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RF Sensor Networks for Device-Free Localization:
Measurements, Models and Algorithms

Neal Patwari and Joey Wilson

Abstract—We discuss the emerging application of device-free
localization using wireless sensor networks, which find people
and objects in the environment in which the network is deployed,
even in buildings and through walls. These networks are termed
“RF sensor networks” because the wireless network itself isthe
sensor, using RF signals to probe the deployment area. Device-
free localization in cluttered multipath environments has been
shown to be feasible, and in fact benefits from rich multipath
channels. We describe modalities of measurements made by RF
sensors, the statistical models which relate a person’s position
to channel measurements, and describe research progress inthis
area.

I. I NTRODUCTION

Wireless networks are ubiquitous. Wherever we are, we are
interacting with radio frequency (RF) electromagnetic (EM)
waves. In this article, we review efforts to use the changes
caused by people’s interaction with the RF EM wave field
to infer their position. We call the static wireless devices
used for this purpose “RF sensors”, because they are used
to measure the signal on each link between devices. Such
a network we call aRF sensor network, as opposed to the
term “wireless sensor network”, which refers to a general-
purpose network of sensors. This area of research is also
called “device-free” localization (DFL) [1] to emphasize that
a person1 does not need to be carrying a wireless device to be
detected and located, or “sensorless sensing” because sensor
network researchers typically do not consider the radio to be a
sensor [2]. With or without a radio transmitter (TX) or receiver
(RX) on them, a person’s presence at a location impacts the
radio waves nearby. This area is related to radar, includingultra
wideband (UWB) and multiple-input multiple-output (MIMO)
radar systems, but is not limited to these frameworks.

There is an advantage to sensing RF energy as opposed
to light, infrared, or thermal energy when attempting to infer
people’s movements. Visible light cameras largely depend on
daylight; light and infrared do not penetrate smoke. Radio
frequency waves can penetrate non-metal walls and smoke
[3], unlike light, thermal, or mm-wave energy. Thus RF-based
DFL is a complementary security technology which does not
require floodlights to work at night, and can locate people in
a smoke-filled building, or from the exterior of the building.
Other radio-based localization technologies exist, sometimes
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labeled as real-time location systems (RTLS), which require
each person or object to be attached to a radio transmitter
tag, which is then located based on the signals received from
that tag at multiple other sensors [4]. However, in security
or emergency applications, one cannot expect all people of
interest to be wearing a radio tag.

With these advantages, DFL has several applications. DFL
technologies may complement existing localization systems
which use tags to locate and identify people by combining RF
sensor measurements from two sources: (1) from signals re-
ceived from the transmitter tag, and (2) measurements between
the static RF sensors. As such, DFL may improve existing
RTLS systems. As another example, DFL techniques may
be useful for police or emergency responders approaching a
dangerous building. Prior to entering, they may wish to deploy
a RF sensor network around the building, either independently
from, or in concert with, an existing wireless network in
the building. Then, they can use DFL techniques to locate
and track people moving within the building. As another
example, RF sensor networks may be deployed within large
buildings and facilities, as an alternative to more invasive
video camera networks, in order to ensure compliance with
safety and security rules. These networks may work in concert
with context-aware computing and control systems to prevent
accidents, and protect confidential information.

An RF sensor network effectively measures many sections
of the environment because many links between pairs of radios
exist in an area, and each link measures a different section
of space. Thus the wordtomography, defined as imaging
by sections, applies to estimation in RF sensor networks.
However, RF radio wave propagation is not solely by line-
of-sight (LOS) propagation [5]. In fact, we typically expect
the power in non-line-of-sight (NLOS) paths to dominate,
except in unobstructed short-range links [6]. Thus computed
tomography (CT) techniques developed for x-ray scanners,
which assume that each measurement is along a straight line
through the medium [7], do not directly apply – we cannot
simply scale up the size of an area, scale down the frequency
of emission, and achieve proportional results.

Yet, as we describe in this article, a significant quantity of
research has shown results that locate people in buildings using
RF sensor measurements [2], [8], [9], [1], [10], [11], [12],[13],
[14], [15], [16], [17]. Results have been presented which count
the number of people moving [9], estimate a person’s location
[18], [13], [17], [14], and image the movements in an area
of interest [11], [12], [13], [15], all in real-world multipath
environments. Both location estimation (estimating a person’s
coordinate at one time) and tracking (estimating a person’s
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velocity and sequence of positions over a duration of time)
have been reported, with accuracy of less than one meter of
average error [8], [14], [13] or less than two meters median
error over a 1500 m2 area [17]; these results are at least as
good as reported location error when locating radio tagged
objects [4], [19], so the accuracy is surprising.

How are these systems able to counteract the effects of
multipath in an effort to track movement? The answer to this
question is that successful DFL systems have been designed to
take advantage of the effects of multipath propagation, rather
than try to counteract them. Multipath fading becomes the
signal, not the noise. We show in this review article how
multipath fading is used for the benefit of DFL systems. We
present the results of the growing literature for DFL in three
parts, first discussing the RF sensor measurement modalities
in Section II, then presenting models for the measurements in
Section III, and then presenting the algorithms and resultsin
Section IV. Finally, we conclude in Section VI.

II. M EASUREMENTS

Device-free localization (DFL) employs networks which
measure properties of the radio channel between many pairs of
RF sensors. Changes in channel properties provide information
about the position of objects in the environment.What types of
radio channel measurements are most appropriate for DFL?In
this section, we introduce several modalities of measurements
of radio channel characteristics which can be used to infer the
location of people and objects in a building. We discuss the
advantages, and disadvantages of these modalities.

A. Ultra-Wideband (UWB)

First, we discuss the use of UWB measurements for pur-
poses of DFL. Ultra-wideband receivers measure the ampli-
tudes, time delays, and phases of the multipath signals which
exist in the radio channel. Measured at multiple probing times
t, UWB measurements and the changes between them can
be used to infer both the properties of the static propagation
environment, and the changes in the environment which might
indicate a moving person or object. UWB transceivers are
certainly more cost-prohibitive than narrowband transceivers,
but the ability to distinguish time delay is a key benefit.

Transmitting and receiving an UWB pulse (or for that mat-
ter, high bandwidth signal) allows one to measure the channel
impulse response (CIR). Assume at timet, N(t) multipath
components arrive at the RX, with theith component having
complex amplitude gain ofαi(t) and time delayτi(t). As a
complex value,αi(t) can be written as|αi(t)| exp[j∠αi(t)].
The CIR is [5],

h(t, τ) =

N
∑

i=1

αi(t)δ(τ − τi(t)) (1)

whereδ(·) is the Dirac impulse function.
The knowledge of time delay provides important informa-

tion about position. Comparing the delayτi(t) to the line-of-
sight time delay (assuming it is known) indicates the excess
delay, which gives some knowledge of the spatial incidence

of the ith multipath. For example, if the path was assumed
to result from a single “bounce”,i.e., change in direction,
then that object that caused the bounce is located somewhere
on an ellipse of a certain size, with the TX and RX as
foci [20]. When time delay is measured on multiple links,
the intersection between ellipses is an estimate of the object
location.

B. Narrowband

Next, we discuss narrowband channel measurements for
purposes of DFL. Narrowband receivers cannot provide infor-
mation about individual multipath, only the signal magnitude
and phase as a whole. However, narrowband transceivers are
produced in high quantity for commercial applications, thus
their low cost is a key part of enabling large scale RF sensor
networks.

Narrowband wireless devices simply measure the sum of the
contributions of all multipath. We consider a continuous-wave
(CW) signal, which results in a received complex baseband
voltage,Ṽ , of

Ṽ = VT

N
∑

i=1

αi(t) =

N
∑

i=1

Vi(t) (2)

where VT is the complex baseband voltage at the TX, and
Vi(t) = VT αi(t) is the complex baseband voltage of compo-
nent i at the RX [5].

There is information about position contained iñV . First,
the information in the magnitude of̃V will be discussed below.
Secondly,Ṽ , when compared to thẽV measured at other RX
locations or at multiple antennas, provides information about
the azimuth or elevation angles-of-arrival of the multipath sig-
nals [21], and can be used in multiple wave field reconstruction
techniques as discussed in Section IV-B.

Typical distributed wireless sensors have difficulty with
accurate timing synchronization [22], and for coherent phase
measurements, phase synchronization is required. Phase syn-
chronization means that the carrier used by two different
transceivers must have the same phase. Since the carrier
phase changes from 0 to2π each carrier cycle, timing syn-
chronization errors must be much less than1/fc, wherefc

is the carrier frequency. For example, at 900 MHz, timing
errors must be much smaller than one nanosecond. A future
challenge in DFL is to either provide practical means for
phase-coherent measurements ofṼ at disparate sensors, such
as interferometric methods [23], or to achieve some of the
benefits of phase-coherent measurements using non-coherent
measurements.

C. Received Signal Strength (RSS)

In this section, we consider measurements of RSS for
purposes of DFL. Compared to the narrowband measurements
presented above, RSS is a magnitude-only measurement. Mea-
surements of RSS are ubiquitous in nearly all wireless devices.
The received power is the squared magnitude of the complex
baseband voltagẽV . What we typically call the “received
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signal strength” (RSS) is a measurement of the received power
in decibel terms. For a narrowband receiver, this power is

RdB = 20 log
10

|Ṽ | = PT + 20 log
10

∣

∣

∣

∣

∣

N
∑

i=1

αi(t)

∣

∣

∣

∣

∣

(3)

wherePT = 20 log
10

|VT |.
One source of information inRdB is its magnitude. For links

with a strong LOS component, when that strong component
is blocked,RdB tends to decrease. This is called shadowing,
and a sharp decrease inRdB can be used to infer that a person
or object is located along the LOS path [11].

Further, multipath fading is a source of location information.
Depending on the phases of eachVi(t), the sum in (2) may
be destructive (with opposite phases) or constructive (with
similar phases). Measurements of fading are one source of
information about the location or number of moving people
in the environment, as discussed in Section IV. Fading can be
quantified, for example, with the variance ofRdB [13], [9],
by the absolute value of differences [8], [24], or even the link
quality indicator (LQI) [9].

The variance ofRdB has been shown to be approximately
linearly related to the total power in multipath components
affected by the movement in the environment [25]. We will
discuss what is meant by “affected” and provide models for
the effect in Section III-D.

Although individual RSS measurements are less informative
about person location than UWB measurements, for example,
the low cost of RSS-only narrowband radios will allow more
nodes for a given price. Since measurements are made between
pairs of RF sensors, the number of measurements increases as
O

(

N2
)

, and the overall capability of the RF sensor network
can be very significant.

D. Polarization

Finally, we consider the DFL information contained in the
polarization of the EM wave at the RX. The polarization
is useful to detect movement in the environment [26]. The
polarization of an EM wave at the RX will change due to
environmental changes just as the phase of the signal will
change. Using two orthogonally-polarized antennas, a RX can
measure both relative amplitudes and the phase between the
two signals. Just like in (2), each polarized received signal
has multipath component amplitudes and phases. These two
measurements determine a point on a Poincaré sphere. The
“differential polarization” can be determined by finding the
angular change from an original polarization state to the
current state. This differential can be calculated either with
a time-average, or a frequency domain sub-band average. The
latter is shown in [26] to provide a higher signal-to-noise ratio
for detection of human-caused changes.

III. M ODELS

All of the measurements described in Section II map
changes in multipath components in order to locate and count
the number of moving people (or objects) in the environment.
Consider a person located at coordinatexo, and a link with

TX location xt and RX locationxr, as depicted in Figures 1
and 2. In this section, we consider models for the relationship
between changes caused to the multipath components by the
person, and coordinate of the person,xo. Certainly, if changes
are not a function ofxo, we have no ability to locate the
person. It is thus critical to have models to describe the
changes in measurements as a function of positionxo.

There are generally two views on the formulation of this
position dependence.

1) Relative position dependence: The channel parameters
are only a function of the relative position ofxo to
TX and RX positionsxt and xr . For example, the
parameters may only be a function of the distances
‖xo−xt‖ and‖xo−xr‖. These assumptions are used in
the algorithms presented in Sections IV-B through IV-H.

2) Absolute position dependence: The channel parameter
dependence cannot be simplified using the relative po-
sitions ofxo, xt, andxr [1], [18], [17], [10].

In the latter case, the dependence of the measurement on
xo must be determined for every link (and thusxt and
xr), and for the entire range ofxo, for each environment.
Channel measurements are very sensitive to the placement
and EM properties of all objects in the environment, and these
positions and properties are highly likely to be unknown. Thus,
measurements are required, at a high density of positionsxo.
For multiple people, the channel will have to be measured
for all combinations of human locations. Algorithms which
have this perspective are called fingerprint-based DFL, and
are discussed in Section IV-A.

From the relative position dependence perspective, a sta-
tistical model describes the relationship between the channel
changes experienced on a given link andxo, relative toxt

andxr. If knowledge about environmental objects is available
(e.g., wall locations) their relative positions w.r.t.xt and xr

can also be used in the propagation model [27]. While not
every link will experience the same changes given identical
relative position information, if measured for many links,the
distribution of changes should be characterized by the model.
Such a statistical model could be generated from theory, or
from many sets of measurements.

We do not suppose that a statistical model is accurate for
all environments. True EM simulation or ray-tracing might
be used if the properties, size, and position of objects in the
environment were known. Or, perhaps these parameters can be
considered “clutter” and measured so that a scatterer’s position
can be determined regardless [28], [29]. Statistical models are
required when the complexity of typical static environments
can not be accurately determined. Algorithms which do not
make multipath propagation assumptions are discussed further
in Section IV-B.

To formulate multipath channel models which provide po-
sition dependence, we primarily need to consider their spatial
impact, rather than time delay and amplitude [25]. We denote
Si(t) as the spatial filter of pathi at time t. Generally, we
modelSi(t) as series of connected line segments, representing
a plane wave changing direction at discrete points. Finally, to
simplify the language, we simply refer to all objects which
interact with a wave via transmission, diffraction, reflection, or
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scattering, as “scatterers”, regardless of the actual propagation
mechanism.

A. Related Research

Fading models for static links dependent on the position
of moving people are less prevalent than those for frequency-
dependent fading or for space-dependent (small-scale) fading
models. However, the reported literature has observations
relevant to DFL, which we relate in this section.

In past studies, fading due to human motion was quantified
to aid in the design of static communications systems which
operate among moving people,e.g., indoor WLANs [30], [31],
[32], [33]. For indoor communications links, fading on a static
link typically follows a Ricean mixture distribution, witha
high variance when people are moving in and around the area
of the link, and a low variance when they are not [30]. The
RiceanK-factor depends on the power in “stationary” paths
vs. power in “time-varying” paths due to motion [31]. Two-
state Markov models have been used for simulation of static
links, to account for this human-caused change in variance
[32]. Researchers have observed that the motion of people
near either the TX or RX impacts measured fading statistics,
and in fact, when the number of people moving in proximity
of TX or RX is increased, fading increases [33]. For example,
the Rician K-factor decreases as the number of moving people
in the area increases [34].

These general results show that human movement is mea-
sureable, and is generally a function of relative position and
number of people. However, they do not provide a model for
the fading as a function of the position of the moving people,
with respect to the TX and RX coordinates.

B. Classification

Consider that at timet0, a person did not exist in the
environment, and that at timet1, the person is located at
position xo, as drawn in Figure 1. This section classifies
multipath based on the changes to the multipath from time
t0 to time t1.

(a) (b)

Fig. 1. (a) Example multipath components between TX atxt and RX at
xr . (b) When a person appears atxo, there are additional paths (- - - -) and
alterations to existing multipath (· · · ).

The change in position of the person will affect some, but
not all, of the amplitudesαi(t) and time delaysτi(t), and
it will affect the number of multipath componentsN(t). We
classify the changes in the channel into three categories:

1) Unaffected: Some multipath components are unaffected.
We denote the set of unaffected components asTu. For
i ∈ Tu, the pathSi(t0) does not intersect the person at
xo.

2) Affected: Other multipath components change in am-
plitude and/or phase. We denote the set of affected

Fig. 2. TX, RX, plane containing scatterers, and the new person.

components asTa. For i ∈ Ta, Si(t1) has altered to
diffract around the person, or to transmit through the
person, for example. We include the possibility that
|αi| ≈ 0 if the component is shadowed.

3) New: Some multipath components are created by the
new person. In this case,N(t1) has increased, and we
denote these new indices asTn. These new components
are likely to be the result of scattering or reflecting from
the new person.

In the next two sections, we discuss the characteristics of new
and affected multipath as a function ofxo. First, in Section
III-C, we discuss models for new multipath. Next, we discuss
affected multipath in Section III-D.

C. New Multipath

Here, we discuss the new multipath created by the appear-
ance of a person in the environment. It is typically assumed in
the radar literature that an object appearing in the environment
causes a new path from the TX to RX based on scattering
from the object [35]. It is also assumed that this scatter-path
is single-bounce, that is, the only change in direction in the
path is due to the scattering. This model has appeared in indoor
propagation models as well [36]. Ifxo is the person location,
the received power of the new scattered multipath is given by
Ps(xo), where

Ps(x) =
cs

‖xt − x‖2‖xr − x‖2
(4)

wherecs is a constant. The product of the squared distances in
the denominator results from the scattering model, which says
that the scatterer absorbs the incident power, and reradiates it
in all directions, leading to a product of two Friis path loss
equations.

We note that it is also possible that the new path is due to
reflection. In this case, models such as [37] similarly assume a
single-bounce path and state that the received power is given
by Pr(xo), where

Pr(x) =
cr

(‖xt − x‖ + ‖xr − x‖)np

(5)

where cr is a constant, andnp is the path loss exponent.
Effectively, the only difference in received power compared
to a line-of-sight path is due to the additional path length,and
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perhaps a constant reflection loss contained within the constant
cr.

In the scattering case, the locus of points wherePs(xo)
is a constant is called a Cassini oval [35]. Cassini ovals are
shown in Figure 3(a), which shows a contour plot ofPs(x).
In contrast, for reflection, the locus of points wherePr(xo)
is a constant is an ellipse. The lesson is that when the new
multipath is caused by scattering, it has highest power when
the person is near the TX or RX. But when the new path
is from reflection, it has highest power when the person is
anywhere in between the TX and RX.

D. Affected Multipath

In this section, we discuss models for the power in affected
multipath as a function of the person’s position. A multipath
component is affected when its path crosses near the person
at xo. For example, the component may diffract around the
person, increasing the path length, thus changing its phaseand
increasing its time delay. An example geometry is shown in
Figure 2, in which a person or object (with region of impact
coarsely represented as a cylinder) will affect the multipath
shown if either the line from the TX to scatterer, or from the
scatterer to RX, cross through the person.

As mentioned in Section II-C, when measuring RSS vari-
ance, an important statistic is the total power in affected
multipath,

Pa =
∑

i∈Ta

|Vi|
2 (6)

This total powerPa varies depending on the particular envi-
ronment (where scatterers are located). If we have a statistical
model for the locations of scatterers and the propagation
mechanism, we can derive a statistical model forPa. For
example, in [25], we use two indoor propagation models, [37]
and [36], which model scatterer locations as a Poisson spatial
process across a plane, and model multipath as a single-bounce
phenomena. We apply these models to derive expressions for
the ensemble mean of total affected power (ETAP), orE [Pa].
For the two cases where the mechanism of propagation is
either all scattering or all reflection, Figures 3(b) and 3(c)
show numerical results forPa for an example link [25].

Compared to the power in new multipath, the spatial char-
acteristics of reflection and scattering are reverse for power in
affected multipath. For affected reflected multipath, the power
is highest closest to the TX and RX, similar in shape to
the Cassini oval, compared to new multipath power, which
is highest in the line between the TX and RX. For affected
scattered multipath, the power is highest near the line between
the TX and RX, compared to new scattered multipath, which
have highest power close to the TX and RX.

E. Measurement Verification

Since the theoretical models presented in the above sections
require simplifying assumptions, it is critical to validate them
via measurements. In this section, we present experimental
evidence that has appeared in the literature.

As we mentioned in Section II-C, we have shown that
the ensemble mean of total affected power,E [Pa], has an
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Fig. 4. Experimental RSS variance vs.xo measured in a bookstore,
normalized such that the RX (•) is located at (-1, 0) and the TX (•) is located
at (1,0) [25].

approximately linear relationship with the ensemble mean of
the variance ofRdB [25]. Thus we can use measurements of
variance ofRdB in order to validate spatial models forE [Pa].

Three measurement studies report the variance (or a related
statistic) ofRdB as a function ofxo [24], [25], [8]. In two
studies, measurements are conducted with RF sensors at body
level in indoor environments with many scatterers, in an office
[24], and in a bookstore [25]. In these studies, the varianceof
RdB, and the “variation” (sum of absolute value of differences
in a window of the time series) ofRdB are shown in Figures
4 and 5(a), respectively. Both results show highest changesin
the areas nearest the TX and RX and next highest changes in
the line between TX and RX. The third study performed a test
in a building, but in an empty area, with RF sensors mounted
on the ceiling, height 2.4 m [8]. This study found a different
characteristic, that “dynamic” (average absolute value ofthe
difference from the static mean) is highest in an oval centered
at the midpoint of the line between the two nodes, as shown
in Figure 5(b). It was shown in [25] that when the scattering
plane is far separated from the RF sensor plane, theE [Pa]
surface becomes highest in the midpoint of the line between
TX and RX, and falls with distance away from that point. Thus
the results of [8] can be explained using analysis of affected
multipath.

IV. A LGORITHMS

Given that measurements of the channel are collected as
described in Section II, and can be modelled as described
in Section III, how should the positions of people in the
environment be estimated? This is the inference problem
discussed in this section. We present the algorithms studied
in the literature, and provide a sample of the results obtained.

A. Fingerprint-based Methods

We describe in Section III the absolute position dependence
perspective. From this perspective, localization is formulated
as a fingerprint-matching problem [1], [18], [17], [10], [38]
using a database of training measurements. During the online
phase, the current state is estimated by comparison with
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Fig. 3. (a)Ps(xo) in dB relative to the maximum contour line; (b) and (c) ETAP indB relative to the maximum [25] for (b) scattering, and (c) reflection
(with np = 3). TX and RX locations are shown as�.

(a) (b)

Fig. 5. Measured statistics as a function ofxo of (a) fading signal “variation” from [24], and (b) RSS “dynamic” for vertical line (VL) and parallel line
(PL) slices, where MPL is the line between the TX and RX and MVLis perpendicular to MPL at its midpoint, which is labelled (0,0) [8].

Algorithm Measurement Position
Dependence

Fingerprint-Matching [1], [17], [10] RSS Absolute
SVM [18], [38] RSS Absolute
Field Reconstruction [39] Narrowband Relative
Ultra-Narrowband [40], [41], [42],
[43], [44]

Narrowband Relative

MIMO Radar [45] Narrowband Relative
or RSS

Geometric UWB [20], [35] UWB Relative
Probabilistic UWB [46], [47] UWB Relative
Mapping [48], [49] UWB Relative
Tomographic Imaging [50], [11],
[15], [13]

RSS Relative

Compressed Sensing [51], [52],
[15]

RSS Relative

Tracking from RSS [2], [13] RSS Relative
Motion Detection [16], [24] RSS n/a
Motion Detection [26] Polarization n/a
People Counting [9] RSS n/a

TABLE I
ALGORITHMS, MEASUREMENTS, AND POSITION DEPENDENCE.

the training measurements [1]. In [1], position estimates are
found to be between 86% and 90% accurate. In [10], two
distributions of RSS measurements for each link are found
during training, one during motion in between the nodes,
and one without any motion between the nodes. When a
measurement is made during the online phase, a likelihood
ratio test is done to determine which state was most likely.

This is extended in [17] to measure an RSS histogram on each
link for many possible positions of a person in a building area.
Then, in the online phase, the maximum likelihood estimate
(MLE) of the user’s position is returned. Ak-nearest neighbor
“center of mass” technique is used to achieve a median error of
1.8 m. In [18], [38], the training data is used to train a support
vector machine (SVM). Then, during the classification stage,
the SVM classifier chooses the cell (small square area) from
among all possible cells which is most likely to include the
person based on the current RSS measurements.

A challenge in fingerprint-based algorithms is to track multi-
ple people simultaneously, since training requirements increase
exponentially with the number of people in the environment to
be located, and to date, tests have only been done to track one
person. Another challenge will be to self-correct the training
data over time, to account for the changes in RSS histograms
due to changes in the environment. For fingerprint-based real-
time location service (RTLS) systems (locating radio tags),
accuracy has been shown to degrade by up to 20% thirty days
after training [53]. DFL systems are likely to be more sensitive
to environmental changes than RTLS systems because they
are in fact measuring what an RTLS system would consider
an environmental change, that is, the position of a moving
person. Finally, estimation of a histogram requires several
measurements, for example 26 consecutive RSS measurements
in [17], or 60 seconds in [1], while a person is standing in one
location. In a real-time system, RSS data would need to be
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collected more quickly in order to track a person in motion.

B. EM Wave Field Reconstruction

Estimation of the spatio-temporal EM wave field in an
environment of interest is a possibility when narrowband
measurements (of̃V ) are performed. If an object affects the
spatio-temporal EM wave field, then its location and track can
be seen in this estimate. Electromagnetic wave propagation
equations can be solved using the measurement of complex
baseband voltage around two concentric perimeters around
the area of interest [39]. Then, the wave equations can be
approximated using the conjoint cylindrical wave expansion.
Phase-synchronous measurements ofṼ are made by moving
a single antenna to each measurement position.

A similar approach [40], [41], [42], [43] is called “ultra-
narrowband (UNB) radar”, in contrast to UWB, because of
its transmission and reception of a CW signal rather than a
wideband signal. UNB uses phase-coherent measurements at
locations surrounding a target and Fourier-based tomographic
reconstruction to image scattering as a function of space. For
example, in [43], measurements are made by placing an object
on a rotating table to simulate what would happen if sensors
were placed every two degrees around the object. In theory,
a few phase-synchronous transceivers can be used to create
a “virtual tomographic array” which can reposition the phase
center of the transmitted signal to points in the convex hull
of the transceivers [44] which then reduce the need for phase
synchronous transceivers.

The termmicrowave subsurface tomographyis used gener-
ally to refer to methods which image the radar cross-section
(RCS) of objects behind or below a surface [54], [55] using
phase-coherent measurements of the EM wave field. These
methods model the field as described by Green’s function, the
electric field measured due to a line current induced on the
scattering object [54], [28], [56]. Sensor measurements can
be expressed as a Fourier transform of the field of interest
[54], [55]. However, it is assumed that sensors form an
antenna array, or equivalently, sensors are phase-synchronous.
Measurement experiments typically use a single transmitter
and receiver automatically moved between antenna locations
[55].

C. MIMO Radar

Multiple transmit waveforms, transmit antennas, and receive
antennas can be used in combination to improve radar detec-
tion and imaging performance. Because these radar methods
are similar to MIMO communications systems, the area is
termedMIMO radar. MIMO radar with non-coherent receivers
and widely separated antennas enables a type of spatial diver-
sity that is useful for DFL. The backscatter from a complex
object (an object which scatters from more than one point) is
a function of angle, so multiple receivers at different angles
lead to more reliable detection [45]. Transmitters in a MIMO
radar system use orthogonal waveforms so that they can be
separated at the receivers. These orthogonal waveforms may
result from time-division multiplexing (as is typically used in

most DFL research), frequency-division multiplexing, or some
other orthogonal basis.

The challenge in application of MIMO radar techniques
to DFL in building environments is to account for cluttered
multipath channels. MIMO radar research generally considers
only the additional scattering caused by an object, that is,
Ta is assumed to be empty. In remote sensing and airplane
radar systems, this assumption is reasonable, but DFL systems
operate in a rich multipath environment in which an object
disrupts or blocks other multipath. However, meeting this
challenge is important to gain the ability to image static
features of an environment, which is a benefit of the MIMO
radar framework.

D. UWB Tracking and Data Association

In contrast to narrowband measurements, UWB impulse
response measurements allow separation of multipath changes
as a function of time delay. Chang and Sahai explored DFL
using a network of single or multiple UWB receivers in
addition to single or multiple UWB transmitters [20]. The
authors assume that the changes in the CIR are only those from
new multipath, and consider cases whenxo is either inside,
or outside, of the hull of the sensor network. The Cramér-Rao
lower bound (CRLB) is derived and asymptotics presented
for the case when nodes are uniformly spaced on a circle of
radiusR centered at the origin. The CRLB work assumes one
object in the field, and that the channel impulse response can
be used to pick out the delay of the impulse corresponding to
that sole object. The estimated delay is unbiased and Gaussian,
and based on the single-bounce model. They showed that for
N transmitters andM receivers, the Fisher information for
the object location wasO

(

1

NM

)

, and that for the far-field
case, wasO

(

‖xo‖
2/R2

)

. Chang and Sahai presented a “semi-
linear” object localization algorithm, which is sub-optimal but
has performance which behaves similarly to the lower bound
as a function ofN andxo. For the case of multiple people, the
authors discuss the data association problem, in which each
delay must be associated with exactly one of the people.

Work by Paolini et. al. [35] further investigates the capabil-
ities of the system described in [20]. Importantly, the authors
describe the geometry of the area of detection of a UWB link
based on amplitude and time delay. When the new multipath
scattered powerPs(xo) falls below a threshold, the system
can no longer effectively identify its time delay. Thusxo must
be within a Cassini oval with focixt andxr, as described in
Section III-C, to be detectable. Further, the temporal resolution
limits of the impulse response estimate prevent a scattererfrom
being detected if it is very close to the line of sight path. Thus
there is a narrow ellipse with foci at the TX and RX location
in which resolution prevents TOA estimation.

Work in [46] advanced the field by considering that each
person introduces not just one new multipath component, but
several, in a cluster of time delays with the single-bounce
path being the shortest. Second, it is not trivial to select the
new multipath impulse from the measured CIR, which prior
to the person’s entry already contained many paths. Reggiani
et. al. [46] compared ‘hard’ thresholding and ‘soft’ probabilis-
tic quantification in multinode UWB tracking systems. They
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also showed a method to adaptively quantify the variance of
a distance estimate. This ranging data from multiple nodes
is used for multi-target tracking using an extended Kalman
filter (EKF) bank. They show, using CIRs obtained from ray-
tracing simulations, that the location accuracy improves when
using soft information and variance estimates. The EKF bank
benefits significantly from redundancy – more filters than
scatterers, which is beneficial “since tracking more distance
combinations helps to recover all the useful cluster arrivals in
the dense received impulse responses” [46].

The work of Rydström et. al. shows the importance, in mul-
tiple target tracking, of properly formulating data association
[47]. In this case, data association is the problem of assigning
each distance measurement to one object being tracked. While
Chang and Sahai presented an intuitively appealing ‘score’
function [20] for purposes of data association, the method of
[47] is based on a weighted least-squares (WLS) cost function
and a Lagrangian relaxation technique for its optimization.
In general, the complexity of the data association problem
is exponential in the number of measurements. However,
impossible assignments can be quickly pruned [47]. Further,
the Lagrangian relaxation algorithm is based on an auction
algorithm which can be solved in polynomial time, thus the
assignment problem can be framed in computationally feasible
manner. Simulations show that the data association approach
outperforms the score function of [20].

Finally, Rydström et. al. note that the accuracy of passive
localization approaches the accuracy possible from active
localization, assuming the same system and device parameters.
That is, placing an UWB tag on a person or object allows for
better localization, compared to localization of the device-free
person or object, but not by a large margin. While use of a tag
provides identification in addition to localization, we should
not ignore the capabilities of device-free localization, when
identification or tagging is not needed or possible.

Note the above UWB-based methods do not assume syn-
chronization. However, they do assume known node positions
and that a LOS path exists. Without synchronization, the time-
of-arrival of the LOS path is used to determine the excess time
delays corresponding to the scatterers. A challenge for DFL
based on UWB will be to be robust to the case when the LOS
TOA cannot be obtained.

E. Mapping

An advantage of UWB measurements is that they contain
information about the static environment, in addition to in-
formation about the mobile people and objects. Simulation-
based work in [48] presents the capabilities of an UWB radar
to simultaneously track its own movement over time, and
estimate a map of the walls of a room, based on delaysτ(t)
from measured CIRs measured over timet. An algorithm
which accepts unlabeled delays must first decide from which
wall (or which combinations of walls) that path reflected.
Then, it may estimate the dimensions and the angles at the
corners of the room. Such mapping has been demonstrated
using a set of static UWB TXs and a single mobile UWB RX
in a cluttered industrial environment [49].

F. Imaging

One approach to DFL is to estimate an image of the change
in environment. This image can then be used to infer the
motion and activity within the environment, either by a human
operator, or by an image processing algorithm.

Image estimation from measurements along different spatial
filters through a medium is generally referred to as tomo-
graphic image reconstruction. For RF sensors, this is termed
radio tomographic imaging (RTI) [50], [11], [15], [13]. A
network of N static sensors measures up to

(

N

2

)

“slices”
through the medium. Let the measurements on all links be
vector y = [y(1), . . . , y(L)]T , where L is the number of
measured links. Then, let the vector of voxel values be
x = [x(1), . . . , x(P )]T , whereP is the number of voxels.
A linear model fory may be written as,

y = Ax + n

whereA is anL × P matrix, andn is additive noise. RTI is
the estimation of imagex from measurementsy.

In [11], y is the change inRdB from the historical value
on each link, and it is modelled as linear combination of
the x, the attenuation in dB caused by each voxel in the
environment. This model is called shadowing-based RTI, since
the measurements effectively measure shadowing loss, and the
image estimates are shown to accurately display the location
one or two people in the deployment area [11]. The linear
model for shadowing loss is based on correlated shadowing
models [57], [50] and earlier linear partition-loss models[58].

Another modality of RTI is termed variance-based RTI, in
which the windowed variance ofRdB on each link is used as
the measurementy, andx represents a quantification of the
motion within each voxel [13]. This linear model for variance
has basis in the results described in Section III-D, in whichthe
presence of motion atxo causes a certain quantity of multipath
power to be affected, and the measured variance ofRdB on
a link is approximately linearly related to the total affected
power.

Experimental tests reported in [13] show that variance-based
RTI can image the motion going on inside a house, when
sensors are placed only outside of its external walls, as shown
in Figure 6(a). In the case of imaging motion through building
walls, we can have the problem that the multipath which travel
around the building can be stronger than the power in paths
which travelled through the building. Analytical results in [13]
suggest that the change in variance can be detected even when
the power in the affected multipath is 10 dB less than the
multipath which do not go through the building.

However, tomography is generally an ill-posed problem, and
regularization is required to reduce the noise in the image
and to achieve “smoothness” or other intuitively desireable
image properties. In [12], three methods of regularization,
Tikanov, truncated singular value decomposition (TSVD), and
total variation (TV) are applied. Tikanov regularization is both
computationally simple, robust to noise and model mismatch.
Image estimation using Tikanov regularization is a linear
transform of datay, and thus is simply a matrix multiplication.
Tikanov and TV regularization are compared in Figure 6(b)
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(a) (b) (c)

Fig. 6. Image estimates for (a) through-building variance-based RTI when a moving person is located at the× [13], and mean-based RTI with (b) Tikanov
and (c) total variation regularization, with two people in the area [12].

and (c). TV regularization can produce sharp images with well-
defined edges, but require numerical optimization, which is
more computationally intensive than Tikanov regularization.

G. Compressed Sensing

Kanso and Rabbat have investigated an alternative to regu-
larization,i.e., a “compressed sensing” (CS) approach to radio
tomographic imaging [51], [52], [15]. First, the image can be
estimated using a constrainedl1 minimization [52]. Secondly,
the image can be obtained using the LASSO technique [59],
and thirdly, using orthogonal matching pursuit (OMP) [60]
[15]. The latter approaches find image estimatex̂ by solving,

x̂ = argmin
x

‖Ax − y‖2

2
+ λ‖x‖1, (7)

whereλ is a tunable parameter, and‖ · ‖1 and‖ · ‖2 indicate
vectorl1 andl2 norm, respectively. One benefit of the approach
is that image estimateŝx have sharp contrast, with very few
pixels containing non-zero values. Secondly, imaging requires
fewer links, and thus can require less probing energy to
be expended. Even when only 25% of links are measured,
the detection and imaging performance is nearly the same
as with all links [51]. Finally, the minimization of (7) can
be distributed on the sensors, using a projection on convex
sets (POCS) method, which converges quickly [15]. Such
distributed algorithms will be important for the deployment
of large-scale DFL systems, so that measured data does not
need to be collected at a central location for processing.

The challenge in application of CS to DFL is to provide
sparse images even with the high noise level contained in RF
tomographic measurements. Currently, the number of pixels
should be set low in order to improve tracking performance
with experimental data [51].

H. Tracking from RSS

A step beyond localization is tracking,i.e., the estimation
of both position and velocity (and perhaps higher order
derivatives of position) over a period of time. The first DFL
system using RSS measurements was proposed by Woyach,
Puccinneli, and Haenggi, who coined the term “sensorless
sensing” to describe cases when the radio itself is the sensor
[2]. One sensorless sensor system presented measures RSS on

multiple stationary links across a hallway. Using the changes in
each link RSS, crossing is inferred, which is used to estimate
the track and velocity of a person walking through the hallway.

Image estimates can be used as an input for tracking
algorithms. For example, the maximum of an image is a
coordinate which can be tracked using a Kalman filter [13].
An experiment reported in [13] used images using variance-
based RTI as an input to imaging algorithms. The peak of
the image is input to a Kalman filter to track the location of
person inside of a home with an average error of 0.5 and 1 m
in two experiments.

Zhang et. al. present an algorithm which directly estimates
a human’s track from link measurements [8]. For each link
which measures RSS variation above a threshold, the area in
which the person is likely to be located is approximated as
a rectangle, centered at the midpoint of the line between TX
and RX. Then a “best-cover algorithm” estimates the person’s
position, which is input into a tracking filter Experiments show
tracking error as low as 1 m. This work was extended in [14]
to use a clustering algorithm for multi-object tracking.

I. Motion Density Estimation

Sometimes, only the presence of a person, or the number
of people in an area, is of importance for an application. For
this purpose, we can use RSS fading measurements on a link.
Nakatsuka, Iwatani, and Katto [9] experimentally derive linear
relationships between the RSS mean and variance (or LQI) and
the number of people walking or sitting between two nodes,
for use in crowd density estimation. Their results show thata
linear relationship exists for a 4.5 m link between the number
of people (up to nine) and both the fading variance and change
in mean. For a longer 8.0 m link, the linear relationship holds
even up to 20 people, although there are saturation effects in
some experiments.

A similar experimental setup in [16] is used to test whether
or not a person is walking from one node to the other.
Experiments are conducted in a variety of different indoor and
outdoor environments. The authors show that the differences
between subsequentRdB values have a consistent distribution
in both cases (motion or no motion), regardless of environ-
ment. This consistency can enable more robust detection of
motion.
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V. RESEARCHDIRECTIONS

Considerable future work exists if DFL is to be deployed
for the applications mentioned in the Introduction. We mention
a few open problems here. First, are single-bounce models
acceptable for DFL in indoor environments? They may be
too simplistic in complicated environments. Future work must
test multiple-bounce models to determine if they can provide
increased levels of accuracy. Electromagnetic characteristics of
the objects strongly affect the propagation in the environment.
Can more complicated electromagnetic models be applied
without prior knowledge of environmental characteristics?

Second, tracking and adaptation are important topics. Prop-
agation models may be adapted based on past measurements,
in order to learn the geometric paths of multipath components
and their amplitudes. In addition, multi-target tracking must
be applied to the cases when measurements are narrowband
or RSS-only. What are good and robust means to separate
the multipath changes made by each person in a large-scale
RF sensor network? Related to the adaptation question, do
training measurements with one person in the environment
allow the determination of what would be measured when
multiple people exist in the environment?

Device-free localization requires that measurements are fre-
quent enough to measure during the event of a person or object
moving through the links of the network. For human motion,
measurements might be on the order of one per second, and
for vehicle motion, measurements will need to be made more
often. Further, a measurement requires both a transmitter and
receiver to be on (not in a sleep state). What tradeoffs exist
between energy consumption and localization accuracy? What
practical algorithms can be used to duty cycle sensors, or to
process data locally so that uninformative measurements do
not need to be forwarded?

Finally, in localization systems which track moving people
and objects who wear active tags, can device-free localization
be used to improve the accuracy of active location estimates,
and if so, at what cost? Finally, if RF sensor networks are
to be deployed in larger numbers, across entire buildings or
facilities, how will the data be processed, using a central
processor, or distributed among the sensors? In either case,
sensor networking protocols must be designed for the critical
low-latency requirements of the applications.

VI. CONCLUSION

An emerging application of wireless sensor networking is
the use of networks of RF sensors for device-free localization.
In this application, static sensors use radio channel measure-
ments to infer the presence and position of people and objects
moving in the environment of deployment. Unlike sensor
localization or RTLS, people do not carry a radio tag, and
instead are located based on the changes they cause to the
channels between static RF sensors. We review measurements
which can be made in multistatic RF sensor networks to be
used for DFL. We discuss models which relate the statistics
of these measurements, as a function of the position of the
person. Finally, we review algorithms which have been applied
for DFL. Results from published literature include: average

location errors lower than 1 meter using only measurements
of signal strength; the number of moving people, up to 20, can
be estimated from a single link; the movements of multiple
people can be tracked using UWB measurements, or imaged
using RF tomography.
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