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Abstract—To coordinate a team of robots for explo-
ration is a challenging problem, particularly in large
areas as for example the devastated area after a disas-
ter. This problem can generally be decomposed into
task assignment and multi-robot path planning. In
this paper, we address both problems jointly. This is
possible because we reduce significantly the size of the
search space by utilizing RFID tags as coordination
points.

The exploration approach consists of two parts:
a stand-alone distributed local search and a global
monitoring process which can be used to restart
the local search in more convenient locations. Our
results show that the local exploration works for
large robot teams, particularly if there are limited
computational resources. Experiments with the global
approach showed that the number of conflicts can be
reduced, and that the global coordination mechanism
increases significantly the explored area.

I. INTRODUCTION

To coordinate a team of robots for exploration is a
challenging problem, particularly in large areas as for
example the devastated area after a disaster. This prob-
lem can generally be decomposed into task assignment
and multi-agent path planning. Whereas in the context
of exploration the task assignment problem has been
intensively studied, there has been only little attention
on avoiding conflicts in paths for large robot teams.
This is mainly due to the fact that the joint state
space of the planning problem grows enormously in the
number of robots. However, particularly in destructed
environments, where robots have to overcome narrow
passages and obstacles, path coordination is essential in
order to avoid collisions.

The basic approach proposed in this paper is to reduce
significantly the size of the search space by utilizing
RFID tags as coordination points. Robots deploy au-
tonomously tags in the environment, in order to build
a network of reachable locations. Hence, global path
planning can be carried out on a graph structure, which
is computationally cheaper than planning on global grid
maps, as it is usually the case.

Our systems solves the problem of task assignment
and path planning simultaneously. This is carried out
by a two-layered approach. Firstly, a local part, where
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robots are coordinated via RFID chips and perform a
local search. The local approach has the properties that
the computational costs do not grow with the number of
robots and that it does not need direct communication.
Secondly, based on the local part, a global part, which
is in charge of monitoring the local exploration, possibly
restarting it in more convenient locations significantly
improving its performance. The locations where to move
the robots, and the multi-robot plan to reach them, are
found solving a task assignment and planning problem.

In previous work we conducted experiments on real
robots in order to evaluate whether it is feasible to au-
tonomously deploy and detect RFID tags in a structured
environment [11]. The experiments were conducted in
two phases. In the first, the robot autonomously explored
an unknown cellar environment while deploying success-
fully 50 RFID tags with its deploy device. In the second,
the robot’s mission was again to explore the same envi-
ronment, however, to identify tags previously deployed
in the environment (see [12] for a video). Furthermore,
the number of retrieved tags was sufficient to reasonably
correct the robot’s noisy odometry trajectory.

Experiments in this work have been carried out in the
USARSim [2] simulation environment, which serves as
basis for the Virtual Robots competition at RoboCup.
Our results show that the RFID tag-based exploration
works for large robot teams, particularly if there are
limited computational resources. Furthermore, we eval-
uated the global approach on RFID graphs of different
complexity and size. Finally, we evaluated the full system
in qualitative experiments on USARSim. Our results
show that the number of conflicts can be reduced by
sequence optimization, and that this global coordination
mechanism combined with the local approach, increases
significantly the explored area.

Methods for local exploration have already been suc-
cessfully applied in the past [3], [16]. It has basically
been shown that multi-robot terrain coverage is feasible
without robot localization and an exchange of maps. Bur-
gard and colleagues [5] contributed a method for greedy
task assignment, based on grid mapping and frontier cell
exploration [17]. Their method does not consider conflicts
between single robot plans, and requires robots to start
their mission close to each other with knowledge about
their initial displacement. The work by Bennewitz and
colleagues [4] focuses on the optimization of plans taken
by multiple robots at the same time. They select priority
schemes by a hill-climbing method that decides in which
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order robots plan to their targets [8]. Plans are generated
in the configuration time space by applying A* search on
grid maps. The coordinated movement of a set of vehicles
has also been addressed in other domains, such as in the
context of operational traffic control [9], and the cleaning
task problem [10].

The remainder of this paper is structured as fol-
lows. In Section II we describe the system platform. In
Sections III and IV we respectively describe our local
and global approach for coordinated exploration. Finally,
we provide results from experiments in Section V and
conclude in Section VI.

II. TEST PLATFORM

(a) (b)

(c) (d)
Fig. 1. The 4WD rescue robot (a) and RFID tags utilized
with this robot (b) with a hand crafted deploy device (c).
A model of this robot simulated in the USARSim simulator
within an office-like environment (d).

The test platform utilized for experiments presented
in this paper is based on a four wheel drive (4WD)
differentially steered robot, as depicted in Figure 1(a).
The robot is equipped with a Hokuyo URG-X003 Laser
Range Finder (LRF), and an Inertial Measurement Unit
(IMU) from XSense providing measurements of the
robot’s orientation by the three Euler angles yaw, roll,
and pitch. We utilized Ario RFID chips from Tagsys
(see Figure 1(b)) with a size of 1.4 × 1.4cm, 2048Bit
RAM, and a response frequency of 13.56MHz. They
implement an anti-collision protocol, which allows the
simultaneous detection of multiple RFIDs within range.
For the reading and writing of the tags we employed a
Medio S002 reader, likewise from Tagsys, which allows
to detect the tags within a range of approximately 30cm
while consuming less than 200mA. The antenna of the
reader is mounted in parallel to the ground. This allows
to detect any RFID tag lying beneath the robot. The
active distribution of the tags is carried out by a self-
constructed actuator, realized by a magazine, maximally
holding 100 tags, and a metal slider that can be moved
by a conventional servo. Each time the mechanism is

triggered, the slider moves back and forth while dropping
a single tag from the magazine.

A realistic model of the robot, including the RFID tag
release device, is simulated with the USARSim simula-
tor developed at the University of Pittsburgh [6], [2].
USARSim allows a real-robot simulation of raw sensor
data, which can directly be accessed via a TCP/IP
interface. The sensors of the robot model are simulated
with the same parameters as the real sensors, expect
the real RFID reading and writing range. Without loss
of generality, we set this range to two meters, since
this parameter mainly depends on the communication
frequency and size of the transmitter’s antenna, which
both can be replaced.

III. COORDINATED LOCAL EXPLORATION

In this section we present a coordination mechanism
which allows robots to explore an environment with low
computational overhead and communication constraints.
In particular, the computational costs do not increase
with the number of robots. The key idea is that the
robots plan their path and explore the area based on
a local view of the environment, where consistency is
maintained through the use of indirect communication,
i.e. RFIDs.

A. Navigation

To efficiently and reactively navigate, each robot con-
tinuously path plans based on its local information of the
environment, which is maintained within an occupancy
grid. This representation of the environment, for allowing
fast computation, is limited in size. In particular, in our
implementation, we restricted it to a four meter side
square with forty mm resolution. The occupancy grid is
shifted based on the odometry and continuously updated
based on new scans. This avoids the accumulation of
the odometry errors when moving, while having some
memory of the past. We periodically select a target, as
shown in the next subsection, and produce for it plans
at high frequency. The continuous re-planning allows to
reactively avoid newly perceived obstacles or unforeseen
situations caused by errors in path following.

The path planning algorithm is based on A* [15]
with the Euclidean distance heuristic. We expand all the
neighbors of a cell which are not obstructed (i.e. have an
occupancy value lower than a given threshold). The cost
function c takes into account the length of the path and
the vicinity of the obstacles to the path in the following
way:

c(si+1) = c(si) + d(si+1, si) ∗ (1 + α ∗ occ(si+1)) (1)

where occ(s) is the current value of the occupancy grid in
cell s, d(.) is the distance, and α is a factor for varying the
cost for passing nearby obstacles. Before planning, the
grid is convoluted with a Gaussian kernel, which allows
to keep robots as far as possible from obstacles.
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While navigating in the environment, robots maintain
a local RFIDs set (LRS), which contains all the perceived
RFIDs which are in the range of the occupancy grid. On
the basis of this information, new RFIDs are released
in the environment by the robots in order to maintain
a predefined density of the tags (in our implementation
we take care of having the RFIDs at one meter distance
from each other). Note that nowadays most of the RFID
tags available on the market do implement an anti-
collision protocol, and hence the detection of multiple
RFIDs is possible at the same time. We utilize the local
knowledge that robots have on RFID tags for avoiding
collisions between them. Each robot tracks its own pose
by integrating measurements from the wheel odometry
and IMU sensor with a Kalman filter. As commonly
known, the accuracy of this estimate decreases due to
the accumulation of positioning errors, which can, for
example, be prevented by performing data association
with visual features. However, since our goal is to save
computation time, we do not globally improve the pose
estimate during runtime, instead we synchronize the
local displacement between robots via RFID tags. If two
robots have visited the same RFID tag in the past,
the estimates of their mutual displacement dR1R2 ≈
lR1 − lR1 can be synchronized by utilizing their local
pose estimates at this RFID tag: Let lR1(t1) and lR2(t2)
denote the individual pose estimates of robot R1 and R2

while visiting the same RFID tag at time t1 and time t2,
respectively. Then, the new displacement between both
robots can be calculated by dR1R2 = lR1(t1) − lR1(t2).
Furthermore, each robot can estimate poses within the
reference frame of other robots by utilizing the latest
displacement and the individual pose estimate of the
other robot at time t. For example, R2’s pose estimate
of R1 is given by: l̂R1(t) = lR1(t) − dR1R2 . Note that
this procedure assumes the existence of a synchronized
clock and requires the robots to keep their trajectory in
memory.

The knowledge on the poses of other robots enables to
avoid collisions among teammates. This is carried out
by labeling occupancy grid cells within a given range
from the teammate as penalized, which will be taken into
account at the planning level by adding an extra cost for
going through such locations. If a robot detects that a
teammate with a higher priority (which is predefined)
is closer than a security distance it stops until this has
moved out of the way.

B. Local Exploration

The fundamental problem in the local exploration task
is how to select targets for the path planner in order to
minimize overlapping of explored areas. This involves: i)
choosing a set of target locations F = {fj}, ii) computing
an utility value u(fj) for each target location fj ∈ F and
iii) selecting the best target, based on the utility value,
for which the path planner can find a trajectory.

We first identify a set of targets F by extracting

frontiers F [17] from the occupancy grid. We then order
the set based on the following utility calculation:

u(fj) = −γ1 ∗ angle(fj) − γ2 ∗ visited(fj) (2)

where angle(fj) is a value which grows quadratically
with the angle of the target with respect to the current
heading of the robot. The angle factor can be thought as
an inertial term, which prevents the robot from changing
too often direction (which would result in an inefficient
behavior). If the robot would have full memory of his
perceptions (i.e. a global occupancy grid), the angle
factor would be enough to allow a single robot to explore
successfully. Due to the limitation of the occupancy grid,
the robot will forget the areas previously explored and
thus will possibly go through already explored ones.

In order to maintain a memory of the previously
explored areas the robots store in the nearest RFID at
writing distance poses p from their trajectory (discretized
at a lower resolution respect to the occupancy grid).
The influence radius, e.g. the maximal distance in which
poses are added, depends mainly on the memory capacity
of the RFID tag. In our implementation, poses where
added within a radius of 4 meters. Moreover, a value
count(p) [16] is associated with each pose p in the
memory of the RFID and is incremented by the robots
every time the pose is added. These poses p are then used
to compute visited(fj) as

∑
r∈LRS

∑
p∈Pr

(1/d(fj, p)) ∗
count(p), where Pr is the set of poses associated with
the RFID r.

Finally, γ1 and γ2 are two parameters which control the
trade-off between direction persistence and exploration.
It is worth noticing that robots writing and reading from
RFIDs, not only maintain memory of their own past but
also of the other robots implementing a form of indirect
communication. Thus, both multi-robot navigation and
exploration, do not require direct communication. This
feature is very useful in all those scenarios (e.g. disaster
scenarios) where wireless communication may be limited
or unavailable.

The most important feature of the approach, as pre-
sented up to now, is that the computation costs do not
increase with the number of robots. Thus, in principle,
there is no limit, other than the physical one, to the
number of robots composing the team.

IV. GLOBAL EXPLORATION MONITORING

Due to the lack of lookahead of the local exploration,
robots may last too long in local minima, resulting in
useless coverage of already explored areas. In order to
avoid such a phenomenon, a novel monitoring approach
has been developed, which periodically restarts the local
exploration in more convenient locations. This method
requires direct communication and a computational over-
head, which grows with the number of agents. However,
it greatly improves the exploration ability of the robots
and it is robust to failures. In fact, if the communication
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links fail or the monitoring process itself fails, the robots
will continue the local exploration previously described.

A. Problem Modeling
Basically, the problem is to find a target RFID location

for each robot and a multi-robot path for them. We
assume that an RFID graph G = (V, E), where V is the
set of RFID positions and E passable links between them,
is available. Each node consists of a unique identifier for
the RFID and its estimated position. Moreover, a set of
frontier nodes U ⊂ V and a set of current robot RFID
positions SL ⊂ V is defined. In general, |U | > |R|, where
R is the set of available robots. A robot path (i.e plan)
is defined as a set of couples composed by a node v ∈ V
and a time-step t:

Definition IV.1 A single-robot plan is a set

Pi = {<v, t> | v ∈ V ∧ t ∈ T }
where T = {0, . . . , |Pi|− 1}. Pi must satisfy the following
properties:
a) ∀vi, vj , k <vi, k>∈ Pi∧ <vj , k + 1>∈ Pi ⇒ (vi, vj) ∈
E,
b) <v, 0>∈ Pi ⇒ v = sli ∈ SL
c) <v, |Pi| − 1>∈ Pi ⇒ v ∈ U

where property a) states that each edge of the plan must
correspond to an edge of the graph G. Properties b) and
c) enforce that the first and the last node of a plan must
be the location of a robot and a goal node respectively.
For example, the single-robot plan going from RFID
R1 to RFID G1, depicted in Figure 2 is represented
as P1 = (< R1, 0 >, < N1, 1 >, < N2, 2 >, < G1, 3 >).
The previous definition implies that passing any two

0.8

1

0.8 0.8
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N1 N2 G1R1

G2

1.2

Fig. 2. A simple graph showing a plan from R1 to G1 (bold edges).

nodes, which are connected by an edge in the graph G,
takes approximately the same amount of time. Recall
that nodes represent RFIDs which are deployed approx-
imately at the same distance one from the other, and
edges represent shortest connection between them. Thus,
the difference of time required for traveling between any
two connected RFIDs is negligible small, if robots drive
at the same speed.

Definition IV.2 A multi-robot plan P is a n-tuple of
single-robot plans (P1, . . . , Pn) such that:

a) the plan with index i belongs to robot i,
b) ∀i, j ∈ R <v′, |Pi| − 1>∈ Pi∧ <v′′, |Pj | − 1>∈ Pj ⇒
v′ �= v′′

c) ∀i, j ∈ R <v′, 0>∈ Pi∧ <v′′, 0>∈ Pj ⇒ v′ �= v′′

Thus, a multi-robot plan is a collection of single-robot
plans for each robot such that they all have different goals
and different starting positions. A distinguishing feature
of multi-robot plans with respect to single-agent ones is
interaction. In fact, single-robot plans can interfere with
each other leading to inefficiencies or even failures:

Definition IV.3 Two single-robot plans Pi and Pj of a
multi-robot plan P are said to be in conflict if Pi∩Pj �= ∅.
The set of states CPi =

⋃
i�=j Pi ∩ Pj are the conflicting

states for Pi.
Moreover, deadlocks can occur in the system. Due to
space limitations we omit the formal definition. In our
setting, a deadlock can arise if there is a circular wait or
if a robot is willing to move to an already achieved goal
of another robot. Consequently, the cost measure c(.) for
a multi-robot plan P is defined as follows:

c(P ) =

{∞ if deadlock
max
i∈R

cost(P, i) else (3)

where cost(P, i) is the cost of executing i’s part of the
multi-robot plan P . We assume that the agents execute
the plans in parallel, thus the score of the multi-robot
plan is the maximum among the single-robot ones. Let
Pj(t) be a function that returns the RFID node of a plan
Pj at a time index t, and d(.) the Euclidean distance
between two RFIDs. Then, cost(P, i) can be computed
from the sum of the Euclidean distances between the
RFIDs of the plan plus the conflicts cost:

cost(P, i) =
|Pi|−2∑

t=0

d(Pi(t), Pi(t + 1)) + confl(P, i) (4)

where

confl(P, i) =
∑
j �=i

∑
<v,t>∈Pi∩Pj

wait(Pj , t), (5)

and

wait(Pj , t) = d(Pj(t−1), Pj(t))+d(Pj(t), Pj(t+1)), (6)

whereas the wait cost wait(Pj , t) reflects the time nec-
essary for robot j to move away from the conflict node.
By Equation 5 costs for waiting are added if at least
two robots share the same RFID node at the same time.
This is a worst case assumption, since conflicts in the
final multi-robot plan are solved by the local coordination
mechanism which forces robots only to wait if there
are other robots with higher priority. We abstract this
feature from our model since the priority ordering is
periodically randomized in order to solve existing dead-
locks, making it impossible to predict whether a robot
will have to wait or not. Finally, the Task Assignment
and Path Planning problem can be formulated as an
optimization problem of finding a plan P ∗ that minimizes
the cost function c(P ).
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B. Global Task Assignment and Path Planning

We experimented with three different techniques in
order to solve the Task Assignment and Path Planning
problem. The first two approaches are inspired by Bur-
gard et al. [5]. The third approach, can be seen as an
extension of Bennewitz et al.[4]. All of the previously
cited approaches rely on a grid based representation
while our approach is graph-based. The experimental
results show that the third approach outperforms the
first and the second, and is actually the one we adopted
in the implementation of the full system. For this reason,
we just give a brief overview of the first approaches and
detail more carefully the third.

All the approaches have a common pre-calculation. We
compute the Dijkstra graph [7] for each node in U . This is
a fast computation (i.e. O((|E|+|V |log(|V |))|U |) ) which
speeds up the plan generation processes presented in the
following.

1) Greedy Approach: Given the information produced
by the Dijkstra algorithm and an empty multi-robot
plan, we identify the robot rbest ∈ R which has the
shortest path to reach a goal gbest ∈ U . The path
computed by the Dijkstra algorithm from rbest to gbest,
with its time values, is added to the multi-robot plan. We
then update the sets R = R−{rbest} and U = U−{gbest}.
The process is iterated until R = ∅ (see [5] for more
details).

2) Assignment Approach: A common approach in
multi-robot systems is task assignment. Here we utilize
a genetic algorithm permuting over possible goal assign-
ments to robots and use the plans computed by the
Dijkstra algorithm. We then use the previously defined
cost function as the fitness function (see [4] for more
details).

3) Sequential Approach: The last approach we present
is based on sequential planning. We use, in a similar
way to the assignment approach, a genetic algorithm to
permute possible orderings of agents O = o1, . . . , on. We
then plan for the ordering and use the previously defined
cost function as the fitness function.

The sequential planning is based on A* [15] and is done
individually, following the given ordering, for each agent
in order to achieve the most convenient of the available
goals U . Every time an agent oi plans, the selected goal
is removed form U and the computed plan added to
the set of known plans P . The planning tries to avoid
conflicts with the set of known plans P by searching
through time/space, whereas the state space S is defined
as S = V × T . This huge state space can be greatly
simplified, since for our purposes we are only interested
in the time of the conflicting states CPj (Definition IV.3).
From the planning point of view the information relative
to the time of non-conflicting states is irrelevant and thus
all these states can be grouped by time using the special
symbol none. The resulting set of non-conflicting states
NC is defined as NC = {<v, none> |v ∈ V } and has

the cardinality of V (i.e. |NC| = |V |). Thus, the reduced
search space is ST = CPj ∪ NC.

During the search, the nodes are expanded in the
following way: we look for the neighboring nodes of the
current one given the set E of edges in G. For each of
them we check if there is a conflict. If this is the case, we
return the corresponding node from CPj , otherwise the
one from NC.

In order to implement A* we have to provide a cost
function g and a heuristic function h defined over ST .
We define the cost function g(s) for agent i as the single-
robot plan cost function cost(P, i). The multi-robot plan
P will consist of the plans already computed augmented
with the path found up to s. Obviously the agent oj will
be able to detect conflicts at planning time only for those
agents oi with i < j for which a plan has already been
produced. Finally, the heuristic h (i.e. Dijkstra heuristic)
is defined as follows:

h(< s, t >) = min
g∈G

ddij(s, g) (7)

where ddij(s, g) is the distance from s to g pre-
computed by the Dijkstra algorithm.

Theorem IV.1 The Dijkstra heuristic is admissible.

Proof: By contradiction. Let us assume that the the-
orem is false and, thus, that ∃s ∈ S | ming∈G ddij(s, g) >
cost(P, i). P is the multi-robot plan composed by plans
already computed plus a path Pi from s to a goal gbetter .
Assuming that sc is the state which verifies the property
and that gmin is the closet goal to sc, we can rewrite the
previous inequality as ddij(sc, gmin) > cost(P, i). Ap-
plying the definition of cost(P, i), we can rewrite the in-
equality as ddij(sc, gmin) > dplan(sc, gbetter)+confl(P, i);
where dplan(sc, gbetter) =

∑|Pi|−2
t=0 d(Pi(t), Pi(t + 1)).

confl(P, i) is the sum of values which are distances
calculated in the Euclidean space which are alway values
greater or equal to zero. This implies ddij(sc, gmin) >
dplan(sc, gbetter). Since ddij(sc, gmin) < ddij(sc, gbetter)
we can rewrite the inequality as ddij(sc, gbetter) >
dplan(sc, gbetter). This means that there exists a path on
the graph from sc to gbetter shorter than the one the
Dijkstra algorithm found, but this is impossible [7].

It is important to notice that A* will find the optimal
solution, since the heuristic is admissible, for a single
robot plan, given a subset of already computed paths
and ignoring the others (for which no plan was found
yet).

For example, let us consider the simple weighted graph
depicted in Figure 2. R1 and R2 are respectively the
location of two robots r1 and r2. G1 and G2 are the
goals. In this example, the sequence <r1, r2> has been
selected and r1 has already produced the following plan:
(<R1, 0>, <N1, 1>, <N2, 2>, <G1, 3>). Now r2 has to
plan. The only remaining goal is G2, since G1 has already
been selected by r1. At first, according to the topology
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and the already defined plan for r1, from <R2, none> the
nodes <R1, none> and <N1, 1> can be reached. In fact,
if we simulate the plan of r1, moving to R1 will incur
in no conflict and would have just the cost of travelling
the distance; thus g(<R1, none>) = 1.2. In the other
case, moving to R2 at time 1, will conflict with r1 who is
moving there at the same time. In this case, our model
will tell us that we have to wait for r1 to first reach the
N1 (with a cost of 0.8) and then leave it (with a cost of
0.8). Then, we would be able to reach N1 with a cost of
1. Thus the total cost of reaching N1 at time 1 will be
g(<N1, 1>) = 2.6 (i.e. 0.8 + 0.8 + 1).

Moreover, the heuristic values for these states (ob-
tained by pre-computing the Dijkstra algorithm) are:
h(< R1, none >) = 1.4 and h(< N1, 1 >) = 1. Thus,
according to the well known formula f(n) = g(n) +
h(n), < R1, none > will be selected. Similarly, nodes
<N1, none> and <G2, none> will be expanded next
and the planning process will continue until the plan
(< R2, 0 >, < R1, 1 >, < G2, 2 >) is found. Notice that,
< N1, none > is different from < N1, 1 > since r2 will
already have moved away from N1 at time-step 2.

C. Monitoring Agent

The monitoring agent MA constructs online the map
represented as the graph G and identifies the frontier
RFIDs. Moreover, MA will monitor the local exploration
and possibly identify, with one of the previously de-
scribed techniques, a multi-robot plan in order to move
the robots to a location where the local exploration has
better performance expectations. Due to space limita-
tions we will give just a brief overview on this topic.

At execution time the robots send to MA their RFID
locations (i.e. the nearest RFID they can perceive). Every
time a robot changes its RFID position from ri to ri+i,
MA updates the set SL of current robot locations and
updates the graph as follows: E = E ∪ {(ri, ri+1)} and
V = V ∪ {ri} ∪ {ri+1}.

The monitoring process collects continuously informa-
tion regarding the unexplored area in the vicinity of the
RFIDs based on the local occupancy grid to identify the
frontier RFIDs U . Roughly, the robot knows how many
RFIDs, given the defined deployment density, should be
placed per square meter and which the number perceived.
Thus, can compute an estimate on how much the area is
explored in the proximity of his RFID position.

MA periodically evaluates the position of the robots
on the graph and their distance from the frontier nodes
U . If this value exceeds a given threshold, it stops the
robots and computes a new multi-robot plan. Once a
valid plan has been produced, MA starts to drive the
robots by assigning to each of them the next RFID
prescribed by their plans. The robots path-plan from
one RFID to the other using the A* path-planner on the
occupancy grid and the teammate avoidance previously
mentioned. If the occupancy grid path planner fails to
find a plan because he cannot perceive the RFID (e.g.

it was destructed) or the way is obstructed, the robot
sends a failure message to the agent. The agent will
consequently remove the node and its edges from the
graph G and re-plan. When the target RFID is reached,
a task accomplished message is sent to the agent, which
will assign another task or send a global plan termination
message. In the latter case, the robots will start again the
local exploration.

During the multi-robot plan execution, the planner
monitors for unforeseen situations. For example, if a
robot does not send an accomplished task message or an
RFID position for a long time, it is considered lost and
removed from the robot list. Moreover, plans can incur
deadlocks and, although we check for them at planning
time, there is no guarantee of a deadlock-free execution
because we cannot predict the exact order in which the
tasks will be accomplished. If a deadlock occurs at a given
time, MA re-plans. Finally, any time a planning phase
fails, the local exploration is reactivated.

V. EXPERIMENTS

A. Evaluation of the local approach

The local approach has been tested in various simu-
lated environments generated by the National Institute
of Standards and Technology (NIST) on the USARSim
platform. They provide both indoor and outdoor scenar-
ios of the size bigger than 1000m2, reconstructing the
situation after a real disaster. Since USARSim allows
the simulated deployment of heterogeneous robot types
within a wide range of different scenarios, it offers an
ideal performance metric for comparing multi-robot sys-
tems.

On these maps, we competed against other teams, dur-
ing the RoboCup’06 [1] virtual robots competition, where
our team won the first prize [12]. In this competition,
virtual teams of autonomous or tele-operated robots have
to find victims within 20 minutes while exploring an
unknown environment. The current version of USARSim
is capable of simulating up to 12 robots at the same time.

Most of the teams applied frontier cell-based explo-
ration on global occupancy grids. In particular: selfish
exploration and map merging [13] (IUB), map merging
and local POMDP planning [14] (UVA), operator-based
frontier selection and task assignment (SPQR), and tele-
operation (STEEL) and (GROK).

Table I gives an overview on the number of deployed
robots, and area explored by each team. As can clearly be
seen, we were able to deploy the largest robot team, while
exploring an area bigger up to a magnitude than any
other team. Due to the modest computational resources
needed by the local approach, we were able to run 12
robots on a single Pemtium4, 3GHz.

Figure 3(a-b) depicts the joint trajectory of each team
generated during the semi-final and final, whereas (c-d)
shows the single trajectory of each robot of our team on
the same map, respectively. The efficiency of the RFID-
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TABLE I

Results from RoboCup ’06

RRFr GROK IUB SPQR STEELUVA
Prel1 # Robots 12 1 6 4 6 1

Area [m2] 902 31 70 197 353 46
Prel2 # Robots 12 1 4 4 6 8

Area [m2] 550 61 105 191 174 104
Prel3 # Robots 10 1 5 7 6 7

Area [m2] 310 59 164 44 124 120
Semi1 # Robots 8 1 6 4 6 6

Area [m2] 579 27 227 96 134 262
Semi2 # Robots 8 1 6 5 6 7

Area [m2] 1276 82 139 123 139 286
Final1 # Robots 8 - 8 - - -

Area [m2] 1203 - 210 - - -
Final2 # Robots 8 - 6 - - -

Area [m2] 350 - 136 - - -

(a)

(b)

(c)

Fig. 3. Exploration trajectories recorded during the finals: (a,b)
Comparison between our approach (red line) and all other teams.
(c) Coordinated exploration of our robots, whereas each robot is
represent by a different color.

based coordination is documented by the differently col-
ored trajectories of each single robot.

B. Evaluation of the global approach

Efficiency in terms of conflict detection and joint path
length optimization has been evaluated on both artifi-
cially generated, and by a robot team generated RFID
graphs. The artificially generated graphs, consisting of
approx. 100 nodes, are weakly connected in order to
increase the difficulty for the planning problem, whereas

the graph generated by the robots, consisting of approx.
600 nodes, represents a structure naturally arising from
an office-like environment.

Figure 4 depicts the result from evaluating greedy
assignment, genetic optimized assignment, and sequence
optimization on these graphs. Each method has been
applied with a fixed number of randomized goals and
starting positions, 10 times. We experimented different
sizes of the robot teams, ranging from 2 to 20. The
abrupt ending of the curves indicates the size of the agent
team, at which no more solutions could be found, i.e. the
scoring function returned infinity. Note that for all the
experiments, the genetic algorithm was constrained to
compute for no more than one second.

The result makes clear that sequence optimization
helps to decrease both the overall path costs and the
number of conflicts between single robot plans. Moreover,
the method yields solutions with nearly no conflicts on
the graph dynamically generated by the robot team (see
Figure 4 (c)). In order to compare the global and local

(a) (b)
Fig. 5. Comparing the locally and globally coordinated explo-
ration. During local exploration (a) robots get stuck in a local
minima. The global approach (b) allows the robots to leave the
local minima and to explore a larger area

approach in terms of the explored area, we conducted
two experiments on a large map, for 40 minutes each (see
[12] for a video). Due to the global approach, the robots
were able to explore 2093m2 of the map, in contrast to
the team executing the local approach, exploring only
1381m2 of the area. As can be seen by the trajectories
in Figure 5, this was mainly because the robots running
the local approach were not able to overcome the local
minima in the long hall. With the global approach, the
robots discovered the passage leading to the big area
beneath the hall.

VI. CONCLUSION

In this paper we presented a novel coordinated ex-
ploration mechanism for large teams of robots. This is
basically composed of two parts. A first one, based on
distributed local search, with the notable properties of
not requiring direct communication and scaling with
the number of agents. This approach can be seen as
a stand alone system. A second, which monitors the
local exploration restarting it in better locations. Both
approaches are based on the use of RFIDs, which allow
to build a significantly smaller representation of the en-
vironment compared to grid based approaches [13], [14],
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Comparing the number of conflicts (a-c) and travel costs (d-f) of the three approaches on different RFID graphs: (a,d) narrow
office-like environment, (b,e) narrow outdoor area, (c,f) graph generated from RFIDs deployed by the robots on a USARSim map.

[5], [4]. The experimental results from Robocup show
that, for large environments, the local RFID approach
definitively pays off. Moreover, for the global approach,
we extensively experimented three approaches for solving
the task assignment and planning problem. The first
two are basically task assignment techniques [5] and the
third, is a variant of sequential planning [4]. The exper-
iments show that the sequential approach outperforms
in most environments the assignment ones because of
the capability of avoiding conflicts in the paths. Finally,
qualitative experiments of the full system show that the
method explored almost as much as double as the area
explored by the local approach.

There are several issues we are planning to work on
in the near future. Firstly, we want to run quantitative
experiments for the full approach on USARSim and
qualitative ones on the real robots. Furthermore, we are
currently developing an new model for multi-robot plans
based on Petri nets to improve the formal model of the
Task Assignment and Planning problem [18]. This would
allow us to model the plans as a discrete event system,
where RFIDs as resources may be owned by one robot at
the time. This would allow to take into account deadlock
detection and plan time shifts (due to robots waiting)
both at the planning and evaluation phases.
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