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ABSTRACT Radio frequency (RF) fingerprinting is considered as one of the promising techniques to

enhance wireless security in the Internet of Things (IoT) applications. In this paper, a low-complexity RF

fingerprinting method for classification of wireless IoT devices is proposed. The method is based on the

energy spectrum of the transmitter turn-on transient signals from which unique characteristics of wireless

devices are extracted. The number of spectral components to be used is determined through a proposed

approach based on the estimated transient duration value. Transient duration estimation is achieved from the

smoothed versions of the instantaneous amplitude characteristics of transmitter signals, which are obtained

through a slidingwindow averagingmethod. Classification performance of the proposed spectral fingerprints

is assessed using experimental data and described by a confusion matrix. The discrimination effectiveness

of the spectral fingerprints is quantified by a class separability criterion and evaluated for different noise

levels through Monte Carlo simulations. It is demonstrated that the proposed fingerprints outperform the

classification performance of two existing fingerprints especially at low signal-to-noise ratio. Additionally,

computational complexity analysis of the classifier using the proposed fingerprints is provided.

INDEX TERMS Internet of Things (IoT) security, radio transmitter turn-on transient, RF fingerprinting,

transient energy spectrum, wireless device identification.

I. INTRODUCTION

With the increasing use of Internet of Things (IoT) devices

and technologies in critical applications such as smart

healthcare, smart cities, and smart vehicles, efficient and

low-complexity wireless security solutions are becoming

more crucial. Traditional security techniques such as cryp-

tographic methods cannot be directly applied to wireless

IoT devices due to their limited energy and computing

resources [1], [2]. RF fingerprinting has been an emerging

security solution for IoT devices and employed in many IoT

applications [3]–[6], since it relies only on intrinsic hard-

ware characteristics without requiring additional hardware

and computational cost.

RF fingerprinting is the process of analyzing the unique

characteristics of wireless devices, which are induced by

manufacturing tolerances of the physical layer compo-

nents, for the aim of identifying wireless devices. A device

identification system based on RF fingerprinting consists
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of detection, feature extraction, and classification stages.

After detecting the transmitted signal which conveys the

identifiable information, unique features are extracted to

generate the fingerprints, and these fingerprints are classi-

fied. This approach has been proposed for various wire-

less devices so far, including very high frequency (VHF)

transmitters [7]–[10], wireless fidelity (WiFi) transceivers

[11]–[17], global system for mobile communications (GSM)

transceivers [18], universal mobile telecommunications sys-

tem (UMTS) transceivers [19], worldwide interoperability

for microwave access (WiMAX) transceivers [16], [20], wire-

less personal area network (WPAN) transceivers [21]–[25].

RF fingerprints can be extracted from different regions

of transmitted signals such as turn-on transient, pream-

ble, and data regions. For example, RF fingerprints were

extracted from WiFi preamble and WiMAX near tran-

sient signal regions by using discrete Gabor transform

in [16]. For a selected signal region, distinctive features

can be extracted from different signal characteristics. The

most widely used signal characteristics are instantaneous

amplitude, phase, and frequency. For example in [11],
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instantaneous amplitude and phase profiles of transient sig-

nals were presented as candidate features, and classification

performance of the instantaneous amplitude was evaluated

for IEEE 802.11b signals. In [26], instantaneous amplitude

characteristics were used as features to compare the perfor-

mance of two different classifiers, the k-nearest neighbor

classifier and probabilistic neural network classifier, in the

problem of identification of WiFi devices. Additionally, sev-

eral statistical features extracted from instantaneous sig-

nal attributes have been used to construct RF fingerprints

of wireless devices, such as standard deviation, variance,

skewness, and kurtosis [4], [14], [18], [20], [25], [27], [28].

In [27], features based on descriptive statistics were extracted

from the transients ofWiFi devices for classification purpose,

and it was demonstrated that some of descriptive statistics,

which measure the central tendency and dispersion of data,

can be combined to generate more distinctive feature sets. For

a systematic review of physical-layer identification systems,

see [29].

A. SPECTRAL FINGERPRINTS

Previous works have demonstrated that spectral fingerprints

are useful for classifying wireless devices [7], [12], [14],

[19]–[21], [24], [30]–[32]. Wavelet transforms of turn-on

transients [7], [24] and preambles [14] of the transmitted

signals have been used to extract spectral fingerprints.

Besides, spectral fingerprints have been obtained by using

Fourier transform of preambles [12], [19], [20], [30]–[32]

and turn-on transients [21]. In [12], power spectral den-

sity values calculated using discrete Fourier transform of

the preambles were used as fingerprints to classify IEEE

802.11a signals. The classification was accomplished by

cross-correlating the extracted fingerprint of the unknown test

signal with the fingerprints of the known reference signals

and finding the maximum correlation value. Kennedy et al.

employed steady state spectral features to identify UMTS

devices [19], [30]. The authors investigated the effect of the

number of spectral features on classification accuracy and

observed that their method requires more spectral features for

high classification accuracy at low SNR conditions. In [20],

higher-order statistics such as standard deviation, variance,

skewness, and kurtosis obtained from power spectral den-

sity of preamble signal regions were used as fingerprints

for classification of WiMAX devices. Device classification

was carried out by applying the statistical fingerprint vec-

tors to a multiple discriminant analysis/maximum likelihood

process. Danev and Capkun [21] proposed a transient-based

fingerprinting technique to identify IEEE 802.15.4 radio

transceivers and evaluated the robustness of the technique

in dynamic environments. Spectral Fisher features were

extracted from the relative differences between adjacent fast

Fourier transform spectra of the transient data samples by

using linear discriminant analysis. Mahalanobis distance was

used to calculate the similarity between the test and tem-

plate feature vectors. A summary of these works in terms of

spectral features and signal parts employed for identification

is provided in Table 1.

TABLE 1. Summary of device identification methods using spectral
fingerprints.

B. CONTRIBUTIONS

The proposed fingerprinting method has two main contri-

butions and differences compared to the previous spectral

fingerprinting methods. First, unlike earlier spectral domain

approaches using power spectral density of the pream-

ble signals [12], [19], [20], [30]–[32], the proposed spectral

fingerprints are achieved from energy spectrum of turn-on

transient signals. Turn-on transients are emitted before the

transmitter sends any information that can be decoded at the

receiver therefore a classification system using turn-on tran-

sients has the potential to achieve the least latency compared

to classification systems based on steady state characteristics.

This feature is highly desirable in IoT applications, e.g. smart

healthcare and smart vehicles, where the latency is of critical

importance and the device authentication has to be performed

before the actual data transmission starts.

Second, in contrast to the Fourier transform-based meth-

ods in [12], [19]–[21], and [30]–[32], the RF fingerprinting

method proposed herein employs only small number of spec-

tral components rather than the entire spectrum. In order to

determine the number of spectral components, we propose

an approach based on transient duration estimation. In this

approach, the transient duration estimation is performed by

using a sliding window averaging technique which is applied

to instantaneous amplitude characteristics of transmitter sig-

nals. Moreover, in the proposed RF fingerprinting method,

it is not required to reduce the input dimensionality unlike the

methods in [19]–[21] and [30], since the number of spectral

coefficients in feature vectors is small. These two advan-

tages result in less computational complexity for feature

extraction compared to the existing techniques using spectral

fingerprints, which may contribute to the proliferation of

cost-efficient commercial IoT applications.

The proposed fingerprinting method is evaluated using

experimental data collected from eight different wireless IoT

devices, IEEE 802.11b WiFi transceivers. The classification

performance and computational complexity of the transmit-

ter classifier using the proposed fingerprints are compared

with those using two transient-based fingerprints introduced

in [11] where the authors proposed to use instantaneous

amplitude characteristics (hereafter called amplitude fea-

tures) and their dimensionally reduced forms obtained by
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using principal component analysis (hereafter called PCA

features). Experimental results show that the proposed finger-

prints have a better classification performance than the two

existing fingerprints especially at low SNR conditions.

The outline of the paper is as follows: In Section II,

turn-on transient behavior of WiFi devices is explained and

visualized through instantaneous characteristics of signals.

In Section III, the proposed RF fingerprinting method based

on transient energy spectrum is presented. In Section IV,

computational complexity of classification method using

spectral fingerprints is analyzed. Effect of additive channel

noise on the spectral features is investigated in Section V. The

class separability criterion used to measure the classification

capability of the feature sets is given in SectionVI. The classi-

fication performance test results are presented in Section VII,

and lastly, Section VIII concludes the paper.

II. TURN-ON TRANSIENT BEHAVIOR OF WiFi DEVICES

The IEEE 802.11b standard specifies the limits for transmit

power-on and power-down ramp durations to avoid spreading

power to adjacent channels [33]. Transmitters from various

manufacturers have a variety of power-on duration within

the value defined by the standard. Furthermore, this duration

differs for the devices of the samemodel and type due to man-

ufacturing tolerances of the physical layer components [11].

The signal within power-on duration has a transient behav-

ior and continues until the transmitter generates a stable

carrier signal. Transient signals have unique characteristics

attributed to combination of hardware imperfections in the

analog circuitry, which can be exploited to identify the wire-

less devices [11], [29].

Transient behavior of the transmitter signals can be rep-

resented by means of instantaneous characteristics of signals,

such as instantaneous amplitude, phase, and frequency. These

characteristics have been used in wireless device identifi-

cation systems [11], [14], [18], [20]. In Fig. 1, an interme-

diate frequency signal from an IEEE 802.11b transmitter

and corresponding instantaneous amplitude are shown. For

this transmitter, instantaneous amplitude data has a ramp-like

structure. In order to show the differences in characteristic

behavior of transient signals, instantaneous amplitude pro-

files of captured transients from three different IEEE 802.11b

WiFi transmitters (Tx) are given in the left panel of Fig. 2.

Real and imaginary parts of the captured transients are also

plotted in the middle panel of the same figure.

III. EXTRACTING RF FINGERPRINTS BASED ON ENERGY

SPECTRUM OF TRANSIENT SIGNAL

The block diagram of the device identification procedure

based on the proposed spectral fingerprints is given in Fig. 3.

Captured real valued intermediate frequency (IF) signals are

first transformed to analytic signals by using the Hilbert

transform [34]. The analytic IF signal is down-converted to

baseband by multiplying with a complex exponential. Since

the analytic IF signal has a single sided spectrum, complex

baseband signal centered at 0 Hz is obtained without the

FIGURE 1. A captured IF signal from IEEE 802.11b transmitter (blue) and
corresponding instantaneous amplitude (red).

need to suppress the unwanted spectral images. The received

complex-valued baseband signal can be modeled as:

x(n) =











v(n) if 1 ≤ n ≤ m

st (n− m) + v(n) if m < n ≤ p

ss(n− p) + v(n) if p < n ≤ L

(1)

where st (n) and ss(n) are the transient and steady state signals,

respectively, v(n) is complex Gaussian noise, n is the discrete

time index, m and p are start and end points of transients,

respectively, and L is the total number of samples.

The details of transient detection and fingerprint

generation stages are given in the following sections. Lastly,

generated spectral fingerprints are classified by using a prob-

abilistic neural network (PNN) classifier.

A. TRANSIENT DETECTION

Accurate separation of the transient signal from the noise and

the steady state part of the received signal is important to

extract actual fingerprints. In this study, transient detection

is performed on instantaneous amplitude profiles. For the

received baseband signal of the form

x(n) = xI (n) + jxQ(n) (2)

where xI (n) and xQ(n) denote real and imaginary parts,

respectively, the instantaneous amplitude can be calculated

by

a(n) =

√

xI 2(n) + xQ2(n). (3)

The instantaneous amplitude of the complex baseband

signal, a(n), is the same with that of the analytic IF signal.

Note that shifting the frequency of the analytic signal by

multiplying by a complex exponential does not change the

instantaneous amplitude profile, since |exp(−jwcn)| = 1,

where wc is the IF carrier frequency.

In this work, turn-on transient starting point estimation is

carried out by using a Bayesian ramp change detector [35],
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FIGURE 2. Instantaneous amplitude profiles (left panel), real and imaginary parts (middle panel), and
energy spectral coefficients (right panel) of complex transient signals for three different WiFi transmitters.

FIGURE 3. Spectral RF fingerprinting system block diagram.

in which the instantaneous amplitude data of a WiFi radio

is modeled as a ramp function. Within this approach, detec-

tion of the transient starting point is considered as a change

point detection problem and solved in a Bayesian framework.

In [36], the performance of this detector for different SNR

conditions was evaluated, and also the effect of transient

detection errors on the performance of a transient-based iden-

tification system was investigated.

For the transient end point estimation, a method is pro-

posed based on average instantaneous amplitude samples.

FIGURE 4. Instantaneous amplitude (top) of a received WiFi signal and
the corresponding average values (bottom) obtained through a sliding
window.

In this method, averaging process is performed by using

a sliding window approach. Instantaneous amplitude values

in the sliding window are averaged to produce a smoothed

amplitude signal. Estimation procedure can be explained by

Fig. 4, where instantaneous amplitude (top) of a received

WiFi signal and the corresponding sliding window aver-

age (bottom) are given. Initial sample for the sliding window

is taken as the estimated start point of the transient. As can

be seen from this figure, sliding window average in the

steady state region fluctuates around a value of approximately

half the maximum value. In order to determine the point

where transient signal ends and steady state signal starts,
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the first peak above half the maximum value is found in

the smoothed amplitude signal, which is shown with a circle

marker in Fig. 4 (bottom). The sliding window position from

which this average value is obtained is shown with red lines

in Fig. 4 (top). The center point of this window is taken as the

estimate of the transient end point.

Transient duration (in samples) can now be determined by

N = p̂− m̂ (4)

where m̂ and p̂ denote the estimated start and end points of

the transient, respectively. Then, transient signal is obtained

as follows:

xt (i) = x(m̂+ i), for 1 ≤ i ≤ N (5)

where x (·) denotes the complex baseband signal in the inter-

val (m̂, p̂].

B. GENERATING SPECTRAL RF FINGERPRINTS

As opposed to steady state parts of the transmitted signals

such as preambles and data, transient signals do not have

periodic structure and are widely scaled by their energy

instead of power in the signal [37]. Therefore the energy

spectrum is the most commonly used function for transient

signals and can be approximated by using discrete Fourier

transform (DFT) as

E(k) =
1

N

∣

∣

∣

∣

∣

N−1
∑

n=0

(xt (n) exp (−j2πkn/N ))

∣

∣

∣

∣

∣

2

(6)

where xt (n) stands for the complex samples of transient sig-

nal, n and k denote the discrete time and frequency indices,

respectively.

The energy spectrums of the transients from three different

IEEE 802.11b WiFi transmitters are given in the right panel

of Fig. 2. In this figure, the frequency-domain signals are

plotted such that the direct current (DC) component is in the

center of the spectrum. The negative frequency bins between

N/2 + 1 and N − 1 are represented with negative index, e.g.

DFT frequency bins k = N−2 and k = N−1 are represented

as k = −2 and k = −1, respectively.

Distinct characteristics of the transients can be seen from

both time and frequency domain representations of the tran-

sients in Fig. 2. For example, the transient from Tx6 has

a quasi-periodic structure in time domain with a spectrum

containing strong peaks at the first positive and negative fre-

quency bins. The transient from Tx1 on the other hand has a

ramp structure in the time domain, which has a spectrum com-

posed of large DC and small harmonic components. The right

panel of this figure also demonstrates that the information

in energy spectrum is concentrated in a few low-frequency

components. This can be explained by the fact that the practi-

cal radios are implemented using image rejection filters with

high out-of-band rejection to prevent interference between

adjacent channels. This figure also shows that the distribu-

tion of the transient energy over these spectral components

carries the information about the characteristic behavior of

the transients. The main idea of this paper is to use these

observations in identifying wireless devices.

Based on these observations, the number of energy spectral

coefficients carrying characteristic information is calculated

as

K =

[

W

1f

]

(7)

where [·] denotes the integer part of a number, W is the

transmission bandwidth,1f is the frequency resolution of the

DFT and is defined by

1f =
1

Td
=

1

NTs
=

fs

N
(8)

where Td is the average transient duration in seconds, Ts and

fs denote sampling period and sampling frequency, respec-

tively.

Since the analyzed complex signals are centered at 0 Hz,

spectral fingerprints are defined as sets of energy spectral

coefficients consisting of the DC component, Kp lowest pos-

itive and Kn lowest negative frequency components. The

number of positive and negative frequency components are

calculated as follows

Kn = [(K − 1)/2] (9)

Kp = K − Kn − 1. (10)

Note thatKp = Kn for odd values of fingerprint lengthK , and

Kp = Kn + 1 for even values of K .

IV. COMPUTATIONAL COMPLEXITY

In device identification process, feature extraction is carried

out prior to classification. For the proposed spectral features,

the computational complexity of feature extraction using (6)

is O(N ), since only three spectral coefficients (for k = 0,

1, and N − 1) need to be calculated as will be explained

in Section VII-A. This provides an advantage in terms of

computational complexity over the methods using the entire

spectrum such as [12], [19]–[21], [30], and [31], which

have the usualO(N log(N )) complexity. Besides, these meth-

ods have an additional computational complexity resulting

from dimension reduction procedures such as linear discrim-

inant analysis [20], multiple discriminant analysis [21], and

averaging [19], [30]. On the other hand, dimension reduction

is not a requirement for our proposed fingerprinting approach

since the fingerprints are generated from a small number of

spectral components.

For the compared transient-based fingerprints, principal

component analysis (PCA) features are obtained by project-

ing the test vectors onto a lower dimensional subspace. This

projection is performed using a projection matrix which is

calculated during training stage. In [11], feature dimension

was reduced from N to 5 using principal component analysis.

Therefore, computational complexity of PCA feature extrac-

tion isO(N ) due to the multiplication of 1×N test vector and

N × 5 projection matrix. Amplitude features proposed in the
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same study do not require any additional computations there-

fore yields a computational complexity of O(1) for feature

extraction stage.

In this work, the fingerprints of WiFi transmitters are clas-

sified by using a probabilistic neural network (PNN) classifier

to evaluate the classification performance. PNN classifier

has a computational complexity of O(MN ) where M and

N denote the number of training vectors and feature size,

respectively. For a detailed description of the PNN classi-

fier and the issues of its computational complexity, see [38].

Classification with the amplitude features proposed in [11]

has this computational complexity value, since the entire

instantaneous amplitude data of length N is used as feature

vectors. For the PCA features, the computational complexity

of the classification process reduces to O(M ) due to dimen-

sion reduction (from N to 5). Similarly, the computational

complexity of the PNN classifier using the proposed spectral

fingerprints is O(M ), since only three spectral components

are employed as features.

The total computational complexities in testing stage,

including feature extraction process, for the spectral, PCA,

and amplitude features are presented in Table 2. These results

show that computational complexities in testing stage for

spectral and PCA features are the same, which is lower than

the complexity of the amplitude features.

TABLE 2. Computational complexities in testing stage, including feature
extraction, for three different features.

Training stage of the classifier using the spectral features

has a computational complexity of O(MN ), since three spec-

tral coefficients are calculated by using (6) for M training

vectors. On the other hand, the computational complexity in

training stage for eigenvalue decomposition based PCA is

O(MN 2+N 3) [39]. In training stage, low computational com-

plexity of the classifier using the spectral features can provide

an advantage over that using the PCA features for mobile sys-

tems which have ability to learn in the field, such as cognitive

radios. In such a system, the extracted spectral fingerprints

consisting of a small number of spectral coefficients inmobile

IoT devices can be exchanged in a cooperative network. Thus

an enhanced transmitter identification system can be achieved

using space diversity advantage of cooperative systems.

V. ADDITIVE NOISE EFFECT ON THE SPECTRAL FEATURES

The effect of additive noise on the proposed features is inves-

tigated by adding recorded channel noise samples to captured

transients to reduce SNR of the transients. SNR estimation of

noisy transient signal is obtained by

SNR = 10 log10

(

ESN

EN
− 1

)

(11)

where ESN is the average energy of the noisy transient, and

EN is the average energy of the noise signal. The average

noise energy at the collected SNR level is estimated by using

the channel noise samples prior to the start of the transient.

In [40], it was shown by simulations that this estimator can

be used for the SNR values encountered in many practical

applications.

Instantaneous amplitude profiles of a captured IEEE

802.11b transmitter signal for transient SNR levels of 24 dB

(top) and 12 dB (bottom) are shown in Fig. 5. As seen from

this figure, noise corrupts the instantaneous amplitude profile

of the transient signal, which leads to classification perfor-

mance degradation for the features extracted from this profile,

e.g. amplitude features. In order to visualize the additive noise

effect on the proposed spectral features, three dimensional

spectral features obtained from eight WiFi transmitters at

the collected SNR (approximately 25 dB) and 0 dB SNR

levels are presented in Fig. 6. PCA features are also shown

for the same SNR levels in Fig. 7. The number of principal

components was set to 3 in order to visually compare the

noise effect on separability of these two features in the three

dimensional feature space. Fig. 6(a) and Fig. 7(a) show that

both spectral and PCA features are visually distinctive at the

collected SNR.As the SNR level decreases to 0 dB, the spread

of both the features increases (see Fig. 6(b) and Fig. 7(b)).

It is visually observed from these figures that, at 0 dB SNR,

PCA features substantially lose their distinctiveness whereas

the spectral features keep their ability to separate the classes

with a relatively small degradation in performance. Quan-

titative evaluation of the additive noise effect on discrim-

ination effectiveness of the spectral, PCA, and amplitude

features is performed through Monte Carlo simulations in

Section VII-C.

FIGURE 5. Instantaneous amplitude profiles of a captured IEEE 802.11b
transmitter signal for transient SNR levels of 24 dB (top) and 12 dB
(bottom).
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FIGURE 6. Spectral features at (a) the collected SNR and (b) 0 dB SNR.

FIGURE 7. PCA features at (a) the collected SNR and (b) 0 dB SNR.

VI. CLASSIFICATION CAPABILITY OF THE FEATURE SETS

In order to quantify the classification capability of the feature

vectors and analyze the detrimental effect of additive noise

on classification performance, a class separability criterion

based on scatter matrices was calculated. The scatter matri-

ces, including with-in class scatter matrix Sw, between class

scatter matrix Sb, and total scatter matrix St , are defined

as [38]

Sw =

M
∑

i=1

∑

x∈Ci

(x − µi)(x − µi)
T (12)

Sb =

M
∑

i=1

ni(µi − µ0)(µi − µ0)
T (13)

St = Sw + Sb (14)

where x is a sample in the feature space, Ci is the ith subset

in the set of all classes (C), ni is the number of samples in

class Ci, M is the number of classes, µi is the mean vector

of the ith class, µ0 is the global mean vector over all classes,

and (·)T denotes the transpose of amatrix. A class separability

criterion J can be defined as [41]

J = tr(S−1
w St ) (15)

where tr(·) represents the trace of a matrix. Large values of

J indicate that samples of each class are closely clustered

around their mean, and the clusters are well separated from

each other [41]. J values for the feature sets extracted from

experimental data are given in Sections VII-B and VII-C.

VII. CLASSIFICATION PERFORMANCE EVALUATION

The classification performance of the spectral fingerprints

was tested using a data set collected from eight differ-

ent IEEE 802.11b WiFi devices and compared with those

of amplitude and PCA fingerprints. The data set contains
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100 transmissions from each of the devices operating in the

2.4 GHz ISM band, which were first down-converted to

the intermediate frequency of 160 MHz and then digitized

at a rate of 5 GSamples/s by using a digital oscilloscope.

In order to classify devices, digitized IF signals were applied

to the spectral RF fingerprinting system given in Fig. 3.

Classification performances of the three different fingerprints

were evaluated using Monte Carlo cross-validation where,

in each trial, 20 of 100 transients were selected randomly

from eachWiFi transmitter for training set, and the remaining

80 transients were employed as a test set. Therefore, 640 test

signals were classified at each trial. The sizes of the training

and test sets were determined by using the experimental

results in [26], in which the impact of the size of the training

set on the classification performance was analyzed and it

was shown that increasing the training sample size above

20 had a negligible effect on the classification performance.

Classification was carried out using a PNN classifier [38].

A. TRANSIENT DURATION AND FEATURE LENGTH

In classification tests, transient detection was first performed

using the procedure defined in Section III-A. For the transient

end point estimation, a slidingwindowwith a size of 300 sam-

ples and %75 overlap was used in order to ensure sufficient

smoothing for data. The details of transient starting point

estimation using the Bayesian ramp change method can be

found in [35]. Once the start and end points of a transient

signal were estimated, the transient duration was calculated

by using (4). In training stage, an average transient duration

was calculated over the estimated transient durations of the

training vectors. In the testing stage, this average value was

used as the transient duration of the test vectors.

As an example calculation, consider the average transient

duration of 878 samples obtained from the entire data set,

which corresponds approximately to 176 ns for the sam-

pling rate of 5 GSamples/s. As the training vectors were

selected randomly in each test, the average transient duration

was found to be approximately in an interval of [850, 900]

samples, corresponding to the interval of [170, 180] ns. The

values in this interval are close to the value reported in [11],

in which transient duration for IEEE 802.11b signals was

empirically found to be around 200 ns. For the calculated

average transient duration values and the transmission band-

width of 22 MHz, spectral feature length is found to be 3 by

using (7) and (8). Note that, as explained in Section III-B,

spectral features of length 3 consist of the DC component

(k = 0), the first positive (k = 1), and the first negative

(k = N − 1) frequency components.

B. CLASSIFICATION PERFORMANCE AT HIGH SNR

In this test, transients at the collected SNR were applied

to the classifier in both the training and testing stages.

SNR of the captured transients is measured to be around

25 dB. One hundred trials, in each of which training

and test sets were selected randomly, were performed to

obtain more accurate performance estimates through Monte

Carlo cross-validation. Confusion matrices of transmitter

classification results achieved by using the spectral and PCA

features at the collected SNR were obtained for each clas-

sification test, and the average values over trials are given

in Table 3 and Table 4. The rows of the matrix represent the

actual classes while the columns represent the predicted

classes. The diagonal elements of the matrix are the correct

classification rates whereas all off-diagonal elements are mis-

classified rates.

TABLE 3. Classification results using spectral features at high SNR.

TABLE 4. Classification results using PCA features at high SNR.

The class separability measure J defined by (15) for

all combinations of two classes were also obtained from

the classification test sets. The average J values are given

in Table 5 and Table 6 for the spectral and PCA features,

respectively. It is observed from Table 3 and Table 4, that

the most confusing three pairs of transmitters are Tx1-Tx2,

Tx1-Tx3, and Tx4-Tx5 for both spectral and PCA fea-

tures. The corresponding J values for these class pairs

in Table 5 and Table 6 are small, which implies that these pairs

have large within-class variance and/or small between-class

distance.

The average of the diagonal elements of the confu-

sion matrices in Table 3 and Table 4 gives the average

classification performance. The average classification error

rates for Spectral(3), Amplitude(1024), and PCA(5) features

were obtained as 2.09%, 2.61%, and 2.80%, respectively.

The values in parentheses next to the feature names repre-

sent the dimension of the feature vector. When the number

of principal components was set to 3 to construct PCA(3)

features which are given in Fig. 7 for the purpose of visual
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TABLE 5. J values for spectral features at high SNR.

TABLE 6. J values for PCA features at high SNR.

comparison, the average classification error rate was found

to be 2.95%. The classification error histograms for the three

different features at the collected SNR are given in Fig. 8.

These results show that all the features have a similar classi-

fication performance at the collected SNR.

FIGURE 8. Classification error histograms for Spectral(3),
Amplitude(1024), and PCA(5) features at the collected SNR.

C. EFFECT OF ADDITIVE NOISE ON CLASSIFICATION

PERFORMANCE

Classification performances of three different fingerprints

were tested for low SNR conditions. Low SNR transient

signals were classified by using the PNN classifier trained

with high SNR transient signals collected in a controlled

environment. To simulate low SNR conditions, SNR levels

of test transients were reduced by adding recorded channel

noise to collected transients. Channel noise samples were

recorded by using the data acquisition system during no

transmission. Recorded noise samples were scaled and added

to the collected test signals to change SNR level in the range

of 0 dB to 20 dB with 1 dB steps.

For a given SNR level, a training set at the collected

SNR was selected randomly and classification tests were

performed. For a fixed training set, fifty different recorded

noise signals were added to the test signals prior to feature

generation. Three different fingerprints were extracted from

the same test signals corrupted by the same recorded noise

samples for fair comparison. This process was repeated fifty

times where training set was selected randomly in each trial.

Classification error rates at each SNR level were calculated

by averaging over trials.

Confusion matrices and J values for the spectral and PCA

features were calculated through classification simulations at

10 dB SNR. The average values are given in Tables 7-10.

From these tables, it is observed that average of the diag-

onal elements of the confusion matrices and all the J val-

ues decrease for both features when compared to the values

in Tables 3-6, which were obtained at the collected SNR.

This can be explained by the fact that the distance between

the classes for each pair becomes smaller and the variance of

TABLE 7. Classification results using spectral features at 10 dB SNR.

TABLE 8. Classification results using PCA features at 10 dB SNR.

TABLE 9. J values for spectral features at 10 dB SNR.
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TABLE 10. J values for PCA features at 10 dB SNR.

FIGURE 9. Average classification error rates for Spectral(3),
Amplitude(1024), and PCA(5) features at different SNR levels.

the samples within each class becomes larger with increasing

noise level. The most confusing three pairs of the transmitters

for both spectral and PCA features are the same as those at

the collected SNR: Tx1-Tx2, Tx1-Tx3, and Tx4-Tx5.

The average classification error rates for SNR levels

of 0-20 dB are plotted in Fig. 9. This figure shows that the

average classification performance of the spectral features

is significantly better than the amplitude and PCA features,

as the SNR decreases below 10 dB. Incorrect classification

rate exceeds 10% at SNRvalues below 9 dB for amplitude and

PCA features, whereas the error rates for the spectral features

are below 10% at the SNR levels between 0 and 20 dB.

At 20 dB SNR, all the features have a similar classification

error rate of about 2.5%. As the SNR level decreases to

0 dB, the amplitude and PCA features lose their ability to

discriminate the classes of interest whereas the spectral fea-

tures have a classification accuracy of 90%. The classification

error histograms for spectral and PCA features at 0 dB SNR

are given in Fig. 10. Error histogram of amplitude features is

not presented in this figure, since it has similar form to that

obtained for PCA features. The average classification errors

were found to be 10%, 59%, and 59% for spectral, amplitude,

and PCA features, respectively.

Robustness of the proposed spectral features to additive

noise can be explained by considering the effect of additive

noise on strong spectral components used as features. The

energy ratio of three spectral components to total signal

energy was calculated as about 90% at the collected SNR

for 800 transient signals. Therefore the effect of noise on

three strong components, in terms of separability, is small

FIGURE 10. Average classification error histograms for Spectral(3) and
PCA(5) features at 0 dB SNR.

even when the SNR of transient signal is low (see Fig. 6 (b)).

Since the objective herein is to assess the robustness of the

features with respect to additive noise, start and end points of

the transients were set to the estimated values at the collected

SNR for all the three methods as the SNR was changed.

VIII. CONCLUSIONS

In this work, RF fingerprints of WiFi transmitters were

extracted from energy spectrums of transient signals for

device classification. Experimental test results showed that

the proposed spectral fingerprints could be used to classify

the WiFi devices with a high classification accuracy. It was

also verified by simulations that the spectral fingerprints were

robust to additive noise. Based on the transient duration esti-

mations, the number of spectral coefficients constituting the

RF fingerprints was found to be 3 for IEEE 802.11b devices.

In order to use the proposed technique for the classification

of other type of wireless IoT devices, one needs to determine

the number of the spectral features to be used. Once the

number of the spectral features is fixed, entire spectrum of

the analyzed signal does not need to be calculated. This pro-

vides an advantage in terms of computational complexity over

the other spectral transform-based methods which use entire

spectrum. Besides, dimension reduction is not required in

our proposed technique since the transient characteristics can

be represented with a small number of spectral components.

These advantages are particularly attractive for low-cost IoT

applications. In the device classification system using the

proposed RF fingerprints, the investigation of the impact of

using low-cost receivers and the performance analysis for

classification of different IoT devices are subjects for future

work.
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