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ABSTRACT

The Rfam database (available at http://rfam.xfam.org)

is a collection of non-coding RNA families repre-

sented by manually curated sequence alignments,

consensus secondary structures and annotation

gathered from corresponding Wikipedia, taxonomy

and ontology resources. In this article, we detail up-

dates and improvements to the Rfam data and web-

site for the Rfam 12.0 release. We describe the up-

grade of our search pipeline to use Infernal 1.1 and

demonstrate its improved homology detection ability

by comparison with the previous version. The new

pipeline is easier for users to apply to their own data

sets, and we illustrate its ability to annotate RNAs

in genomic and metagenomic data sets of various

sizes. Rfam has been expanded to include 260 new

families, including the well-studied large subunit ri-

bosomal RNA family, and for the first time includes

information on short sequence- and structure-based

RNA motifs present within families.

INTRODUCTION

Rfam is a database of non-coding RNA (ncRNA) fami-
lies. Each family is composed of a multiple sequence align-
ment (MSA) of a representative set of sequences that in-
cludes consensus secondary structure annotation (where
appropriate), a covariance model (CM) of the sequence and
structure conservation of the family built from the MSA,
and a set of putative homologues identi�ed in a sequence
database derived from the European Nucleotide Archive
(ENA) (1). The Infernal software package (2) is used to
build CMs from the alignments (termed seed alignments)
and to search those CMs against the ENA-derived database
(termed Rfamseq) to identify homologues. An Infernal
search returns a list of high-scoring hits in the database and
corresponding bit scores, which indicate how well each hit

matches the family CM. Rfam curators de�ne a bit score
threshold for each family (the gathering threshold), which
separates the lowest scoring presumed true homologue from
the highest scoring presumed non-homologue, using ex-
pert knowledge of the family and taxonomic information
of the matched sequences. In addition to ncRNA annota-
tion, Rfam assigns a type for each family (such as Gene, cis-
regulatory element, etc.), provides cross-references to the
literature supporting each family, as well as to other rele-
vant resources, such as the Protein Data Bank (PDB) (3),
mirBase (4) and the ENA.We also add Gene Ontology and
Sequence Ontology terms for each family (5) and text-based
descriptions of each family are provided via Wikipedia en-
tries (6,7).

Rfam is a large and diverse source of ncRNA annotation
that includes information on many types of ncRNAs across
all three domains of life and viruses. For RNA biologists
seeking information on one or more RNA families, Rfam
provides sequences, alignments, CMs, trees and secondary
structure images. The set ofRfamCMs and score thresholds
may also be downloaded and used with Infernal to identify
new family members in other sequence databases and for
annotating ncRNAs in genomes or metagenomes. The cur-
rent release, Rfam 12.0, was made public in September 2014
and contains 2450 entries. In this article we discuss new fea-
tures and changes we have made to the Rfam production
pipeline and how they affect users.

UPGRADE TO INFERNAL 1.1

For all previous releases (0.1–11.0), Rfam has annotated
RNAs in Rfamseq using a two-step, Basic Local Align-
ment Search Tool (BLAST)––and Infernal-based homol-
ogy search pipeline. In the �rst step, sequences from the
seed alignment were used as BLAST queries against Rfam-
seq, and subsequences including signi�cant hits plus some
surrounding nucleotides were written to new sequence
�les called ‘mini-databases’. In the second step, the mini-
databases were re-searched with a CM using the cmsearch
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program of Infernal. This two-step process was employed
because CM methods are computationally expensive but
signi�cantly more powerful at RNA homology detection
than BLAST (8), due to the fact that CMs score both
conserved sequence and secondary structure while BLAST
scores only sequence conservation. Ideallywewould use cm-
search without BLAST-�ltering because of its superior ho-
mology detection ability, but prior to Rfam 12.0 cmsearch
was simply too slow to be practical. In 2013, version 1.1 of
Infernal was released which accelerates CM searches about
100-fold relative to version 1.0, by using a pro�le hidden
Markov model (HMM) �ltering scheme based on the HM-
MER3 software package. This makes it fast enough to ob-
viate the need for BLAST �lters (2,9–10). Infernal 1.1 also
offers improved handling of truncated RNA sequences (11)
which are common in data sets of sequencing reads, such as
those created by metagenomics experiments.
We have rewritten the Rfam family building and pro-

duction pipeline to use Infernal 1.1. The new system offers
two important advantages over the previous one. First, the
input- and output-intensive mini-database creation step is
no longer necessary. Secondly, because pro�le HMMs have
been shown to be more sensitive for RNA homology search
detection than BLAST (8), more true RNAs should sur-
vive the �ltering step to be subsequently evaluated by the
CM. This second advantage should improve search sensi-
tivity and lead to an increase of the number of annotated
homologues for many families. Changing to the new �lter-
ing strategy signi�cantly affects the search results for nearly
all families. Consequently, it necessitated the laborious task
of re-thresholding each family in the database forRfam 12.0
(see below).
To compare the new and old �ltering strategies in terms of

speed and ability to identify homologues, we searched 200
randomly chosen families from Rfam 12.0 against the 270
GbRfamseq database using both strategies. To compare the
two strategies as directly as possible, we changed only the
search methodology (BLAST plus Infernal 1.0 versus In-
fernal 1.1), and used identical seed alignments, CM param-
eters and score thresholds for both strategies, all of which
derived from Rfam 12.0. Table 1 includes a summary of the
results, including summed statistics over all 200 families as
well as per-family statistics for 15 families, chosen as the top
�ve, middle �ve and bottom �ve families as ranked by num-
ber of hits found by the new strategy. In terms of speed,
the two approaches are very similar on average: the new
Infernal 1.1-based system required 4222 total CPU hours
while the old BLAST- and Infernal 1.0-based system re-
quired 4070 total hours, but vary greatly on a per-family ba-
sis, with a range from about 70-fold faster for the old strat-
egy (RF01589, not in Table 1) to about 70-fold faster for the
new strategy (RF00162). This variation is mostly due to a
key difference between the two �ltering strategies: the old
strategy used multiple seed sequences as BLAST queries, so
run times will be increased for families with larger numbers
of seed sequences, whereas the new strategy uses a single
query pro�le HMM for all families.
Our test results demonstrate that the new search strat-

egy is able to �nd many more RNA homologues than the
old one. In total, the new strategy identi�ed 201 814 total
RNAs, 22 312 of which were unique hits not found by the

old strategy. The old strategy found 179 681 total hits, only
53 of which were not found by the new strategy. Of the 22
312 RNAs found only by the new strategy, 7319 (33%) were
truncated hits (non-full-length hits that terminate at one or
both ends of a database sequence) indicating the improved
ability of Infernal 1.1 to handle partial sequences will have
a signi�cant impact on Rfam annotations. For 74 of the 200
families, the new strategy identi�ed at least 1 unique hit that
was not found by the old strategy, while the old strategy
found unique hits not found by the new strategy for only
7 families. For 126 families, both the new and old strategies
found the exact same set of hits (note that while not all cor-
responding hits had identical sequence boundaries, each hit
found by one strategy overlapped by at least 1 nucleotide on
the same strand with a hit from the other strategy).
We believe the vast majority of the novel hits found by the

new strategy represent true homologues as opposed to false
positives. As described more below, while curating Rfam
12.0, the new strategy search results for each family were
manually examined to determine the gathering score thresh-
old. All hits scoring above this threshold are considered true
by our curators. It is these Rfam 12.0 thresholds, as well as
Rfam 12.0 CMs, that were used in our tests for both the old
and new search strategies.
Rfam physically moved from the Wellcome Trust Sanger

Institute to the European Bioinformatics Institute (EBI)
in 2013. Along with the update to Infernal 1.1, the move
to EBI motivated us to overhaul and streamline the entire
Rfam production pipeline codebase. In addition to improv-
ing RNA homology detection sensitivity, the new produc-
tion pipeline has been parallelized, such that most compu-
tation is performed on a per-family basis. As much data as
possible (such as the secondary structure images, tree gen-
eration and sunburst species distributions) are generated at
the point of family creation or modi�cation, which can oc-
cur at any point during the release cycle. The previous pro-
duction pipeline generated the same data at the time ofmak-
ing the release, using a more linear process that required a
large amount of compute. Because we now spread this com-
putation out during the family curation period between re-
leases, releases should become simpler. Another important
change inRfam12.0 is that we no longer provide alignments
of all Rfamseq hits for each family (previously termed full
alignments), because these alignments continue to grow in
size and many are so large that they are impractical to dis-
tribute (e.g. the tRNA alignment of 1.7 million sequences is
more than 3 Gb).

RFAM 12.0: NEW FAMILIES AND CHANGES TO OUR
DATA

Rfam 12.0 was released in September 2014. It contains 2450
families and annotates 19 623 515 sequence regions from the
standard and whole genome shotgun data classes of ENA
release v110. Since the previous release (11.0), 18 families
have been removed.Most of thesemodelled intronic regions
of long ncRNAs (lncRNAs), and two others were for fami-
lies so short (21 and 22 nucleotides) that we were unable to
build a CM capable of detecting homologues with statistical
signi�cance in Rfamseq. We have added 260 new families
in Rfam 12.0. The majority of the new families are bacte-
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Table 1. Comparison of the old Rfam 11.0 BLAST and Infernal 1.0 search strategy versus the new Rfam 12.0 Infernal 1.1 search strategy for 15 of 200

randomly chosen families

Accession Family ID
Length
(nt)

#of seed
seqs

Time
new (h)

Time old
(h)

Time
(old/new)

New
total hits

Old total
hits

New
unique
hits

Old
unique
hits

Top �ve families
RF00028 Intron gpI 251 12 125.0 357.2 2.8 71 433 60 264 11 175 1
RF00026 U6 104 188 31.2 181.1 5.8 66 517 62 174 4367 14
RF00003 U1 166 100 11.6 64.0 5.5 15 770 14 867 904 1
RF00162 SAM 108 433 8.3 590.0 70.8 4905 4797 108 0
RF00050 FMN 140 144 17.1 169.9 23.9 4381 4306 76 1

Middle �ve families
RF01426 snoR126 101 4 40.3 7.3 0.2 78 66 12 0
RF01252 snR5 196 11 41.1 9.8 0.2 76 72 4 0
RF00544 snopsi28S-3327 143 14 11.3 15.1 1.3 75 74 1 0
RF00439 SNORD87 85 10 26.8 12.6 0.5 75 74 1 0
RF01537 TB11Cs2H1 70 7 5.8 7.3 1.3 74 73 1 0

Bottom �ve families
RF01439 S pombe snR36 164 2 25.0 1.7 0.1 5 2 3 0
RF01448 S pombe snR93 143 2 11.0 1.5 0.1 4 3 1 0
RF00967 mir-281 83 2 6.0 2.6 0.4 4 4 0 0
RF00925 MIR1027 142 2 20.4 1.6 0.1 3 3 0 0
RF01576 DdR8 88 2 10.4 1.6 0.2 2 2 0 0
all 200 - - - 4222.2 4069.8 0.96 201 814 179 681 22 312 53

The top �ve, middle �ve and lowest �ve families are shown, as ranked by number of hits found above Rfam GA thresholds using the new search strategy.
Identical Rfam 12.0 score thresholds and CM parameters were used for both the new and old strategies (new: Rfam 12.0 CM �le in Infernal 1.1 format;
old: Rfam 12.0 CM �le converted to Infernal 1.0 format using Infernal 1.1’s cmconvert program). For each family, columns 1–4 include the Rfam accession,
family identi�er, model length in nucleotides and number of sequences in the seed alignment, columns 5–7 report on the running time for the new strategy in
hours, old strategy in hours and the ratio of the running time (old/new), respectively, columns 8 and 9 report the number of hits found above the per-family
Rfam 12.0 thresholds for the new strategy and old strategy, respectively; column 10 reports the number of unique hits found by the new strategy and not
the old, and column 11 reports the number of unique hits found by the old strategy but not the new. A unique hit is de�ned as a hit found by one strategy
for which none of the hits found by the other strategy overlap by ≥1 nucleotides on the same strand. The 200 families were randomly chosen from the set of
2190 families that exist in both Rfam 12.0 and Rfam 11.0, the last release for which the old strategy was used. Initially, MIR1122 (RF00906) was included
in the 200, but we replaced it with another random choice (SNORD97, RF01291) after learning that MIR1122 is clearly related to a MITE (miniature
inverted-repeat transposable element) in plants and that the curators at the microRNA database mirBase (4) suspect it may not be a true miRNA gene. If
the family is removed from mirBase, it will also be removed from Rfam.

rial small RNAs, such as the AfaR small RNA (RF02515)
found in Escherichia coli (12) and the MtlS small RNA
(RF02268) found in the Vibrionaceae family of Proteobac-
teria (13). The new Infernal 1.1-based search pipelinemakes
it practical for the �rst time to include the well-studied large
subunit ribosomal RNA (LSU rRNA), which had been a
long-standing and glaring omission from the database be-
cause the old BLAST- and Infernal 1.0-based search strat-
egy required an unreasonable amount of CPU time for this
long RNA (∼3000 nt) which has hundreds of thousands
of homologues in Rfamseq. We have added archaeal, bac-
terial and eukaryotic LSU models (RF02540, RF02541,
RF02543) in Rfam 12.0. These are the three longest RNAs
in the database and they are among the largest Rfam fam-
ilies, with the eukaryotic, bacterial and archaeal LSU fam-
ilies having 268 892, 204 053 and 62 367 members, respec-
tively.

Adjustments to our curator-de�ned gathering thresholds for
use with Infernal 1.1

The upgrade to Infernal 1.1 had a large impact on search
results for almost all families, making it necessary to re-
examine the score thresholds for all families. This man-
ual process required a considerable amount of curator time
spent rede�ning the gathering threshold that determines the

set of sequences that are considered true homologues. Of the
2190 families present in both Rfam 11.0 and 12.0 releases,
the absolute number of family members increased for 804
families as a result of the combination of re-thresholding
and the new Infernal 1.1-based search strategy, decreased
for 836 families, and 550 families had no change in the num-
ber of sequences they contained.
These numbers seem to contradict the earlier comparison

of the old and new search strategies summarized in Table 1,
which suggests that many more families should have gained
rather than lost family members due to increased sensitiv-
ity from Infernal 1.1. This apparent discrepancy can be ex-
plained mainly by increases in family gathering thresholds
between Rfam 11.0 and 12.0 for 1654 of the 2190 families,
which causes a family to lose any hits that scored in the
range between the old and new threshold. Of the 836 fam-
ilies that had fewer family members in Rfam 12.0 than in
11.0, the gathering threshold was raised for 830 of them.
Thresholds were increased to cope with higher numbers of
non-homologous sequences surviving the Infernal HMM
�lters compared with the old BLAST �lters.
A notable exception to the general increase in gather-

ing thresholds is the small subunit ribosomal RNA (SSU
rRNA) families (RF00177, RF01959 and RF01960). We
signi�cantly lowered the thresholds for these families to im-
prove coverage on partial SSU rRNA sequences which are
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common in Rfamseq, and consequently the number of se-
quences in these families increased greatly (e.gRF00177 had
7429 sequences in Rfam 11.0 and has 3 707 732 in Rfam
12.0). The improved ability of Infernal 1.1 to detect trun-
cated sequences along with manual inspection has made us
con�dent that these new sequences are indeed SSU rRNA
and not false positives.

Sequence-only consensus models for lncRNAs

LncRNAs are arbitrarily de�ned as non-protein coding
transcripts longer than 200 bp (14). Since Rfam 11.0, we
have included families which model conserved regions of
lncRNAs, and release 12.0 includes 216 families of this type.
We have removed secondary structure annotation from all
of our lncRNA families because there is as yet little evidence
to support secondary structure conservation in lncRNAs.
Because the CMs for these families include zero base pairs,
they are essentially equivalent to sequence-only based pro-
�le HMMs (15).

Clans

Rfam has a quality assurance measure that prevents any
one nucleotide in Rfamseq from being annotated by more
than one family. This can be problematic for some large, di-
verse families like SSU rRNA or the signal recognition par-
ticle (SRP) RNA, for which it has been necessary to con-
struct multiple Rfam models to effectively identify all ho-
mologues. Homologues of such families are often scored
above threshold bymore than one of thesemodels, violating
the single-family annotation quality assurance measure. To
handle these cases, the concept of clans was introduced in
2010 (release 10.0) (7), whereby homologous families, such
as the four different SSU rRNA families, are grouped to-
gether into a clan and Rfamseq sequence regions are al-
lowed to be annotated by more than one family in a clan.
To reduce the amount of annotation duplication by families
within the same clan, we now undertake a process called
‘clan competing’. This process identi�es two matches be-
longing to a single clanwhere there is greater than 50%over-
lap of the length of the shortest match and retains only the
match with the lowest E-value, discarding the other match
from the corresponding family match list.

MOTIFS IN RFAM

RNA motifs

Recently, a collection of RNA motifs was established by
Gardner and Eldai (unpublished), termed RMfam. In this
case, a RNA motif is an RNA sequence and/or secondary
structure that can be found in a number of different RNA
families. The RMfam collection, currently 34 models, rep-
resents commonly found structural motifs (e.g. GNRA
tetraloop), short functional sequence motifs (e.g. Shine–
Dalgarno sequences) and RNA–protein interaction motifs
(e.g. the CsrA/RsmA binding motif). These models have
been sourced from a combination of published literature,
online databases and de novo discovery. While motifs are
dif�cult to reliably identify in large sequence data sets sim-
ply due to their small size, it is less challenging to detect

them in a smaller data set of knownRNA sequences, such as
Rfam. Together with RMfam, we have systematically iden-
ti�ed instances of RMfam entries within Rfam families. In
line with Rfam families, each motif is assigned a unique ac-
cession number (e.g. RM00001) and supporting informa-
tion pertaining to the motif, such as PDB, structures and
literature references is collected. Rather than have an inde-
pendent RMfam website, the RMfam data has been sub-
sumed by Rfam, and released for the �rst time in version
12.0.

Annotating Rfam families with motifs

Using the motifs described above, the seed sequences of
each Rfam family were annotated, providing an overview
of the motifs in a given family. Owing to the relatively small
size of the motif models, it can be dif�cult to distinguish
the true instances of motifs from spurious matches. To alle-
viate this, a series of heuristic rules for annotating families
with RNA motifs was implemented. For each Rfam fam-
ily, the seed sequences were made non-redundant (by �l-
tering sequences more than 90% identical). These �ltered
seed sequences were scanned with cmscan (Infernal v1.1)
against the motif CM library, using the gathering threshold
set for each motif. The set of matching motifs were �ltered
to minimize false-positive annotations by removing motifs
for which less than 2 or less than 10% of seed sequences
scored better than the gathering threshold. These parameter
settings have been tested on a curated list of RNA families
that are reported in the literature to contain motifs, includ-
ing CsrB (RF00018) and RsmY (RF00195) each of which
hosts multiple CsrA binding sites (16,17) as a positive con-
trol. Shuf�ed versions of each Rfam seed alignment (using
shuf�e-aln.pl, from the RNAz package (18)) were used as a
negative control. This benchmark established that the sen-
sitivity and speci�city for each family is reasonable (0.93
and 0.76, respectively). A manuscript describing these re-
sults in detail is in preparation. The surviving set of mo-
tifs were re-scanned against all sequences in the complete
(non-�ltered) family seed alignment. Seed alignments were
marked up with matching motif annotations and summary
statistics for each family–motif pair were generated. Statis-
tics include the fraction of seed sequences in a family which
match a motif and the sum of bit-scores for the matches. A
total of 758 families or 30% of the families in Rfam 12.0
had at least one matching motif model. Figure 1 shows the
number of Rfam families annotated by each RMfam.
Several of the RMfam motifs are not local in that not

all functional positions of the motif are contiguous with
respect to the sequence. The internal loop motifs, such as
the kink-turns (RM00010 and RM00011) (19), the Sarcin-
Ricin (RM00018 and RM00019) (20) and the tandem G•A
(RM00021) (21) are examples of non-local motifs, which
pose a challenge to CM-based annotation because the nu-
cleotide distance between the two halves of an internal loop
is not guaranteed to be small. However, in practice, the dis-
tance between internal RNA contacts is small, even for the
very long ribosomal RNA families (22) and as a result the
CMs are able to annotate many of the known internal loop
motifs. For the asymmetric internal loops, at least two CMs
are required in order to encapsulate the two possible direc-
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Figure 1. Number of Rfam family matches for each of the 34 RMfam motifs.

tions of each motif (e.g. k-turn-1 and k-turn-2, RM00010
and RM00011).

Visualizing motifs in families

On the Rfam website, information for each motif can be
accessed via individual motif pages. These contain tabs
for a Wikipedia article, seed alignments, structures, family
matches, references and a curation tab. The page for the Ter-
minator1 motif (RM00022) is shown in Figure 2 as an ex-
ample. In addition to this, a tab has been added to each fam-
ily page, displaying the motifs, if any, that match the family.
Motif annotations for a family can be visualized by overlay-
ing motif matches on the secondary structure image for the
family. For each position of the secondary structure image,
the fraction of seed sequences that match a selected motif is
calculated and is represented on the structure image using a
rainbow scale. Figure 3 gives an example, showing the sec-
ondary structure for the RsmY family (RF00195) overlaid
with CsrA binding motif (RM00005) annotation. The in-
teraction of RsmY with the RNA binding protein CsrA via
this motif is part of a post-transcriptional regulatory net-
work in gammaproteobacteria (23,24).

USING RFAM 12.0 FOR GENOME ANNOTATION

With Rfam 12.0 and Infernal 1.1, users can now easily an-
notate RNAs in their own sequence data sets with their
own computing resources. Previously, the complexity of the
BLAST-based search strategy was a signi�cant impediment
to users wishing to calculateRfam annotations on their own
data, as researchers conducting a recent survey of RNAs in
the pig genome reported (25). The new, simpli�ed search
strategy means that users need only to download and in-
stall Infernal 1.1 (http://infernal.janelia.org), download the

Rfam 12.0 library of CMs and run Infernal’s cmsearch pro-
gram against their own sequence data sets. To exactly re-
produce the method Rfam curators use when searching
Rfamseq, users need to enable the –rfam, –cut ga and –
nohmmonly command line options to cmsearch. These op-
tions ensure that the searches run fast (–rfam), that only
hits above the Rfam expertly curated score thresholds are
reported (–cut ga), and that a special HMM-only search
mode that would invalidate the score thresholds is not used
(–nohmmonly).
As an alternative to cmsearch, Infernal’s cmscan program

may be desirable to users who are interested in having search
results arranged per-sequence (all Rfam families that are
homologous to each sequence listed together) instead of the
per-model organization (all subsequences that are homolo-
gous to each Rfam family listed together) of cmsearch out-
put. However, a limitation of cmscan is that it will only work
on sequence �les for which each sequence is less than 10
Mb long (additionally, users may wish to familiarize them-
selves with the difference in the meaning of E-values be-
tween cmscan and cmsearch which is explained in the Infer-
nalUser’sGuide, http://infernal.janelia.org). Currently, nei-
ther cmsearch nor cmscan carries out clan post-processing
to ensure only the best scoring family match in a given clan
is reported. In the future, we will provide a tool that repli-
cates this post-processing.
To demonstrate the ability and time requirements of cm-

search to annotate RNAs using Rfam 12.0 in genome and
metagenomic data sets, we carried out searches against 14
data sets, including a sampling of eukaryotic, bacterial and
archaeal genomes (26,27), as well asmetagenomics data sets
of various sizes (28,29). Table 2 summarizes the search re-
sults. We searched two mammalian genomes: human and
pig, which took about 650 and 450 CPU hours and an-
notated about 14 500 and 6200 unique regions as homo-
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Figure 2. Overview of the motif page for RM00022, the Terminator1 motif, on the Rfam 12.0 website. As in family and clan pages, tabs on the left-hand
side allow the user to access different information for each motif.

Figure 3. Screenshot of the secondary structure representation for the
RsmY RNA family (RF00195) with the annotation for the CsrA binding
motif (RM00005) overlaid. Positions in red indicate that all the seed se-
quences at that position are found to contain the motif while other colours
represent fewer sequences having matches at that position. The CsrA pro-
tein is a homo-dimeric, RNA binding protein. Each CsrA binds a speci�c
RNAmotif that is characterized by a short hairpin that hosts a GGA sub-
sequence, these motifs generally occur in pairs. The CsrA-binding sRNAs,
like RsmY, generally sequester excess copies of CsrA which would other-
wise bind mRNAs and inhibit translation (23). Therefore, the expression
of these sRNAs is a rapid way of altering expression levels for a potentially
large network of proteins (24).

logues of 796 and 625 different Rfam families, respectively.
Smaller eukaryotic genomes, such as the 170MbDrosophila
melanogaster genome, take about 1 day of CPU time. Bac-

terial and archaeal genomes, typically ranging from 2 to 5
Mb, require 30 min or less to annotate with Infernal and
Rfam. Metagenomic samples require about an hour per 5
Mb of sequence. The sequencing platform used, which af-
fects the lengths of the sequences being analysed, does not
seem to have a signi�cant impact on speed. Searches of large
data sets, such as mammalian genomes or larger, can be eas-
ily parallelized, by splitting up either the Rfam library of
CMs into multiple �les, or the sequence data set into multi-
ple �les, or both. (Note, users who search data sets split into
multiple sequence �les shouldmake sure to use the ‘-Z<x>’
command line option to cmsearch to de�ne the database size
as <x>, where <x> is the total size of all the sequence �les
being searched, in Mb. This will ensure that the statistical
signi�cance of hits (E-values) pertain to the full data set
instead of just the �le being searched.) Alternatively, users
with access to a cluster can take advantage of the MPI im-
plementation of cmsearch to spread the work across up to
hundreds of processors. For more information on using In-
fernal and Rfam to annotate genomes and metagenomes,
see (30,31).
Users should bear in mind two critical caveats when at-

tempting to annotate ncRNA genes, particularly in large
eukaryotic genomes. Infernal and Rfam were designed to
detect homology, but they do not attempt to discriminate
between genes and pseudo-genes. In fact, these tools were
designed to detect distant homology and are likely to de-
tect much of the pseudo-gene population. Some ncRNA
genes, particularly those transcribed by RNA polymerase
III, are prone to generating pseudo-genes. For example, tR-
NAs, U6, Y RNA and 7SK all have hundreds of pseudo-
genes in the human genome (32). Discriminating between
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Table 2. Summary statistics for Rfam-based annotation of RNAs in various genomes and metagenomics data sets

Genome/data set Size (Mb) # of hits # of fams
CPU time
(hours) Mb/hour

Homo sapiens 3099.7 14 508 796 650 4.8
Sus scrofa (pig) 2808.5 6177 625 460 6.1
Drosophila melanogaster 168.7 4321 156 30 5.7
Caenorhabditis elegans 100.3 1022 175 20 5.2
Saccharomyces cerevisiae 12.2 376 96 1.7 7.3
Escherichia coli 4.6 256 112 0.46 10.2
Bacillus subtilis 4.1 211 52 0.57 7.2
Methanocaldococcus jannaschii 1.7 257 18 0.31 5.6
Aquifex aeolicus 1.6 52 7 0.22 7.3
Borrelia burgdorferi 0.9 44 7 0.22 4.1
Human immunode�ciency virus (HIV) 0.01 12 10 0.016 0.63
Human gut microbiome sample (sample
ERS167139, 454 sequencing)

166.1 4342 54 22 7.7

Human gut microbiome sample (sample
ERS235581, Illumina HiSeq sequencing) (28)

52.9 3159 47 8.5 6.2

Ocean metagenome (sample SRS580499, Illumina
genome analyzer)

44.3 6692 59 13 3.5

The cmsearch program of Infernal 1.1 was used with Rfam 12.0 CM �les and the following command-line options: –noali –cut ga –rfam –nohmmonly
–cpu 0. Overlapping hits were removed such that no nucleotide was matched by more than one family by keeping the hit with the lower E-value in the
case of overlaps (and higher bit score in the case of tying E-values). All searches were run as single execution threads on 3.0 GHz Intel Xeon processors.
The Homo sapiens, Sus scrofa, Drosophila melanogaster and Saccharomyces cerevisiae genomes searched were obtained from Ensembl release 76 (http:
//www.ensembl.org/) (26) and the Escherishia coli (K12 substr MG1655), Bacillus subtilis (BSn5), Methanocaldococcus jannaschii (DSM 2661), Aquifex
aeolicus (VF5) and Borrelia burgdorferi (CA-11 2A) genomes were obtained from release 23 of Ensembl Genomes (http://ensemblgenomes.org/) (27) for
all of those the actual sequence �le searched was downloaded via FTP and suf�xed with .dna.toplevel.fa.gz. The HIV genome used is ENA accession
AJ291720 and the four metagenomic samples were downloaded from the EBI Metagenomics Portal (https://www.ebi.ac.uk/metagenomics/) (29), and can
be accessed by the sample accession listed in the table. ‘CPU time’ and ‘Mb/hour’ columns are rounded to two signi�cant digits.

genes and pseudo-genes is much harder for ncRNAs than it
is for coding genes.
The second potential pitfall is that three classes of

ncRNAs with internal promoters (tRNAs, 5S rRNA and
SRP RNA) have formed into transposable elements called
SINEs (Short Interspersed Elements) (33), numerous times
over the course of eukaryotic evolution. Note that the
ncRNA portion of such SINEs may still be detected by our
pipeline. This is a general problem. To counter one promi-
nent problem found in primates, the massive expansion of
Alu (an SRP RNA-based SINE), the GA threshold for sev-
eral SRP RNA families have been set particularly high.
Thus, rather than detecting the million or so Alus in human
with the SRP RNA family (RF00017), our pipeline detects
only 5587 hits in human. There are only a handful of SRP
RNAgenes in human (34), so the remaining hits are likely to
be pseudo-genes. However, arti�cially high GA thresholds
are not a universal solution to the problem.
Another important issue related to eukaryotic ncRNA

annotation is that one class of transposable elements
called MITEs (miniature inverted-repeat transposable ele-
ment) may confound microRNA (miRNA) gene annota-
tion. Though MITEs are DNA transposons, they are short
and imperfect inverted repeats (like miRNAs) that can be
an abundant source of small RNAs. In one study, nearly
one quarter of all small RNAs detected in rice derive from
MITEs (35). This may lead to their curation as miRNAs,
even in the absence of evidence of their being genic. How-
ever, some elements may instead represent newly evolved
miRNA genes (36). As this issue is investigated further,
we plan to remove any MITE-derived Rfam miRNA fami-
lies which the community becomes convinced are not func-
tional miRNAs.

CONCLUSIONS

Rfam 12.0 includes several key steps forward for the
database. The development of the newRfampipelinemeans
that Rfam is now better prepared to deal with the rapid pace
of sequence data generation. The family-speci�c nature of
the pipeline allows us to run it as needed as we curate each
family between releases, greatly reducing the compute re-
quired immediately prior to a release andmaking the release
process less burdensome. Our incorporation of Infernal 1.1
means that Rfam users can nowmore easily calculate Rfam
annotations on their own data. The data displays in Rfam
have also been improved with the addition of RMfam mo-
tifs to the seed alignments and secondary structure graphics.
The new RNAcentral resource [Crossref within NAR

DB issue] of ncRNA sequence data is poised to bene�t
Rfam, and vice versa. As of release 12.0, we provide an-
notations for Rfam families of the type Gene to RNA-
central and cross-links from RNAcentral to Rfam are cur-
rently available, enabling users to easily access data from
both resources. The set of RNA sequences deposited in
RNAcentral may ultimately be used as an additional se-
quence database for Rfam annotations, or possibly even as
a replacement for the underlying Rfam sequence database
(Rfamseq). RNAcentral data may also allow us to provide
additional annotation on our families. For example, many
Rfam families do not cover full ncRNA genes, but rather
only a conserved region (e.g. HOTAIR conserved region
1, RF01904). The more gene-centric data in RNAcentral
could allow us to highlight such families by quantifying the
average fraction of a complete gene that each family covers.
Finally, we expect that RNAcentral will become a common
source of new Rfam entries, as novel functional RNAs are
deposited there from a variety of sources. Once created, the
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new Rfam families will enable the discovery of homologues
in other sequence collections.
Rfam continues to rely on contributions made by the

community in various ways including through Wikipedia,
annotations provided through our helpdesk as well as new
entry submissions.Wewould like to thank our user commu-
nity for providing such contributions, and strongly encour-
age others to become involved.
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