Fi, Bluetooth, Zigbee and RFID, to evaluate the threat,

to assess vulnerability of the systems, and to propose frame-

works for specific authentication and security schemes.

To analyze the security of the networks, it is customary

to refer to a layered architecture [49]. Figure 11 shows a

general layered architecture and the relations among different

layers. The architecture of the security system in this figure

consists of three layers: perception layer, network layer, and

application layer. The functionality of the perception layer is

data collection, preprocessing of data, and secure transition of

this data to the network layer. The network layer checks the

security of data and transmits it to the application layer. The

application layer analyzes and process the data to support the

application.

Since most of the RF data collection sensors are deployed

in environments with no human supervision, and the data is

collected through a wireless medium, this data can be easily

monitored, intercepted and modified. In these environments,

an attacker can access the sensor and take control of the
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device or damage these sensors or physically remove them

from their assigned location. As a result, most of the security

designers for RF cloud applications implement their mea-

sures at the perception layer.

Application of machine learning methods for classification

of devices for authentication and security has been very pop-

ular in the recent literature [50]. The time-domain features of

the RF cloud from Wi-Fi have been used to train a classifier

to differentiate between trusted and un-trusted devices oper-

ating in close vicinity of each other [51]. Researchers have

also examined physical authentication using a unique coding

technique to generate location-related public keys based on

RF cloud signature in a given location [52].

In section II.B.2, we introduced the main features of the

RF cloud, which includes RSS, TOA, CIR, and CSI and how

we can process them for extraction of traditional statistical

features such as mean and standard deviation, as well as

Doppler spectrum related features. At the perception layer of

security systems, we can use the fingerprint of these feature

for RF authentication. Fingerprinting is the process of iden-

tifying radio transmitters by examining their unique transient

characteristics at the beginning of transmission. A complete

identification system has been presented, which includes data

acquisition, transmission detection, RF fingerprint extraction,

and a variety of classification subsystems [53]. Following

this pioneering work, a number of researchers have examined

different machine learning methods for RF cloud related

research in authentication and security.

Using non-parametric and multi-class ensemble classifiers

for RF fingerprinting, researchers demonstrated improved

ZigBee device authentication over the traditional algo-

rithms [54]. Other work extracted novel RF fingerprint

features to design a hybrid and adaptive classification

scheme adjusting to the environment conditions, and car-

ries out extensive experiments to evaluate the performance

of these systems [55]. A low-cost system has been intro-

duced for bit-level network security, benefitting from phys-

ical unclonable functions, which is challenging to replicate

[56]. A device recognition algorithm based on RF fingerprint

has also been proposed [57]. In this work, a Hilbert transform

and principal component analysis are used to generate the

RF data fingerprint of the device and traditional machine

learning algorithms are used to classify the devices. The accu-

racy of RF fingerprinting employing low-end receivers has

been evaluated showing that receiver impairment effectively

decreases the success rate of impersonation attack on RF

fingerprinting [58].

Another area of emerging security and authentication

research related to RF cloud applications is the design of

testbeds for risk analysis for IoT-based physically secure

systems. To assess security risks, researchers have proposed

testbeds and methodologies for risk analysis and evaluation

of vulnerability [59], [60]. There are other works proposing

a testbed for authentication of IoT objects benefiting from

RF fingerprinting, along with a machine learning technique

[61], [62].

IV. CONCLUSIONS AND FUTURE DIRECTIONS

The success of wireless networks has resulted in the deploy-

ment of a huge infrastructure as well as development of inex-

pensive wireless devices. Big data from the RF cloud of the

infrastructure and devices has enabled a number of intelligent

cyberspace applications in positioning and tracking, motion

and gesture detection, and security and authentication. These

innovative cyberspace applications have the potential for cre-

ating a major paradigm shift of untethered human-computer

interfacing and development of popular applications in the

heath and gaming industries.

Research challenges facing this industry include learning

how to integrate multiple sensors to enhance positioning

and tracking for universal operation in all environments.

Another challenge is in finding methods for systematic per-

formance evaluation of alpha-beta classification capability

of micro-gestures and performance evaluation of motion and

micro-motion tracking techniques. Designing a universal data

acquisition interfaces for multiple RF sources is another tech-

nical challenge facing the existing devices for practical appli-

cations in health, interactive gaming, and human-computer

interaction.
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