
 Open access  Posted Content  DOI:10.1101/2020.07.31.230631

RFPlasmid: Predicting plasmid sequences from short read assembly data using
machine learning — Source link 

Linda van der Graaf-van Bloois, Jaap A. Wagenaar, Aldert Zomer

Institutions: Utrecht University

Published on: 02 Aug 2020 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Plasmid and Genome

Related papers:

 Low-copy pTerm plasmids and construction method and application thereof

 Designing plasmid vectors.

 
Conditional-Replication, Integration, Excision, and Retrieval Plasmid-Host Systems for Gene Structure-Function
Studies of Bacteria

 
Comparative analyses of extrachromosomal bacterial replicons, identification of chromids, and experimental evaluation
of their indispensability.

 Plasmids as Genetic Tools for Study of Bacterial Gene Function

Share this paper:    

View more about this paper here: https://typeset.io/papers/rfplasmid-predicting-plasmid-sequences-from-short-read-
3e30f3ntw7

https://typeset.io/
https://www.doi.org/10.1101/2020.07.31.230631
https://typeset.io/papers/rfplasmid-predicting-plasmid-sequences-from-short-read-3e30f3ntw7
https://typeset.io/authors/linda-van-der-graaf-van-bloois-1mzlodkyxq
https://typeset.io/authors/jaap-a-wagenaar-4gwkslsdii
https://typeset.io/authors/aldert-zomer-27barhfvmp
https://typeset.io/institutions/utrecht-university-jkaqeuew
https://typeset.io/journals/biorxiv-318tydph
https://typeset.io/topics/plasmid-3g7mljxl
https://typeset.io/topics/genome-1ezdrtwk
https://typeset.io/papers/low-copy-pterm-plasmids-and-construction-method-and-42i4urn0pa
https://typeset.io/papers/designing-plasmid-vectors-omngpc6m7v
https://typeset.io/papers/conditional-replication-integration-excision-and-retrieval-506zo7smr6
https://typeset.io/papers/comparative-analyses-of-extrachromosomal-bacterial-replicons-5d4v3sg9rs
https://typeset.io/papers/plasmids-as-genetic-tools-for-study-of-bacterial-gene-4fndmyi3xz
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/rfplasmid-predicting-plasmid-sequences-from-short-read-3e30f3ntw7
https://twitter.com/intent/tweet?text=RFPlasmid:%20Predicting%20plasmid%20sequences%20from%20short%20read%20assembly%20data%20using%20machine%20learning&url=https://typeset.io/papers/rfplasmid-predicting-plasmid-sequences-from-short-read-3e30f3ntw7
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/rfplasmid-predicting-plasmid-sequences-from-short-read-3e30f3ntw7
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/rfplasmid-predicting-plasmid-sequences-from-short-read-3e30f3ntw7
https://typeset.io/papers/rfplasmid-predicting-plasmid-sequences-from-short-read-3e30f3ntw7


1 

 

RFPlasmid: Predicting plasmid sequences from short read assembly data  

using machine learning 

 

Linda van der Graaf – van Bloois
1,2

, Jaap A. Wagenaar
1,2,3

 and Aldert L. Zomer
1,2 

 
1
Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, 

Utrecht, the Netherlands 
2 
WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from 

an One Health Perspective/ OIE Reference Laboratory for Campylobacteriosis, Utrecht, the Netherlands 
3 

Wageningen Bioveterinary Research, Lelystad, the Netherlands 

 

 

*Author for Correspondence: Aldert Zomer, Department of Infectious Diseases and 

Immunology, Utrecht University, Utrecht, The Netherlands, +31 (0) 30 253 36 03, 

a.l.zomer@uu.nl 

 

 

Abstract 

 

Antimicrobial resistance (AMR) genes in bacteria are often carried on plasmids and these 

plasmids can transfer AMR genes between bacteria. For molecular epidemiology purposes 

and risk assessment, it is important to know if the genes are located on highly transferable 

plasmids or in the more stable chromosomes. However, draft whole genome sequences are 

fragmented, making it difficult to discriminate plasmid and chromosomal contigs. Current 

methods that predict plasmid sequences from draft genome sequences rely on single features, 

like k-mer composition, circularity of the DNA molecule, copy number or sequence identity 

to plasmid replication genes, all of which have their drawbacks, especially when faced with 

large single copy plasmids, which often carry resistance genes. With our newly developed 

prediction tool RFPlasmid, we use a combination of multiple features, including k-mer 

composition and databases with plasmid and chromosomal marker proteins,  to predict if the 

likely source of a contig is plasmid or chromosomal. The tool RFPlasmid supports models for 

17 different bacterial species, including Campylobacter, E. coli, and Salmonella, and has a 

species agnostic model for metagenomic assemblies or unsupported organisms. RFPlasmid is 

available both as standalone tool and via web interface. 
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Introduction 

 

Many bacterial species carry plasmids, extrachromosomal mobile genetic elements that can 

transfer from one bacterium to another (Smillie et al., 2010). They often replicate 

autonomously in the host using a variety of replication systems. Generally they are circular, 

however some species carry linear plasmids (Dib et al., 2015; Li et al., 2007). Plasmids carry 

often genes which provide a benefit to the host, such as additional metabolic capabilities 

(Rozwandowicz et al., 2018), antimicrobial resistance genes (Carattoli, 2009) and virulence 

factors that affect host invasion and infection, including type IV secretion systems, toxins, 

adhesins, invasins and antiphagocytic factors (Johnson & Nolan, 2009; Sengupta & Austin, 

2011). The presence of plasmids increases in general the fitness of their hosts by providing 

new functions, like antimicrobial resistance (AMR), metabolic capabilities or virulence 

factors.  

Conjugative transfer of plasmids is considered the most effective way of spreading 

antimicrobial resistance among bacteria (Goessweiner-mohr et al., 2014). For molecular 

epidemiology purposes and risk assessment, the identification of chromosomal and plasmid 

sequences provides fundamental knowledge regarding the transmission of AMR. Molecular 

identification of plasmid and chromosomal genotypes can distinguish whether the spread of 

AMR genes is driven by epidemic plasmids to different hosts or by clonal spread of bacterial 

organisms..  

Many molecular epidemiology studies using short read Illumina sequences are 

available for resistant organisms and the number of sequenced genomes available is in the 

hundreds of thousands (Alikhan et al., 2018; Jolley et al., 2018; Wattam et al., 2017). These 

existing datasets could provide a wealth of information on plasmid dissemination, were it not 

for one major drawback: assembly of short read sequencing data results in hundreds of 

contigs which are difficult to circularize conclusively, making it next to impossible to 

determine what is plasmid and what is chromosomal DNA.  

Multiple bioinformatic methods have been described to predict plasmids in silico, e.g. 

cBar (Zhou & Xu, 2010), PlasmidSPAdes (Antipov et al., 2016), Recycler (Rozov et al., 

2017), PlasmidFinder (Carattoli et al., 2014), PLACNET (Lanza et al., 2014), PLAScope 

(Royer et al., 2018), MLPlasmids (Arredondo-Alonso et al., 2018) and Platon (Schwengers et 

al., 2020). The predictions with some methods suffer from a low sensitivity or specificity 

(Arredondo-Alonso et al., 2017), or are optimized for one specific bacterial genus and cannot 

be used for metagenomics. 

In this study, we present our tool RFPlasmid, a novel approach for the prediction of 

bacterial plasmid sequences in contigs from short read assemblies, with models for 17 

different bacterial genera and a species agnostic model. We compared RFPlasmid to other 

available tools and show it that it performs equally well or better when using species-specific 

models. We identified genomic signatures of plasmid and chromosomal sequences based on 

5-basepair k-mers, a custom plasmid protein database with >193,000 entries, a database of 

known replicons (Zankari et al., 2012), single copy chromosomal marker genes (Parks et al., 

2015), contig lengths and gene counts. We trained a Random Forest model on more than 

8000 pseudo assemblies from bacterial chromosomes and plasmids and validated our 

approach using both the out of bag (OOB) error rate of Random Forest and an independently 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.07.31.230631doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.230631


3 

 

generated dataset of plasmid and genomic contigs. Our prediction model achieves up to 99% 

classification accuracy and 99% sensitivity on genome assemblies of bacterial species of 17 

different genera and metagenomics, outperforming any other tool currently available. 

Additionally, we have identified potential factors responsible for prediction errors and 

propose downstream analyses to alleviate these problems.   

 

 

Implementation 

 

RFPlasmid extracts feature information from whole genome sequences (WGS) contigs and 

by using a Random Forest model, the likely source (plasmid or chromosomal) of the contigs 

is predicted. The tool supports 17 different bacterial species or genera, including Bacillus, 

Borrelia, Burkholderia, Campylobacter, Clostridium, Corynebacterium, Cyanothece, 

Enterobacteriaceae, Enterococcus, Lactobacillus, Lactococcus, Listeria, Pseudomonas, 

Rhizobium, Staphylococcus, Streptomyces, Vibrio and a species agnostic model for unknown 

unsupported organisms or for metagenomics data. A flow scheme describing the procedure is 

given in Figure 1. Furthermore the tool contains an easy to use training option with which 

additional models can be added easily.  

 

Input  

Contigs from short read assemblies in FASTA format are used as input files. The 

webinterface takes a single genome, the command line tool can process up to several 

thousand genomes from a single folder. 

 

Single copy chromosomal marker genes 

CheckM (Parks et al., 2015) predicts open reading frames (ORFs) of the contigs using 

Prodigal (Hyatt et al., 2010) and determines whether these encode species specific single-

copy marker genes. The number of specific marker genes per contig is counted and saved.  

 

Plasmid marker proteins 

Two different reference databases with plasmid maker proteins are used; the plasmid replicon 

database and plasmid protein database. The plasmid replicon database consists of known 

plasmid replication proteins, downloaded from the database of PlasmidFinder (Zankari et al., 

2012) (accession date: 22 May 2017). The plasmid protein database was generated with 

plasmid proteins from all bacterial species from NCBI Genbank (accession date: 22 May 

2017) and the plasmid database of the MOB-suite (Robertson & Nash, 2018). Near-identical 

proteins were clustered using USearch v 5.2.32 (Edgar, 2010), resulting in a database with 

193,176 plasmid proteins.  

RFPlasmid uses DIAMOND searches (Buchfink et al., 2015) against the two plasmid 

reference databases, BLASTX for the replicon database and BLASTP for the protein 

database, with default settings and an E-value cutoff of 1E-30. For each contig, the BLASTX 

replicon hit with the highest identity is selected and the number of BLASTP hits with the 

plasmid protein database is counted.  
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K-mer profiles 

Two different methods of k-mer counting are implemented; the standard method counting  

the number of nucleotide pentamers (5-mers) using python (default), and the faster, optional 

method JELLYFISH  (Marçais & Kingsford, 2011). The fraction of each 5-mer is calculated.  

 

Classifying using Random Forest models  

A Python Pandas dataframe is generated, to structure all the different features of the query 

WGS contigs, including contig name, contig length, fraction specific maker genes, fraction 

plasmid genes, highest replication gene identity and k-mer fractions. The Pandas dataframe is 

exported as a csv, which is imported in R for training or classification using the Random 

Forest library (Liaw & Wiener, 2002).  

 

Training data sets 

The training data sets were made as follows; complete and identified chromosomal and 

plasmid sequences were downloaded from NCBI Genbank (accession date 7 November 

2017), and for Listeria, plasmid sequences were downloaded from NCBI Genbank with 

accession date 30 September 2019. Pseudo reads of 500bp each were generated  with 50x 

coverage using the gen-single-reads script (https://github.com/merenlab/reads-for-assembly). 

Assembly was performed using SPAdes v3.11.1 (Bankevich et al., 2012) with default 

settings. Contigs smaller than 200 bp were removed. Table 1 shows the assemblies of the 

developed training data sets of each species.  

Random Forest models were trained using 5000 trees. Class imbalances were solved 

by making use of the sampsize option, whereby 66% of the smallest class was selected as 

option in sampsize for both classes when training each tree in the forest to prevent class 

imbalance errors and error inflation (Janitza & Hornung, 2018). Random Forest uses an 

internal validation where 66% of the contigs of the training-sets are used for training and 

33% are used for testing per tree in the Random Forest. The output of every tree is averaged 

and results in the OOB (out-of-bag) error which is a minor overestimation of the actual error 

(Janitza & Hornung, 2018). 

 

External validation 

To investigate the performance of RFPlasmid on non-simulated datam, we downloaded the 

Illumina and Nanopore reads of 24 multidrug-resistant Escherichia coli genomes from ENA 

from Bioprojects PRJNA505407 and PRJNA387731 which were also used by Schwengers et 

al (Schwengers et al., 2020). We performed both hybrid assembly using Unicycler v0.4.9b 

(Wick et al., 2017) and short read-only assembly with SPAdes (v13.3.0). We could assemble 

22 isolates into distinct chromosomal and plasmid contigs using Unicycler. Isolates V232 and 

V92 were excluded after inspection of the sequence graphs using Bandage (Wick et al., 2015)  

as chromosomal and plasmid contigs could not be distinguished. Contigs larger than 200 bp 

from the SPAdes assemblies were aligned against the corresponding complete hybrid 

assembly using Last (Hamada et al., 2017) and the best scoring hits against plasmid and 

chromosome contigs were collected. In total, 85 contigs (153 kbases) of the 2832 (110 

mbases) contigs in the entire dataset were discarded as they had identical hits on both 

chromosome and plasmid.  
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Analysis of predicted contigs for encoded features 

Presence of phage genes and resistance genes in assembled contigs of the training data were 

determined by performing a DIAMOND search against the ProPHET phage database (Reis-

Cunha et al., 2019) using an E-value cutoff of 1E-10 and the Resfinder database (accessed 

01-07-2020) with a cutoff of 90% identity and 60% coverage (identical to the default settings 

of the online version of Resfinder). Presence of transposase encoding genes was performed 

by aligning encoded proteins using HMMER3 (http://hmmer.org/) against the transposase 

database of ISEscan (Xie & Tang, 2017) with an E-value cutoff of 1E-30.  

 

Software availability 

Software is available at  https://github.com/aldertzomer/RFPlasmid, databases containing all 

plasmid proteins are available at http://klif.uu.nl/download/plasmid_db/ and all training data 

is available at http://klif.uu.nl/download/plasmid_db/trainingsets2/trainingsfiles_zip. A 

webinterface for RFPlasmid is available at http://klif.uu.nl/rfplasmid/  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.07.31.230631doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.31.230631


6 

 

Results 

 

Classification results on training data 

Sizes of in this study generated plasmid contigs of the training data sets vary between 200bp 

and 4,146,943bp, with species Bacillus having the largest contig (data not shown). Between 

127 and 11513 plasmid contigs per species are available, with the Enterobacteriaceae set 

having the highest number of plasmid contigs (Table 1). We compared the predicted contig 

location to the known contig location with plasmid contigs correct classified as plasmid 

(plasmid correct), chromosomal contigs correct classified as chromosomal (chromosome 

correct), chromosomal contigs incorrect classified as plasmids (chromosome incorrect) and 

plasmid contigs incorrect classified as chromosomal (plasmid incorrect). Results are 

determined in percentages, calculated as basepairs of each predicted contig divided by the 

total basepairs, because smaller contigs are more difficult to predict, making the number of 

contigs a poor comparator. 

To address potential over-training, we present both OOB (out-of-bag) errors and 

prediction failures of the complete model. Random Forest uses an internal validation where 

66% of the contigs of the training-sets are used for training and 33% are used for testing per 

tree in the Random Forest. The output of every tree is averaged and results in the OOB error 

which is a minor overestimation of the actual error (Janitza & Hornung, 2018). Both OOB 

classification results and the output of the complete model on the training data sets are 

presented in Figure 2A and 2B. The results show that RFPlasmid can correctly identify the 

source of the contigs between 95.3% and 100%. Often, the species specific model 

outperforms the species agnostic model (Fig 2AB).  

We observe that contigs that with scores between 0.4 and 0.6 are the main source of 

incorrectly predicted contigs (Figure 3A). Contigs smaller than 3 kb are difficult to classify, 

their scores are generally lower (Figure 3B) possibly because the k-mer content cannot be 

reliably determined, or the contigs do not contain coding sequences (CDS), or they consist of 

genes that usually have multiple copies on both genome and plasmid such as transposases or 

phage genes. To investigate the latter hypothesis, we determined the presence of phage genes 

and transposases on the incorrectly and correctly predicted contigs and determined the phage- 

and transposase-content per contig. This analysis was performed on contigs containing at 

least one CDS. Phage genes were mainly found in chromosome incorrect classified contigs, 

where 30% (3482 of 11565) of the chromosome incorrect classified contigs harboured phage 

genes, of which 34% (1179 of 3483) of the contigs consisted of >50% phage genes (Figure 

4A). Transposases were found in a very high percentage of 36% (4200 of 11565) of 

chromosome incorrect classified contigs as well (Figure 4B) and 59% (2487 of 4200) of these 

transposase carrying contigs were small contigs (<3kb).  

As the primary reason for our tool is to determine if we can reliably predict whether 

AMR genes are carried on plasmids or chromosomes, we analysed the assembled contigs for 

the presence of resistance genes using the Resfinder database. Resistance genes were found 

on 5019 of the 175027 contigs (135004 contigs with >1 CDS) (Figure 3C), of which 13% 

(2773 out of 21306) of plasmids contigs carry an AMR gene and 1.77% (1977 out of 112006) 

of the chromosomal contigs carry AMR genes. Only 0.9% (3 out of 344) of the plasmid 

incorrect classified contigs contained AMR genes, and 2.2% (213 out of 9464) of the 
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chromosome incorrect classified contigs contained AMR genes. Of these 213 chromosome 

incorrect classified AMR gene harboring contigs, 38% (n=82) were located on small contigs 

(<3kb), therefore we conclude that we reliably identify the DNA source that carries these 

genes for e.g. risk assessment. 

Investigating the importance of each feature in the different training models shows 

that single copy chromosomal markers genes and plasmid marker genes appear to function 

species wide as they are important in every model, while k-mer content is specific per species 

(Figure 5). 

 

Benchmarking RFplasmid and comparison with existing tools 

We compared the performance of RFPlasmid with other plasmid-prediction tools. Plasmid-

predictions tools that assemble plasmid contigs from read files like PlasmidSPAdes (Antipov 

et al., 2016), Recycler (Rozov et al., 2017) and PLACNET (Lanza et al., 2014) are not 

developed to be used with assembled data, and are therefore excluded in this comparison. The 

plasmid-prediction tools that can predict plasmid contigs from assembled data were tested 

and compared with RFPlasmid by using the in this study described models and training data; 

cBar (Zhou & Xu, 2010) with the metagenome training data, PLAScope (Royer et al., 2018) 

with the E. coli subset of the Enterobacteriaceae training data, MLPlasmids (Arredondo-

Alonso et al., 2018) with the Enterococcus faecium and E. coli subsets of the Enterococcus 

training data and Enterobacteriaceae training data respectively. Percentages of correctly 

predicted basepairs are calculated and compared with the RFPlasmid prediction results 

(Figure 6AB). We show that RFPlasmid outperforms the tested tools by having a lower 

number of incorrect classified plasmid and chromosome contigs compared to cBar en 

MLPlasmids for Enterococcus, and by predicting a lower number of plasmid incorrect 

classified contigs compared to PLAScope. RFPlasmid has an average chromosome incorrect 

classified contig rate of 1.24% and an average plasmid incorrect classified contig rate of 

0.29%.  

To investigate the performance of RFPlasmid on non-simulated data we also used 22 

E. coli genomes, previously used by Schwenger et al (Schwengers et al., 2020) . The error 

rate of RFPlasmid with non-simulated data is very low; only 0.52% of basepairs (85 contigs 

out of 2832 contigs) were incorrectly predicted with most of them (62 contigs out of 85 

contigs) being small (<3kb) (Figure 6AB). Manual investigation of the larger incorrectly 

predicted contigs shows that 16 contigs contain phage encoding genes and three contigs a 

plasmid replication gene of which one encodes IncQ1, which is presumably integrated into 

the genome of isolate H69. 
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Discussion and conclusion 

 

We conclude that RFplasmid is able to predict chromosomal and plasmid contigs with error 

rates ranging from 0.002% to 4.66% (Figure 2A) and that the use of species specific models 

can be superior to a general plasmid prediction model. Single copy chromosomal marker 

genes, plasmid genes, k-mer content and length of contig all appear to be informative, 

however k-mer content is highly specific for species. Prediction of small contigs remains 

unreliable, since these contigs consists primarily of repeated sequences present in both 

plasmid and chromosome, e.g. transposases or because k-mer content or marker genes cannot 

be easily identified. 

Comparison with existing methods shows that RFPlasmid generally performs equal or 

better to existing methods with a specificity and sensitivity up to 99%. RFPlasmid is the first 

described tool that can be used for 17 bacterial species and also includes a mode when the 

species is not in the database (e.g. also suitable for metagenomics assembly data). If a good 

reference set with well identified chromosomal and plasmid contigs of another bacterial 

species is available, an easy training option is implemented in RFPlasmid, to train a new 

model for this bacterial species. Our web-interface makes RFPlasmid accessible to the casual 

non-bioinformatician user, which will improve uptake of the use of our tool. 

Improvements are still possible for RFPlasmid. Careful examination of the incorrectly 

classified contigs shows that these frequently contain many phage genes or transposases. 

Phages are often found on chromosomes, rarely on plasmids, therefore including a phage 

detection algorithm could certainly improve predictions, although that is out of scope for this 

study, as phage prediction has its own difficulties and complexities. Furthermore, phage-like 

plasmids have been detected (Galetti et al., 2019; Octavia et al., 2015) which would need to 

be investigated if it is possible to distinguish these from real phages. Smaller contigs which 

consisting solely of transposases (1-3 kb usually) are generally present on both chromosome 

and plasmid and these could be detected and marked as such. Integrated plasmids, such as the 

IncQ1 plasmid in the external dataset in E. coli isolate H69 show that some predictions will 

remain difficult. Other improvements could be the detection of rRNA operons, as these are 

usually chromosomally encoded or circularization detection for the detection of smaller 

plasmids (Schwengers et al., 2020). An evaluation of the combination of above mentioned 

features with species specific models would be interesting for future research  

 

 

Availability and requirements 

     Project name: RFPlasmid 

     Project home page: https://github.com/aldertzomer/RFPlasmid      

     Operating system(s): Linux (shell), platform independent 

     Programming language: Python, R, Bash 

     Other requirements: CheckM, Diamond  

 Optional: Jellyfish 

     License: e.g. AGPL probably. 

     Any restrictions to use by non-academics: None 
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Figures and tables 

 

 

Figure 1. Flow diagram of RFPlasmid 
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Figure 2. Performance of Random Forest classification models on training data.  

Shown are (A) OOB performance and (B) prediction performance in percentages, calculated 

as basepairs predicted divided by the total basepairs for each contig, coloured as plasmid 

correct, chromosome correct, chromosome incorrect and plasmid incorrect classified contigs.  
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Figure 3. Plots of RFPlasmid prediction scores. (A) Boxplot displaying the plasmid 

prediction votes of small (< 3 kb) and large (>3 kb) contigs, grouped per correct and incorrect 

classified plasmid and chromosome contigs. (B) Scatterplot displaying the plasmid prediction 

votes the contig lengths (log10 scale), coloured by the classification results.  

 

 

 

 

 

 

Figure 4. Presence of phage genes, transposases and resistance genes in training data 

contigs. Shown are (A) the percentage of phage genes (log10 scale) in training data contigs, 

(B) the percentage of transposases (log10 scale) in training data contigs, and (C) barplot with 

counts of contigs with > 1 resistance gene, all grouped per correct and incorrect classified 

plasmid and chromosome contigs.  
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Figure 5. Heatmap of RandomForest feature importances of training models. Features in 

red were more often selected as discriminatory between chromosomal and plasmid contigs. 
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Figure 6. Comparison of RFPlasmid performance with existing tools.  

Shown are the OOB performance and prediction performance in percentages, calculated as 

basepairs predicted divided by the total basepairs for each plasmid correct, chromosome 

correct, chromosome incorrect and plasmid incorrect classified contig. (A) Chart including 

correctly identified chromosomal contigs and (B) Chart excluding correctly identified 

chromosomal contigs. 

 

 

 

Table 1.  Assemblies of the developed training data sets 

Species 

Number of 

chromosomes 

Number of 

Plasmids  

Number of generated contigs  

for training 

(c – p) 

Total number of 

basepairs 

Bacillus 377 291 20055 

(15736 – 4319) 

1.77E+09 

Borrelia 28 23 1564 

(110 – 1454) 

3.32E+07 

Burkholderia 211 47 26256 

(25139 – 1118) 

1.48E+09 

Campylobacter 197 406 5423 

(3652 – 1771) 

3.42E+08 

Clostridium 100 46 6537 

(6044 – 493) 

4.09E+08 

Corynebacterium 166 63 4614 

(4350 – 264) 

4.31E+08 

Cyanothece 5 6 634 

(399 – 235) 

2.95E+07 

Enterobacteriaceae 151 2297 28544 

(13621 – 14923) 

9.07E+08 

Enterococcus 57 44 6270 

(3693 – 2576) 

1.73E+08 

Lactobacillus 206 110 19412 

(15610 – 3802) 

5.17E+08 

Lactococcus 37 76 3423 

(2104 - 1319) 

9.04E+07 

Listeria 142 73 2685 

(2371 – 200) 

4.24E+08 

Pseudomonas 254 42 18645 

(17636 – 1009) 

1.58E+09 

Rhizobium 52 51 4241 

(1573 – 2668) 

3.50E+08 

Staphylococcus 247 136 9124 

(7763 – 1361) 

6.81E+08 

Streptomyces 82 64 6449 

(6357 – 92) 

7.03E+08 

Vibrio 123 41 11265 

(10282 – 983) 

5.91E+08 

Metagenomics / 

bacteria 

2958 3937 222723 

(194597 – 28126) 

1.19E+10 
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