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Background. Ginsenoside Rg1 is amajor component of ginsengwith antioxidative and antiaging effects, which is a traditional Chinese
medicine. In this study, we investigated the potential spillover and mechanism of action of Rg1 on LiCl-driven hematopoietic stem
cell aging. Results. Collect the purified Sca-1+ hematopoietic cells for differentiation ability detection and biochemical and molecular
labeling. )e experiment found that Rg1 plays an antiaging role in reversing the SA-β-gal staining associated with LiCl-induced
hematopoietic stem cell senescence, the increase in p53 and p21 proteins, and sustainedDNAdamage. At the same time, Rg1 protects
hematopoietic cells from the reduced differentiation ability caused by LiCl. In addition, Rg1 increased the excessive inhibition of
intracellular GSK-3β protein, resulting in the maintenance of β-catenin protein levels in hematopoietic cells after LiCl treatment.
)en, the target gene level of β-catenin can be maintained. Conclusions. Rg1 exerts the pharmacological effect of maintaining the
activity of GSK-3β in Sca-1+ hematopoietic cells, enhances the antioxidant potential of cells, improves the redox homeostasis, and
thus protects cells from the decline in differentiation ability caused by aging. )is study provides a potential therapeutic strategy to
reduce stem cell pool failure caused by chronic oxidative damage to hematopoietic stem cells.

1. Background

Adult stem cells have great potential for clinical application
because of their multidirectional differentiation ability and
easy acquisition. Hematopoietic stem cells (HSCs) are the
most well-studied and most mature adult stem cell. Au-
tologous and allogeneic hematopoietic stem cell trans-
plantation (HSCT) has made remarkable progress in the
treatment of malignant tumors of the blood system and
other systems, autoimmune diseases, and genetic diseases,
which has greatly promoted the treatment of these diseases,
but morbidity and mortality associated with HSCT is still

significant [1–4]. A common point in the pathogenesis of
HSCT-related morbidity and mortality is the production of
reactive oxygen species (ROS).

ROS is formed as a natural byproduct of the normal
metabolism of oxygen and plays an important role in cell
signaling and homeostasis [5]. However, elevated ROS above
the normal concentration will seriously damage the cell
structure due to oxidative stress (OS) and DNA damage
[6–9]. HSCs exposed to elevated ROS exhibit altered
characteristics and undergo proliferation and differentiation
after mobilization to oxygen-enriched blood flow, but this
will cause the hematopoietic stem cell pool to be reduced/

Hindawi
Evidence-Based Complementary and Alternative Medicine
Volume 2022, Article ID 2875583, 10 pages
https://doi.org/10.1155/2022/2875583

mailto:ypwangcq@aliyun.com
https://orcid.org/0000-0001-6122-2756
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/2875583


depleted [10–12]. )erefore, it is very important to under-
stand the oxidative stress of hematopoietic stem cell aging.

Lithium chloride is commonly used to treat bipolar
disorder. Research reports that LiCl treatment causes ROS
accumulation to induce lipid accumulation [13]. LiCl can
also inhibit the proliferation of primary schwannoma cells
by transplanting the expression of apoptosis-related proteins
[14]. However, the role of LiCl on hematopoietic stem cells
has not been reported. In this study, LiCl was used to trigger
oxidative stress to simulate the aging and damage envi-
ronment of hematopoietic stem cells. Ginseng is a traditional
Chinese medicine with antiaging, antioxidant, and anti-
inflammatory effects. Ginsenosides play a major pharma-
cological role in various active ingredients of ginseng, among
which Rg1 is the most active representative ingredient [15].
Previous literature reported that Rg1 has antiaging and
antioxidative stress effects in multiple organs [16–19]. In this
study, we found that Rg1 can relieve hematopoietic stem cell
aging, inhibit oxidative stress, and protect hematopoietic
stem cell differentiation. )e mechanism may be related to
regulating GSK-3β activity and regulating DNA damage.

2. Materials and Methods

2.1. Animals. C57BL/6 mice, 6–8weeks old, were purchased
from the Medical and Laboratory Animal Center of
Chongqing (qualified number is SCXK yu (007-0001)) and
housed in a temperature- and light-controlled room with
free access to water and food. All experiments with the mice
were performed in accordance with the institutional and
national guidelines and regulations and approved by the
Chongqing Medical University Animal Care and Use
Committee.

2.2. Reagents. Ginsenoside Rg1 (purity >95%) was pur-
chased from Hongjiu Biotech Co, Ltd. (Tonghua, China).
Lithium chloride (purity >95%) was purchased from Tianjin
Chemical Reagent Factory (Tianjin, China). IMDM me-
dium, fetal bovine serum (FBS), and equine serum (ES) were
purchased from Gibco (CA, USA). )e anti-Sca-1+ Micro
Bead kit was purchased fromMiltenyi Biotech Co. (Bergisch
Gladbach, Germany). )e SA-β-gal Staining kit was pur-
chased from Cell Signaling (Boston, USA). )e CFU-mix
culture media was purchased rom Stem Cell Co. (CA, USA).
)e ROS kits were purchased from Beyotime Biotechnology
(Shanghai, China). )e polyclonal rabbit anti-mouse P53,
P21Cip1/Waf1 antibody, and goat anti-rabbit antibody were
purchased from Proteintech (Chicago, America). )e
monoclonal rabbit anti-mouse β-catenin, GSK-3β, TCF-4,
and c-H2AX antibody were purchased from Cell Signaling
Technology (Boston, America).

2.3. Isolation and Purification of Stem Cell Antigen 1 (Sca-1)+
HSC/HPCs from the Mouse Bone Marrow. After the mice
were sacrificed by cervical dislocation, the femur and tibia
were collected to obtain a suspension of bone marrow
mononuclear cells. HSC/HPCs positive for Sca-1+ were
isolated and purified by magnetic-activated cell sorting

(MACS) [20]. )e percentage of Sca-1+ HSC/HPCs was
analyzed before and after the separation.

)e Sca-1+ HSC/HPCs were divided into four groups:
the control group: the cells were grown in IMDM medium
(Waltham, MA, USA); Rg1-administration group (Rg1
group): the cells were treated with Rg1 (10−2mmol/L) dis-
solved in IMDM; LiCl-administration group (LiCl group):
the cells were treated with LiCl (10mmol/L) dissolved in
IMDM; and LiCl-administration plus Rg1 treatment group
(LiCl + Rg1 group): the cells were treated with Rg1
(10−2mmol/L) and LiCl (10mmol/L) dissolved in IMDM.
All the cells were grown in a humidified atmosphere at 37°C
with 5% CO2. After 48 h, the Sca-1+ cell obtained were used
for subsequent experimental measurement.

2.4. Mixed Colony-Forming Unit (CFU-Mix) of HSC/HPC
Culture. Briefly, the cell concentration was adjusted to
1× 104/L, inoculated into a 96-well plate, 2ml of CFU-Mix
complete medium was added to each well, cultured in 5%
CO2, and grown at 37°C for 7 days. )e number of colony
formations indicates the pluripotency of Sca-1+ HSC/HPC
[20].

2.5. Senescence-Associated β-Galactosidase (SA-β-Gal) Cyto-
chemical Staining. )e cell concentration was adjusted to
1× 105, washed twice with PBS, fixed at room temperature
for 10mins, washed twice with PBS, and stained with
staining solution for 12 h at 37°C. Each group was randomly
analyzed for 400 cells, and the number of blue positive cells
was counted. )e percentage of SA-β-gal-positive
cells� number of blue cells/total number of cells.

2.6. Immunofluorescence Staining. )e cell concentration
was adjusted to 1 × 104, 20–30 μL of cell suspension was
applied to the slide, and allowed to dry. 4% parafor-
maldehyde was fixed at room temperature for 10mins,
TBS was washed twice, 10% goat serum was blocked at
room temperature for 1 h, and β-catenin (1 : 100), GSK-3β
(1 : 100), and c-H2AX (1 : 100) antibody was kept at 4°C
overnight. TBS was washed twice and Cy3-labeled goat
anti-rabbit IgG (1 : 300) was incubated for 1 h at room
temperature in the dark. DAPI counterstained nuclei.
Imaging was performed by fluorescence microscopy
(LSM510; Carl Zeiss, Jena, Germany).

2.7. Western Blotting Analysis. Total protein was extracted
and the concentration was measured using the BCA pro-
gram. )e loading was 50 μg. )e sample was separated by
SDS-PAGE and transferred to a PVDF membrane. Anti-
β-catenin, GSK-3β, TCF-4, P53, P21, β-actin, and Histone
2A were incubated overnight at 4°C.)e TBSTwas washed 3
times and the secondary antibody (diluted 1 : 5000 in TBST)
incubated at room temperature for 2 h. )e chem-
iluminescence detection system (Bio-Rad) detected the
amount of protein. β-actin and histone 2A were used as
internal controls for cytoplasmic and nuclear proteins,
respectively.
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2.8. Measurement of ROS Level. ROS levels were measured
using a kit (Beyotime Biotechnology Research Institute,
Shanghai, China) probe (DCFH-DA). )e concentration
of each group of cells was adjusted to 1 × 106, and the 2′,7′-
dichlorofluorescein diacetate (DCFH-DA) probe was
incubated in a cell incubator for 20mins. ROS levels were
determined using flow cytometry and laser scanning
confocal microscopy (LSM510, Carl Zeiss, Jena,
Germany).

2.9. Oxidation Damage Mark Analysis. According to the
instructions provided by the reagent, the oxidation and
oxidation level of cell lysis samples were measured using a
CAT assay kit, a SOD assay kit, and a MDA assay kit
(Beyotime).

2.10. RNA Extraction and Real-Time Quantitative RT-PCR.
Control group (n� 3), cells were untreated. Experimental
groups (n� 3), cells treated with Rg1 or LiCl. RNA was
extracted immediately with RNAiso Plus (Takara) after the
cells were treated. After nucleic acid quantification (DEPC
water adjust concentration to 1000 ng/μl) and contamina-
tion assessment with NanoDropOne/Onec UV-Vis ()ermo
Fisher Scientific), total RNA was extracted and reverse
transcribed into cDNA using Takara’s extraction kit and
reverse transcription kit (42°C, 2min; 37°C, 15min; 85°C,
5 s). Real-time PCR was performed using the BIO-RAD
Sequence Detection System (FX96) (Bio-Rad, Inc., Pleas-
anton, CA, USA). β-actin was used as the internal reference
gene. )e reaction system (10 μl) includes SYBR® Premix
Taq™II (2×) (5 μl), forward primer (0.1 μl), reverse primer
(0.1 μl); cDNA (2 μl), and RNase-free dH2O (2.8 μl). )e
reaction conditions are 95°C 30 s; 95°C 5 s, 60°C 30 s, and
circle 40 times. )e 2−ΔΔ Cq method was used to determine
the relative level of mRNA. ΔCq�Cq (destination gene) −

Cq (interior gene) and ΔΔCq�ΔCq (sample, Rg1 group,
LiCl group, and Rg1 + LiCl group) − ΔCq (sample and
control group). Each group was set up with 3 multiple holes
and repeated 3 times. )e PCR primers used are provided in
the supporting information (Shanghai Freight Biological
Engineering Co., Ltd) (Table 1).

2.11. Statistical Analyses. )e SPSS 19.0 software (SPSS Inc.,
Chicago, IL, USA) was used for statistical analysis. )e data
are represented by the mean± SD. Comparisons were made
using one-way ANOVA and LSD tests. A difference of
P< 0.05 was considered significant. All experiments were
independent of three times.

3. Results

3.1. Ce Purity of Sca-1+ HSC/HPCs. )e extracted bone
marrow mononuclear cells were purified using MAC. )e
purified cells were detected for their surface antigen marker
Sca-1 using flow cytometry, and cell viability was detected
using the trypan blue exclusion method. )e results showed
that the proportion of Sca-1+ HSC/HPCs increased from

9.17%± 1.06% to 83.32%± 2.57% (Figure 1), and the cell
survival rate did not change significantly to 98.2%± 1.4%. It
is suggested that the MAC method can separate and purify
hematopoietic stem cells with good activity and purity,
which lays the foundation for the next experiment.

3.2. Rg1 Protected Cells against LiCl-InducedOxidative Stress.
High levels of ROS can cause loss of HSC functionality. With
LiCl process, the fluorescence of DCFH ROS increased sig-
nificantly, and Rg1 attenuated the increase of ROS levels
(Figures 2(a) and 2(b)). )e expression of various antioxidant
stress kinases can reflect the intracellular ROS damage;
therefore, the activity of superoxide dismutase (SOD), catalase
(CAT), and the content of malondialdehyde (MDA) were
measured. Compared with the control group, LiCl significantly
reduced the activities of antioxidant enzymes SOD and CAT
and increased the content of MDA; however, Rg1 treatment
improves the activity of antioxidant enzymes and reduces lipid
oxidation products compared with the LiCl group
(Figures 2(e)–2(g)).

)e nuclear damage situation was further analyzed. )e
nuclear damage marker c-H2A.X was used to evaluate the
nuclear damage of hematopoietic stem cells. Compared
with the control group, the expression of c-H2A.X was
increased in the LiCl group. After Rg1 treatment, the ex-
pression level of c-H2A.X was significantly lower than that
of the LiCl group (Figures 2(c) and 2(d)). In summary, the
oxidative stress induced by LiCl in hematopoietic stem cells
caused nuclear damage, while Rg1 treatment improved the
damage.

3.3. Rg1 Protected Cells against LiCl-Induced Senescence.
)e condition of cell senescence can be detected by SA-β-gal
staining, and positive cells are stained blue. Figures 3(a) and
3(b) shows that the number of SA-β-Gal-positive cells in the
LiCl-treated group is large, and the staining is deep. After Rg1
treatment, the number of positive cells in the Rg1+LiCl group
decreased and the staining became lighter. p53 and p21Cip1/
Waf1 are important markers of cellular senescence damage. As
shown in Figures 3(c) and 3(d), p53 and p21Cip1/Waf1 protein
expression was significantly enhanced in the LiCl group, while
the LiCl +Rg1 group was lower than the LiCl group. )e
situation of mRNA expression is the same as that of protein

Table 1: Primers used in real-time quantitative PCR.

p53 Forward 5′-CACGTACTCTCCTCCCCTCAA-3′
Reverse 5′-GGCTCATAAGGTACCACCACG-3′

p21 Forward 5′-ATTCCTGGTGATGTCCGACC-3′
Reverse 5′- AAAGTTCCACCGTTCTCGG-3′

β-catenin Forward 5′-CAAGAAGCGGCTTTCAGTCG-3′
Reverse 5′-CAGATCAGGCAGCCCATCAA-3′

c-myc Forward 5′-AGGTGTGATATCCGGTAGA-3′
Reverse 5′-CCTTCTAAGTGGTTGGAACA-3′

cyclin D1 Forward 5′-AGCTCCTGTGCTGCGAAGTGGAAAC-3′
Reverse 5′-AGTGTTCAATGAAATCGTGCGGGG-3′

β-actin Forward 5′-GCTACAGCTTCACCACCACAG-3′
Reverse 5′-GGTCTTTACGGATGTCAACGTC-3′
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Figure 1: Expression of Sca-1+ in separated and purified cells. By further using adhesion magnetic beads purification, 83.32% of Sca-1+

HSC/HPCs was also obtained, which was 74.15% higher than the purity without purification. (a-1, b-1) merged picture of light microscope
and Sca-1+ (green) fluorescent staining. (a-2, b-2) Sca-1+ (green) fluorescent staining. (a) Without purification. (b) Purified cells,
Bar� 50 μm.
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expression (Figure 3(e)). )ese results indicated that nuclear
damage caused by LiCl leads to aging changes in hemato-
poietic stems cells, and Rg1 protects cells from damage.

Notably, it is demonstrated for hematopoietic stems cells
that aging contributes to impaired differentiation ability.
Colony-forming capacity can react with the multidirectional
differentiation properties of HSCs; as the HSCs age, the

capacity to form CFU-Mix is gradually reduced. )erefore,
we tested the ability of HSCs to form CFU-Mix. As shown in
Figures 3(f ) and 3(g), compared with that of the control
group, there were much fewer CFU-Mix colonies and much
fewer cells in each colony in the LiCl group. However, in the
LiCl +Rg1 group, the number of CFU-Mix colonies was
increased compared to the LiCl group.
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3.4.Rg1EnhancesGSK-3βActivity andReducesWntSignaling
Pathway Expression. In order to clarify the problems as-
sociated with GSK-3β in LiCl-induced hematopoietic stem
cell oxidative damage and Rg1 protection, we evaluated the
protein level of GSK-3β. Immunoblotting (Figures 4(b) and
4(c)) and immunofluorescence (Figure 4(a) showed that the
expression of GSK-3β was significantly decreased in the LiCl
group. )e Wnt pathway is very important and highly
conserved in the regulation of stem cell growth. Subse-
quently, β-catenin was found to increase in the LiCl group
(Figures 4(d)–4(i)). Followed that decrease in β-catenin
targeted genes TCF-4, cyclin D1 and c-myc were found in
the LiCl group whereas elevation of TCF-4, cyclin D1, and
c-myc was demonstrated in the LiCl +Rg1 group
(Figures 4(j)–4(l)). )ese results indicate that the Wnt
pathway may be involved in D-galactose LiCl-induced ox-
idative stress, nuclear damage, and hematopoietic stem cell
aging. Rg1 plays a role in β-catenin upregulation to enhance
cellular antioxidative potential meanwhile to alleviate lipid
peroxidation, and to keep metabolic homeostasis, also to
stabilize cell differentiation ability which may be the
mechanism for protection of hematopoietic stem cells from
aging and exhaustion of the stem cell pool.

4. Discussion

Hematopoietic stem cells (HSCs) are adult stem cells (ASCs)
with multidirectional differentiation and self-renewal
[21–23]. Hematopoietic stem cells can be isolated based on
different physical properties (size and density), biochemical
properties (enzymatic) [24], and surface antigen profiles
[25, 26]. Sca-1 is widely regarded as a marker of mouse HSC
and can be expressed on pluripotent HSCs. In this experi-
ment, immunomagnetic bead sorting [27] was used to isolate
hematopoietic cells positive for surface antigen Sca-1. )e
following flow cytometry was used to identify the purified
cells. )e successful sorting of hematopoietic stem cells has
laid the foundation for subsequent research in cell biology.

HSC is very sensitive to the redox state of cells, so, the
bone marrow cell niches where HSCs are present are
hypoxic [28]. ROS refers to O2-free radicals and non-free
radical derivatives that are produced during normal
physiological processes which can regulate stem cell fate
[29–31]. Furthermore, ROS can also directly modify
metabolic enzymes [32] and various proteins [33] to
participate in the regulation of stem cell metabolism. In
this experiment, the intracellular ROS level of LiCl-treated
cells was significantly increased, and Rg1 reversed this
increase. In addition, ROS can attack DNA and lead to
DNA double-stranded breakage (DBS) which activates
ataxia telangiectasia mutated (ATM) [34, 35] and DNA-
PKcs [36, 37] to form gamma-H2AX. )erefore, we
measured the expression of H2AX protein to evaluate the
effect of ROS on hematopoietic stem cells. )e results
showed that Rg1 alleviated the increased expression of
c-H2AX in hematopoietic stem cells caused by LiCl.

Otherwise, oxidative stress is triggered by an imbalance
between ROS production and antioxidant defense. )e
“aging theory,” especially the “oxidative inflammatory aging

hypothesis”, is closely related to oxidative stress. Oxidative
stress biomarkers can be used as diagnostic tools or treat-
ment goals. Cells contain multiple types of ROS scavengers
(antioxidant enzymes) [38–40], which help prevent the
excessive accumulation of ROS and repair oxidative damage
to cells. )erefore, we detected superoxide dismutase (SOD)
[41], catalase (CAT) [42], and glutathione peroxidase (GSH-
px) [43]. )e results suggested that Rg1 could enhance the
activity of antioxidant enzyme and improve the ROS
scavenging ability caused by LiCl. )ese preliminary results
suggest Rg1 can resist oxidative damage by reducing cellular
ROS levels and increasing antioxidant enzyme expression.
Aging research and ROS have been closely linked since
Harman (1972). )e studies [44, 45] found that antioxidants
increase cell proliferation and reduce cell senescence by
reducing ROS, decreasing DNA damage, and reducing p16/
Rb and p53/p21 signaling pathway. In addition, P21 and Akt
regulate cell cycle arrest and ROS levels in aging-fibroblasts
[46, 47]. Here, it was found that the p53 and p21 proteins in
hematopoietic stem cells were significantly higher in the
hematopoietic stem cells after LiCl treatment. Rg1 treatment
reverses the increased protein expression caused by aging.

Aging has a variety of adverse effects on the hema-
topoietic system. Studies have shown that the anemia [48],
immune system disorders [49], myelodysplastic syndrome
(MDS) [50], and myelodysplastic disease (MPD) [51] are
closely related to age. Previous studies have confirmed
that ginsenoside Rg1 plays a role in antiaging [52], an-
tioxidant, immune improvement, and neuronal growth
through different targeted pathways. Ginsenoside Rg1
improves hepatic gluconeogenesis [53], promotes cerebral
blood vessel formation in ischemic mice, and relieves
cognitive impairment in aging mice through Akt signaling
[54]. )e Nrf2 signaling pathway [55], mTOR signaling
pathway [56], TGF-β1 signaling pathway [57], and NF-κB
signaling pathway [56] may be interfered by Rg1, and
target myocardial cells, podocytes, thereby preventing
renal fibrosis [55], nerve ischemia perfusion injury [56],
and lung fibrosis [57]. As regard as hematopoietic stem
cells, research studies spotlighted on protective effects of
Rg1 via reduction in oxidative stress and regulation of
SIRT6 signaling pathway [58] and PI3K pathway [59]. In
this experiment, we focussed on the Wnt pathway. )e
Wnt signaling pathway is highly conserved in evolution
and regulates the maintenance and differentiation of stem
cells. )e results show that Rg1 protects hematopoietic
stem cells from LiCl-induced oxidative stress may be
related to the Wnt pathway, but considerably more work
will need to be done to determine the target of Rg1. )is is
a worthy in-depth study, and we will consider it in the
next research direction. Here, this study shows that it is
now a realistic possibility to eliminate senescence of
hematopoietic stem cells and restore cell differentiation
through pharmacology. Ginsenoside Rg1 protects the
effects of senescence of hematopoietic stem cells and
reduces oxidative damage in the cells. Most importantly,
this study provides new ideas for the clinical application of
ginsenoside Rg1 to assist in the treatment potential of
hematopoietic stem cells.
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