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Abstract— This paper describes a cognitive map building
and navigation system using an RGB-D sensor for mobile
robots. A brain-inspired simultaneously localization and map-
ping (SLAM) system, that requires raw odometry data and
RGB-D information, is used to construct a spatial cognitive
map of an office environment. The cognitive map contains
a set of spatial coordinates that the robot has traveled. A
global path is extracted from the built cognitive map and
subsequently used by a local planner to instruct the robot to
navigate. The global path is a subset of the path that builds up
the cognitive map. This is different from other path planning
mechanisms that construct a path based on a ground-truth map.
Experiment results show that the employment of the RGB-D
sensor significantly improves the mapping results.

I. INTRODUCTION

Spatial cognition is the basic ability of mammals to

perform cognitive tasks including exploration, map building,

localization, and navigation in an environment. The study

of spatial cognition has gained a fast-paced development

since the past decades, which can be attributed to a shared

idea from various disciplines such as psychology and neuro-

science [1], [2], [3], [4], [5]. A concept called cognitive map,

which is used to acquire spatial knowledge and represent the

various topological relationships, has been brought forward.

This concept has enhanced the study of various topics in

robotics such as obstacle avoidance, dead-reckoning, self-

localization, mapping, and path planning [6].

To navigate freely and safely in an environment, a robot

should be endowed with an ability to interpret a physical

world. This can be achieved by providing a representative

map of the physical world to the robot. It has been observed

that humans do not need to recall all the details of the

environment and can navigate rather effortlessly. Though

the underlying principles of how humans navigate is still

unclear, it can be safely claimed that the navigation of

humans is not completely based on a detailed world model,

but also involves path planning based on their own previous

experiences. Thus, this logically questions the underlying

need to build the ground-truth map for robotic navigation.

As such, RatSLAM, a brain-inspired SLAM algorithm [7],

which constructs a cognitive map using the information of

the path traveled in its previous experiences, is of our interest.
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Today, the release of a new generation of sensing tech-

nology, RGB-D sensor in particular, has enhanced videos

quality in both color and depth with comparatively inexpen-

sive computational power. This provides an opportunity to

dramatically improve the capabilities of robot systems. Many

researchers are now focusing on how to construct a perfect

physical world utilizing the depth information through map

stitching and loop closure. Impressive results have been

achieved [8]. Even though it is able to construct a good 3D

map, it is computationally expensive and not suitable for

real-time robot navigation.

In this paper, we employ an RGB-D camera as a visual

sensor which is able to build a more compact and accurate

spatial cognitive map in indoor environments. The RGB-D

information and raw odometry data are used for map building

based on RatSLAM. The map does not record the details of

the environment, instead is presented by a set of spatial coor-

dinates that the robot has experienced in its past travels. We

also demonstrate that the robot is able to navigate the office

environment in real-time by following the path generated

by a global planning module. This path is a subset of the

route mapped by the robot during its mapping stage. Thus,

extracting a global path for navigation is computationally

inexpensive. The experimental results show that the mapping

using an RGB-D sensor and navigation utilizing the global

path extracted from the constructed map are promising.

This paper is organized as follows. Section II introduces

related work. Section III describes our robot platform and re-

lated tasks. Technical details are given in Section IV. Section

V describes the implementation details with experimental

results. Finally, conclusion is given in last Section.

II. RELATED WORK

Place cells which are located in the hippocampus residing

in the temporal lobe of the brain give evidence that a

cognitive map exists in human brain [2]. After the discovery

of grid cells in the dorsocaudal medial entorhinal cortex[4],

extensive research analysing their properties has been car-

ried out and computational models have been proposed to

describe the brain-based spatial navigation mechanism. One

of the most famous models, based on continuous attractor

network (CAN), was proposed by McNaughton et al. [5].

Milford and Wyeth have successfully applied this com-

putational model to build cognitive maps in a large area

(RatSLAM) [7]. It is able to build the map of a suburb with

a monocular camera. Thereafter, it has been served as a core

component for any persistent mapping and navigation system

on a mobile robot equipped with a panoramic camera [9].

Furthermore, it is an appearance-based SLAM system, which
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can filter out random false positives to guarantee a successful

loop closure.

Another notable work on appearance-based SLAM is

FAB-MAP [10], [11]. FAB-MAP does not rely on a filter, but

depends on the accurate comparison derived from speeded

up robust features(SURF) descriptors. A combination of

the RatSLAM and FAB-MAP significantly improves the

robustness of the mapping system [12].

In recent years, RGB-D sensors have been introduced

to robotics in various domains. In virtue of the rich depth

information, the RGB-D sensor has been applied to many

indoor SLAM algorithms [13], [14], [8]. These RGB-D based

algorithms are based on visual features to match the images

and calculating the transformation using RANSAC. Finally

the RGB-D images are stitched together to form a whole 3D

map of the physical environment.

Although many individual topics have been well studied,

building an integrated system that involves a mapping to nav-

igation modules is still a difficult task due to the complicated

system design, the uncertainties in a real world, and many

other practical issues. The navigation stack [15] aims for a

general navigation purpose and has been shown that it is

smooth and robust in a real office environment.

III. PLATFORM AND TASKS

A. Robot Platform

NECO-II is a mobile robot, which is equipped with

a Pioneer 3-DX mobile base, an RGB-D Sensor, a TP-

LINK wireless router for client-master communication, and a

PC/104 embedded computer. The physical views of NECO-

II are shown in Figure 1. The Pioneer 3-DX mobile base

consists of two front wheels and a supporting back wheel for

stabilization. The front wheels are equipped with encoders

that records the distance traveled. The maximum speed of

this mobile base is set to 0.4 m/s.

Fig. 1. Physical views of NECO-II.

An RGB-D sensor is mounted on the front-top of the Pio-

neer 3-DX mobile base. This sensor features as a camera as

well as a fake-laser pointer in a point cloud stream. NECO-

II is developed on the well-known robotic platform, i.e.,

Robot Operating System (ROS). Three computers construct

the whole mapping and navigation platform for NECO-II.

A PC/104 mounted inside the Pioneer 3-DX mobile base,

running Ubuntu 12.04, is the ROS master that connects

directly to input sensors. A laptop, running Ubuntu 12.04,

is a client that subscribes to the topics published by the

ROS master. It is used for process visualization and target

location assignation. Another laptop, running Window XP,

is another client that communicates with the ROS master

through TCP/IP. The brain-inspired SLAM algorithm runs in

this computer. Both client computers communicate through

TCP/IP for global and local coordinate frame matching.

B. Tasks Description

Three main tasks are performed by a robot system, hence-

forth referred to Neural Cognitive Robot II (NECO-II), a

successor of NECO-I [16], [17], [18].

First, NECO-II is required to build a map of an office

environment. Specific features in the office space are memo-

rized through the map building process. These features serve

as cues for loop closure as well as keys for spatial recog-

nition. One of the Research Institute’s office in Singapore,

the ninth floor Connexis north tower of the Fusionopolis

building, is used for the purpose of experiment. This is a

typical office which mainly consists of working cubicles,

chairs, tables, passageways, and dynamically moving people.

The environment is kept in its original state without any

rearrangement. The main challenge of this environment is

that the visual frames of the features captured by NECO-II

may be different from time to time as people are captured

during the experiments. This may compromise the robustness

of the system built as no advanced image processing methods

are used because of requirement of real-time performance

for a mobile robot system. NECO-II may fail to recognize

a particular spatial coordinate in case it is not able to match

the current view templates with its memorized cues.

Second, given a target destination, NECO-II is required

to plan a global path connecting its current location and

the final goal destination. The final goal destination can be

any obstacle-free locations in the map. In order to plan the

path, NECO-II has to localize itself and determine its current

location. The path is also required to be the shortest path

identified in the cognitive map.

Third, by following the guide of the global path, NECO-II

is required to safely navigate from its current coordinate to

the final goal location. That is to say that NECO-II needs

a fast response mechanism to avoid obstacles, a capability

to fit itself to a narrow path, and a reliable path following

paradigm.

IV. METHODS

In this section, we describe the related methods used in

our robot system in detail.

A. Overall Architecture

Figure 2 shows the architecture of the mapping and

navigation system. Image information from a Xtion camera,

odometry from the mobile base, and a goal destination

decided by a user are the input data to the system. The

visual templates from the Xtion camera as well as the raw
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Fig. 2. System architecture.

odometry data from the mobile base are used to built the map

which is then used by a global planner for path planning.

The localization module matches the visual templates from

the Xtion to the features observed in the map in order to

determine the robot’s current position. The local planner

generates a velocity command if it is obstacle free. The task

execution stops when the goal destination is reached or the

timeout is activated.

B. Visual Processing

The RGB-D sensor provides the color image and depth

image for a brain-inspired appearance-based SLAM system.

It is difficult to perform an appearance-based SLAM in an

environment with uniform furniture and similar decorations

using a single RGB camera. Taking advantages of the depth

measurements, which can avoid ambiguity caused in 2D

images and it is invariant to lighting conditions, many

similar indoor scenes become distinguishable. Therefore, it

is possible to perform an appearance-based mapping for a

challenging office environment. Both of the RGB image

and depth information are converted to 8-bit mono images,

shrunk to smaller size (from 640 × 480 pixels to 320 ×

240 pixels) for real-time purpose, and then changed into

scanline intensity profiles. A comparison between the profiles

is performed for each pair of incoming RGB and depth

frames. If the current profiles match previously seen profiles,

it is considered as an old scene which has been seen again.

Otherwise, a new visual template is created. The image

comparison plays an important role in loop closure.

Figure 3 shows several mono images of processed RGB

(upper) and depth (bottom) images of the office environment.

This environment is challenging for a SLAM system as

it is highly dynamic and consists of many near-similar

views in different locations. The depth images which provide

important features for image comparison may reduce the

false positive comparison.

The RGB-D sensor also works as a range finder by

transforming the depth information to point cloud stream.

The point cloud stream is used for obstacle detection when

navigating the office environment. Though the angle of view

of the RGB-D sensor is narrow compared to a laser scanner,

it can sufficiently enable the robot to perform a local path

planning.

C. Map Building

The map of the office environment is built based on

RatSLAM algorithm [7]. The core mecnahism of RatSLAM

is a three dimensional CAN [3], [5]. It is known as a pose

cell model in which the robot pose information (x, y, θ) is

encoded to cells representing positions (x,y) and direction

(θ).

The RatSLAM system takes in images and raw odom-

etry data, and generates a cognitive map which consists

of discrete individual experiences. When similar scenes are

encountered again by the robot and distance between pose

cells are with in a predefined threshold, the two experiences

are considered as the same and a loop closure will be

performed. The pose cells guarantee that a false positive

image comparison result can be filtered out and a leap in

pose cell activities happens if several similar scenes are

continuously seen even with the accumulated odometric

errors. Once the loop is closed, the map will be corrected to

adjust the positions of the experiences.

D. Localization

In robotics, global localization is used to localize a robot

from a random starting position within a familiar environ-

ment. It is an essential part of a robot mapping and navigation

system.

In this work, an additional global localization phase is

employed. In this phase, the map remains unchanged. The

activities of the pose cell are updated based on visual inputs

only. After re-initialization, the robot restores to its previous

status and enters the global localization phase. If a previous

experience is matched, the global localization phase ends.

E. Global Planner

The generation of the global path is based on the cognitive

map built by RatSLAM. It is a subset of the experienced path

that NECO-II has traveled during the map building process.

Each path is denoted as an array of points P = (p1, ..., pn),
n is the number of points which represents the coordinate

frame pi = (px
i , p

y
i ) in the experience map.

In most cases, the cognitive map may have several paths

linking the current and goal locations. Some paths are

relatively close to each others as more than one path may

be generated in the same passageway. A temporal map is

constructed to mate the paths that are within dm. This is done
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Fig. 3. Examples of RGB and depth images of the office environment.

by taking average of the coordinate points that are within a

distance dm. Each point in the map is then assigned an index

(I = (I1, ..., In)) for path planning. It should be noted that

the points that are within the distance dm are assigned a

same index.

The global path linking the current location (Lstart) and

goal destination (Lgoal) is a sub-route in P . The index for

Lstart (Istart), is assigned as the index of a point in P (Ia)

that has the closest distance to Lstart. Similarly, the index

for Lgoal (Igoal) is the index of point in P (Ib) that has the

closest distance to Lgoal. The indices for the global path is

denoted as:

Iglobal = (Istart=a, Istart+1, ..., Igoal−1, Igoal=b)

We perform the shortest path search that returns a path

with the shortest distance connecting both coordinates. The

path is then published over the ROS and the local planner

will subscribe it before navigation process starts. A trans-

formation mechanism is then executed to convert the global

coordinate frame of the experience map space to the local

coordinate frame of the robot-centered real environment. The

navigation stops when the goal destination is reached within

offset distance do.

F. Local Planner

The local planner creates a local path, connecting the

current location to a local goal destination, that follows the

global path closely. It generates the velocity commands to

drive NECO-II to navigate in an indoor environment. For

a safe drive, local planner takes into account the obstacles

and dynamic movements of the mobile base. The detected

obstacles are stored in a costmap. It is built and maintained,

using the point cloud information, when NECO-II navigates

the environment. For a safe movement, the velocity com-

mands are generated using the dynamic window approach

(DWA) [19]. A cost function consists of variables of distance

to obstacles, distance to the global path, and motion speed

are used to generate the velocity commands. A more detailed

implementation of the local planner are referred in [15].

V. RESULTS

A. Implementation

During the map building process, we manually drive

NECO-II using a remote controller to explore the office

environment. The average motion speed is set to 0.2 m/s. The

odometry data and RGB-D streams captured from the Xtion

camera are recorded and fetched into RatSLAM. After the

completion of the map building process, the resulting map

is used for path planning and autonomous navigation with a

specified target destination. The target can be any location in

the map specified by a user. A temporal map is built, instead

of using the cognitive map, for the global path planning. In

order to construct an array of points that are at least 0.5m

apart in the global path plan, we set the dm parameter to

0.5. NECO-II is deemed to have reached its goal when it is

0.3m (do=0.3) from the target destination.

B. Mapping Results

As mentioned above, depth information provides impor-

tant features for visual templates comparison. Figure 4 shows

the frame versus view template and cognitive map generated

from RatSLAM using RGB-only information. The y-axis

is the number of visual templates and the x-axis is the

number of input images captured. As can be observed from

the figure, many false positive matches have been generated

resulting in wrong loop closures and catastrophic failures

in spatial representation. Hence, it is desirable to use RGB-

D information to generate a more accurate map. In Figure

5, the frame versus view template and cognitive map using

RGB-D information is presented. It can be concluded that

the use of RGB-D information can significantly increase the

true positive matches, resulting in correct loop closures and

spatial representations as shown in Figure 6(a). Figure 6(b)

shows that the map built directly using the raw odometry data

fails to represent the real environment due to the accumulated

errors. For comparison purpose, a map is built by gmapping

[20], as shown in Figure 6(c), in a similar environment using

the point cloud stream converted from depth information. It

has been observed that gmapping failed to perform a loop
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Fig. 6. (a) Cognitive map generated from RatSLAM using an RGB-D sensor superimposed with the real office environment (b) raw odometry data, and
(c) map built from gmapping.
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Fig. 4. (a) Frame vs view template and (b) cognitive map generated from
RatSLAM using RGB-only information.

closure and unable to construct a correct map of the office

environment.

C. Navigation Results

The global path generated from the cognitive map is shown

in Figure 7. This path is used to guide the local planner in

navigation. Figure 8 shows the navigation process visualized

in rviz [21]. The ground-truth-map, indicated by the light

grey region, is built by the gmapping module. This map is
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Fig. 5. (a) Frame vs view template and (b) cognitive map generated from
RatSLAM using RGB-D information

not used by the navigation stack and it is generated for a clear

visualization of the path traveled by NECO-II. NECO-II has

successfully navigated from the given starting location to the

goal destination following the global path obtained from our

previously built cognitive map.

VI. CONCLUSIONS

We have successfully demonstrated a robotic naviga-

tion system integrated a state-of-the-art biologically inspired
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Fig. 7. Global path generated from the cognitive map. The star point is
the current location and the square point is the goal destination.

Fig. 8. Visualization of the navigation process. The green line indicates the
global path extracted from the cognitive map. The blue line shows the local

path generated by the local planner. The footprint of NECO-II is shown in
white. The yellow and red regions are the detected obstacles.

SLAM system, revolutionary 3D RGB-D sensor, and dom-

inating robotic operating system in a computationally inex-

pensive manner. The depth information of the RGB-D sensor

has significantly improved the loop closure as well as feature

matching, which eventually yielded a better spatial cognitive

map that represents the real environment. A global path that

links the current location and target destination has been

extracted from the resulting map for navigation purpose.

Experiments have also been conducted to show the capability

of the robot to navigate by following the path obtained

from the cognitive map. The performance of the mapping

and navigation modules can be further enhanced. In the

map building process, a higher recording rate is desirable in

order to improve the experience matching results, which can

produce a more realistic map. Currently, appearance-based

image matching is used in our cognitive mapping process. A

better alternative is to use 2D/3D interest point matching to

improve the robustness under dynamic environments. With a

better map, the navigation ability can be improved.
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