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Abstract—Three extensions to radio-frequency (RF) tomogra-
phy for imaging of voids under wide areas of regard are pre-
sented. These extensions are motivated by three challenges. One
challenge is the lateral wave, which propagates in proximity of
the air–earth interface and represents the predominant radiation
mechanism for wide-area surveillance, sensing of denied terrain,
or close-in sensing. A second challenge is the direct-path coupling
between transmitters (Txs) and receivers (Rxs), that affects the
measurements. A third challenge is the generation of clutter by
the unknown distribution of anomalies embedded in the ground.
These challenges are addressed and solved using the following
strategies: 1) A forward model for RF tomography that accounts
for lateral waves expressed in closed form (for fast computation);
2) a strategy that reduces the direct-path coupling between any
Tx–Rx pair; and 3) an improved inversion scheme that is ro-
bust with respect to noise, clutter, and high attenuation. A finite-
difference time domain simulation of a scenario representing
close-in sensing of a denied area is performed, and reconstructed
images obtained using the improved and the classical models of RF
tomography are compared.

Index Terms—Green’s functions, ground-penetrating radar,
lateral waves, radio-frequency tomography, tunnel detection.

I. INTRODUCTION

THE PROBLEM of underground void detection is para-
mount to secure borders and sensitive areas and for search

and rescue missions. To date, no underground imaging tech-
nique emerged as a standard for close-in sensing of wide denied
areas, where minimal human intervention is required [1].

A promising strategy is introduced in [1] and [2] where
a set of transmitters (Txs) and a set of receivers (Rxs) are
placed on (or in) the ground at arbitrary positions. The Txs
radiate a monochromatic signal, which impinges upon a buried
dielectric or conductive anomaly, thus generating a scattered
field. Multiple Rxs collect samples of the scattered electric
field and relay this information to a base station. Images of
the below-ground scene are then reconstructed using the prin-
ciples of RF tomography. The advantages and mathematical
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derivations of RF tomography for underground imaging are
discussed in [1]. The approach is technically valid for any
sensor disposition and terrain shape provided that the Green’s
function characterizing the problem is properly selected. In [1],
the Green’s function for a homogeneous space was applied due
to its simplicity of implementation. This choice has been proven
to work satisfactorily when the sensors and targets are located
nearly vertically above the targets, thus avoiding artifacts due
to the discontinuity at the air–earth interface.

However, practical applications require wide areas of investi-
gations (e.g., underground networks and facilities), denied areas
(e.g., sensing of urban environment), or close-in sensing. In
these cases, sensors remotely probe underground regions at
long ranges, and the propagation of waves occurs primarily
along the air/ground interface; hence, the predominant prop-
agation mode is the lateral wave [8]–[10]. Therefore, one
contribution of this letter is the introduction of a more accurate
forward model by invoking a closed-form Green’s function that
accounts for the air–earth discontinuity (see Appendix).

In addition, RF tomography is based upon the knowledge of
the scattered field from targets. In real cases, the Rxs are irra-
diated by a strong electromagnetic field due to the direct cou-
pling between each Tx and Rx pair (i.e., direct-path coupling
[1]). Hence, as a second contribution, in Section III, an efficient
technique that mitigates the direct-path coupling (by joint Tx
and Rx null steering) is presented.

Moreover, distributed anomalies (e.g., weathered soils) also
generate a bias to the measured scattered field, which may be
considered as clutter. A third contribution, given in Section IV,
is an improvement upon the inversion schemes already dis-
cussed in literature [3]–[5], based on the findings described by
Zhdanov [7] from the geophysical community; this improved
method is more robust with respect to perturbations (e.g.,
clutter) of the measured scattered field.

The combination of these three new strategies improves the
image-reconstruction process, particularly for large areas of
interest, shallow targets, and close-in sensing, as shown in
Section V.

II. FORWARD MODEL

The 3-D geometry shown in Fig. 1 is considered. Under the
monochromatic assumption (single work frequency f ), the air
half-space is modeled as a free-space medium, while the ground
half-space is modeled as a homogeneous medium with relative
dielectric permittivity εD, conductivity σD, and magnetic per-
meability μ0. The targets (i.e., tunnels, caches, or voids) are
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Fig. 1. Three-dimensional geometry for the model.

assumed to reside in the investigation domain D. The sources
are N electrically small dipoles (of length Δl) fed with
current I . For each transmitting sensor, the total field E is
collected by M Rxs. Both Txs and Rxs reside inside the ground
but outside the investigation domain D. The relative dielectric
permittivity εr(r′) and the conductivity σ(r′) inside D are the
unknowns of this problem. The contrast function is defined
as [1]

εδ(r′) = εr(r′) − εD + j (σ(r′) − σD)
/
2πfε0 (1)

being ε0 the free-space dielectric permittivity. However, other
definitions may be used [3]–[5], [8]. By pointing out the first
order Born approximation [3]–[5], [7], [8], the field received
by a dipole oriented along the direction ar

m, positioned at rr
m

due to a transmitting dipole oriented along the direction at
n,

positioned at rt
n, can be written as [1]

E
(
rt

n, rr
m

)
= Qar

m · G (rr
m, rt

n

) · at
n + H

(
rt

n, rr
m

)
+ T

+Qk2
0

∫ ∫ ∫
D

[ar
m · G (rr

m, r′)] · [G (r′, rt
n

) · at
n

]
εδ(r′) dr′

(2)

where Q = jωμ0ΔlI for an electrically small dipole [3]; the
quantities H (multiple scattering) and T (random noise) rep-
resent unpredictable perturbations to the total field. G is the
Green’s dyadic, to be chosen according to the adopted formula-
tion. The first term in (2), i.e.,

Qar
m · G (rr

m, rt
n

) · at
n (3)

describes the direct-path coupling between a particular Tx and
Rx pair. The cancellation of this coupling from the measured
field is a critical problem in RF tomography: Although it can
be analytically predicted (and cancelled) using (3), in practical
cases, its magnitude may be up to 50–60 dB higher than the
scattered signal. In these conditions, the dynamic range of the
Rxs’ amplifiers may not be large enough, or the quantization
steps may not be as fine as required, to sample both scattered
and direct-path coupling fields accordingly. Clearly, the best so-
lution is to cancel the direct-path contribution before it reaches
the Rx.

III. DIRECT-PATH-COUPLING MITIGATION

In this section, a direct-path coupling mitigation technique is
introduced. The key feature is the possibility to steer the Tx and

Rx dipoles toward the desired directions. Rotation of dipoles
may be performed using mechanical devices or by properly
feeding a set of colocated orthogonal dipoles (see [1]). The
proposed strategy properly steers the Tx dipole in order to
minimize the field at the Rx side, and then turns the Rx dipole
in order to be orthogonal to the expected direct-path electric
field. Mathematically, these rotations are computed by solving
a series of constrained minimization problems for each Tx and
Rx pair

minimize
∥∥G (rr

m, rt
n

)·at
n

∥∥2

2
subject to

(
at

n

)T ·at
n =1. (4)

In Lagrangian form, it becomes

Λn,m

(
at

n, λ
)

=
(
at

n

)T · GH
(
rr

m, rt
n

) · G (rr
m, rt

n

) · at
n

−λ
[(

at
n

)T · at
n − 1

]
(5)

where GH denotes the Hermitian of G. By imposing
∇Λn,m = 0 we obtain

GH
(
rr

m, rt
n

) · G (rr
m, rt

n

) · at
n = λat

n. (6)

Therefore, the at
n direction that minimizes the power at a

desired location is the eigenvector associated with the smallest
eigenvalue of the matrix GHG. Similarly, this minimization
can be applied at the Rx side. Defining the vector

Emin = G
(
rr

m, rt
n

) · at
n (7)

as the electric field obtained when at
n is chosen according to

(4), a second minimization problem can be formulated as

minimize
∥∥∥(ar

m)T · Emin

∥∥∥2

2
subject to (ar

m)T · ar
m = 1. (8)

The minimization is achieved when ar
m is chosen to be the

eigenvector corresponding to the smallest eigenvalue of the
outer product (matrix) Emin · (Emin)T. If the dipole can be
steered only over a horizontal plane (e.g., by using two crossed
dipoles), the steering directions are easily obtained by setting to
zero the z-component of each vector an.

As tested via numerical analysis, the application of these
strategies guarantees an acceptable minimization of the re-
ceived signal due to direct-path coupling. Therefore, the to-
tal electric field can be reasonably approximated only with
the first-order scattered contribution from targets inside the
region D, i.e., [3]

E
(
rt

n, rr
m

) ∼=L (εδ(r′))

= Qk2
0 ×

∫ ∫ ∫
D

[ar
m · G (rr

m, r′)]

· [G (r′, rt
n

) · at
n

]
εδ(r′) dr′. (9)

IV. INVERSION

Assuming that the clutter contribution has been completely
mitigated and the field received by the sensors is given by the
forward model in (9), the sampled field at each Tx and Rx
pair can be collected in a vector e = {E(rt

n, rr
m)}, and the
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investigation region D can be discretized in K voxels, each one
located at position r′k: The contrast function can be represented
in a column vector ε = {εδ(r′k)}. After this discretization,
(9) can be reformulated in matrix form, i.e.,

e = L · ε (10)

where L is generally an ill-conditioned matrix.
Several methods have been proposed to solve (10), such as

back propagation [1], truncated singular-value decomposition
(SVD) [4], [11], and Tikhonov regularization [7], [11]. In this
letter, we introduce a refined version of Tikhonov regularization
that equalizes the sensitivity of each Tx and Rx pair by selecting
a proper weighting factor and introduces a term that is able to
exploit the a priori information on the values of the dielectric
anomalies. Accordingly, the contrast function (as a function of
the regularization parameter β) can be estimated [7]

ε̂(β)=
(
LHW2

EL + βW2
ε

)−1 (
LHW2

E · e + βW2
εε

0
)

(11)

where ε0 represents the known dielectric anomalies embedded
in region D, and

W ε = diag(LHL)1/2 WE = diag(LLH)1/2 (12)

are (diagonal) weighting matrices opportunely defined in order
to minimize the sensitivity of the system [7].

In most cases, the weighting matrices have a small dynamic
range. Therefore, we can approximate W ε

∼= αI in (11). If we
perform the SVD [11] of a properly defined weighed matrix
Lw = WEL = USVH, (11) becomes

ε̂ =
(
LH

wLw+βW2
ε

)−1(
LH

wWE · e+βW2
ε · ε0

)
∼=(VSHSVH+α2βI)−1

(
VSHUHWE · e+βW2

ε · ε0
)

=Vdiag
(
s2

i +α2β
)−1(SHUHWE · e+βVHW2

ε · ε0
)
(13)

where si represents the ith singular value of Lw. The advantage
obtained in applying (13) is that the contrast function as func-
tion of β can be computed via (fast) matrix multiplications.

V. SIMULATIONS AND CONCLUSION

A simulation is presented in order to demonstrate the im-
provements achieved by using the following: 1) lateral waves in
the forward model; 2) direct-path mitigation; and 3) weighted
Tikhonov regularization. The test scene represents a situation
where sensors are surrounding the wide (denied) area of interest
(i.e., close-in sensing) and probe the region D mostly via lateral
waves (see Fig. 2 for details).

The targets are two hollow cylinders (radius 1 m) emulating
two tunnels, located with their axes parallel to the surface and at
a depth z′ = −5 m (with respect to their center), having εD = 9
and σD = 5 × 10−4 S/m. No a priori information about dielec-
tric anomalies in the scene is considered, thus ε0 = 0. The work
frequency is 5 MHz. Placed along a circle encompassing the
two tunnels are 12 Txs and 20 Rxs, as shown in Fig. 2. Each
sensor is emplaced at depth d = 0.25 m beneath the surface.

Fig. 2. Geometry for the simulation. Txs and Rxs are indicated with stars
and diamonds, respectively, and the two tunnels are located at the center of the
scene.

Fig. 3. Reconstructed image using homogeneous Green’s function. Depth
slice: 5 m.

The received electric field has been synthesized using the finite-
difference time domain simulator GPRMAX [6] for each Tx
and Rx pair.

In the first simulation, the process was as follows: 1) The
homogeneous Green’s function [8], [9], having the properties
of the soil, is inserted in the forward model; 2) the truncated
SVD method [1], [4] is used for the inversion; and 3) the
direct-path coupling is assumed to be completely cancelled.
The reconstruction result is shown in Fig. 3.

In the second simulation, the procedure was as follows:
1) The closed-form Green’s function that accounts for the lat-
eral wave (see Appendix) was used; 2) the weighted Tikhonov
method proposed in Section IV was implemented; and
3) the direct-path-mitigation algorithm (Section III) was used
to choose the direction of each sensor. The reconstruction result
is shown in Fig. 4.

As expected, the shallow targets are mainly irradiated by
the lateral wave excited at the air–earth interface, and the
classical Green’s function for the homogeneous space cannot
accurately predict the field value. Conversely, the half-space
Green’s function generates highly resolved images, particularly
for shallow targets since it accounts for the effects of lateral
wave (see Fig. 4). Therefore, we conclude that when RF tomog-
raphy is applied in wide areas, denied terrain, or when targets
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Fig. 4. Reconstructed image using half-space Green’s function described in
the Appendix. Depth slice: 5 m.

are in shallow regions, the discussed improvements (i.e., the
inclusion of the lateral waves propagation within the realm of
RF tomography and its fast numerical computation, the direct-
path coupling suppression using steerable radiators, and the
improved inversion scheme for better handling the clutter) are
a suitable choice to obtain high-quality reconstructions.

APPENDIX

HALF SPACE GREEN’S FUNCTION

Half-space Green’s functions have been proposed in the
literature [3], [5], [9], [11], but they are generally expressed
as asymptotic expansions or in spectral form. Nevertheless,
King et al. [10] derived explicit closed-form expressions for
the electric field generated by horizontal and vertical dipoles
buried in a lossy medium [under assumption reported in (16)].
From King’s formulas, a closed-form expression for the half-
space Green’s function is derived (valid only when antennas
and targets are embedded in the soil).

A dyadic Green’s function can be expressed as follows:

G(r, r′) = − j

4πk2
D

⎡
⎣ gXX gXY gXZ

gY X gY Y gY Z

gZX gZY gZZ

⎤
⎦ . (14)

In this case, r = xx̂ + yŷ + zẑ represents the observation
point, and r′ = x′x̂ + y′ŷ + z′ẑ represents the current (phys-
ical or equivalent) source position. The coefficients in (14) are
given as

gXX = gh
ρ cos2 ϕ − gh

ϕ sin2 ϕ gXY =
(
gh

ρ + gh
ϕ

)
sin ϕ cos ϕ

gXZ = − gv
ρ cos ϕ gY X =

(
gh

ρ + gh
ϕ

)
cos ϕ sin ϕ

gY Y = gh
ρ sin2 ϕ − gh

ϕ cos2 ϕ gY Z = −gv
ρ sin ϕ

gZX = − gh
z cos ϕ gZY = −gh

z sin ϕ gZZ = gv
z .

Using the following notation (see Fig. 1)

k0 =ω
√

μ0ε0 kD = ω
√

μ0ε0εD

ρ =
√

(x − x′)2 + (y − y′)2 ϕ = arctan
[

y − y′

x − x′

]

rd = |r − r′| =
√

ρ2 + (z − z′)2 ri =
√

ρ2 + (z + z′)2

the Green’s function coefficients are expressed as follows:

gh
ρ = ejkDrd

[
2kD

r2
d

+
2j

r3
d

+
(z − z′)2

r2
d

×
(

jk2
D

rd
− 3kD

r2
d

− 3j

r3
d

)]

+ ejkDri

[
2kD

r2
i

+
2j

r3
i

+
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r2
i

×
(

jk2
D
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− 3kD

r2
i

− 3j

r3
i

)]

− 2ejkDri

[
kD

r2
i

+
j

r3
i

−
(
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ρ

)(
jkD

ρ2
− 3

2ρ3
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− 1
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π
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e−jpF (p)
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)
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gv
z =

[
jk2

D

rd
− kD

r2
d

− j

r3
d

−
(

z − z′

rd

)2

×
(

jk2
D

rd
− 3kD

r2
d

− 3j

r3
d

)]
ejkDrd

+ 2
jk2

0
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D
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(
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ρ

)(
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D

ρ
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2ρ2
+

7j

8ρ3

)
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[
jk2

D
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r2
i

− j

r3
i

−
(

z + z′
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)2

×
(
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D

ri
− 3kD

r2
i

− 3j

r3
i

)]

+ 2
k2
0

k2
D

e−jkD(z+z′)ejk0ρ

×
(

jk2
0

ρ
− k0

ρ2
− j

ρ3
− k4

0

kD

(
π

k0ρ

)1/2

e−jpF (p)

)

F (p) =
1
2

(1 + j) −
p∫

0

1√
2πt

ejtdt, p =
k3
0ρ

2k2
D

. (15)

Although (15) is expressed in integral form, its range is
limited by the maximum and minimum values of ρ so that (15)
can be easily approximated via a polynomial interpolation or
tabulated.

These formulas are valid under the following conditions:

|kD| ≥ 3k0 |kDρ| > 3. (16)

If these conditions are not met, the lateral wave contribution
diverges. In these isolated cases, the homogeneous Green’s
function for the direct and reflected waves can be used [8]–[10].

The advantage of using this formulation rather than the
spectral representations [8], [9] is that the Green’s function

computation time for each (r, r′) pair is comparable with the
case of free space since the expressions, although lengthy, are
still in closed form.

ACKNOWLEDGMENT

The authors would like to thank Mr. W. J. Baldygo, Air Force
Research Laboratory, and Dr. J. A. Sjogren, Air Force Office of
Scientific Research, for sponsoring this research.

REFERENCES

[1] L. Lo Monte, D. Erricolo, F. Soldovieri, and M. C. Wicks, “Radio fre-
quency tomography for tunnel detection,” IEEE Trans. Geosci. Remote
Sens., vol. 48, no. 3, pp. 1128–1137, Mar. 2010.

[2] J. Norgard, M. C. Wicks, and A. Drozd, “Distributed/embedded sub-
surface sensors for imaging buried objects with reduced mutual coupling
and suppressed electromagnetic emissions,” in Proc. ICEAA, Turin, Italy,
Sep. 17–21, 2007, pp. 427–430.

[3] T. J. Cui and W. C. Chew, “Diffraction tomographic algorithm for the
detection of three-dimensional objects buried in a lossy half-space,” IEEE
Trans. Antennas Propag., vol. 50, no. 1, pp. 42–49, Jan. 2002.

[4] G. Leone and F. Soldovieri, “Analysis of the distorted born approximation
for subsurface reconstruction: Truncation and uncertainties effect,” IEEE
Trans. Geosci. Remote Sens., vol. 41, no. 1, pp. 66–74, Jan. 2003.

[5] P. Meincke, “Linear GPR inversion for lossy soil and a planar air-soil
interface,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 12, pp. 2713–
2721, Dec. 2001.

[6] A. Giannopoulos, GPRMAX Simulator. [Online]. Available: www.
gprmax.org

[7] M. S. Zhdanov, Geophysical Inverse Theory and Regularization Prob-
lems, Methods in Geochemistry and Geophysics, vol. 36. Amsterdam,
The Netherlands: Elsevier, 2002.

[8] W. C. Chew, Waves and Fields in Inhomogeneous Media. Piscataway,
NJ: IEEE Press, 1995.

[9] C. T. Tai, Dyadic Green Functions in Electromagnetic Theory, 2nd ed.
Piscataway, NJ: IEEE Press, 1993.

[10] R. W. P. King, M. Owens, and T. T. Wu, Lateral Electromagnetic Waves.
New York: Springer-Verlag, 1992.

[11] P. C. Hansen, Rank Deficient and Discrete Ill-Posed Problems.
Philadelphia, PA: SIAM, 1998.

Authorized licensed use limited to: WASHINGTON UNIVERSITY LIBRARIES. Downloaded on August 16,2010 at 23:21:03 UTC from IEEE Xplore.  Restrictions apply. 


