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RGB-D Object Recognition and Grasp Detection

using Hierarchical Cascaded Forests
Umar Asif, Mohammed Bennamoun, and Ferdous Sohel

Abstract—This paper presents an efficient framework to per-
form recognition and grasp-detection of objects from RGB-D
images of real scenes. The framework uses a novel architecture
of hierarchical cascaded forests, where object-class and grasp-
pose probabilities are computed at different levels of an image
hierarchy (e.g., patch- and object-levels), and fused to infer the
class, and the grasp of unseen objects. We introduce a novel
training objective function which minimizes the uncertainties
of the class labels and the grasp ground truths at the leaves
of the forests, thereby enabling the framework to perform
the recognition and grasp detection of objects. Our objective
function is learnt on features which are extracted from RGB-
D point clouds of the objects. For that, we propose a novel
method to encode an RGB-D point cloud into a representation
which facilitates the use of large Convolution Neural Networks
(CNNs) to extract discriminative features from RGB-D images.
We evaluate our framework on challenging object datasets where
we demonstrate that our framework outperforms the state-of-the-
art methods in terms of object recognition and grasp detection
accuracies. We also show experiments using live video streams
from a Kinect mounted on our in-house robotic platform.

Index Terms—RGB-D object recognition, grasp detection,
robotic grasping.

I. INTRODUCTION

THe recognition and grasp-detection of objects are crucial

capabilities of an autonomous robot for visual perception

and interaction with the real world. Object recognition and

grasp detection in complex environments (e.g., in the presence

of occlusion and clutter) are considered to be highly challeng-

ing tasks due to various factors such as: the segmentation of the

visual information into object-hypotheses, the recognition of

these hypotheses, disambiguation between visually/structurally

similar objects, and the need for robustness to deal with

real-world noise (e.g., variable lighting conditions, shadows,

and noisy measurements from low cost sensors e.g., Kinect).

Humans see novel objects and almost instinctively understand

how to pick them up. Current robotic object recognition and

grasp-detection systems, on the other hand, lag far behind

the human performance levels. Given a noisy RGB-D view

of an object, this paper presents an approach to recognizing

the object and to find a valid grasp for robotic grasping. In the

following, we briefly explain the challenges, and describe the

state-of-the-art work and our proposed contributions for object

recognition and grasp-detection. Object recognition deals

broadly with two different problems: instance recognition
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and category recognition. An instance (e.g., “coffee mug”)

represents a unique object, whereas a category (e.g., “mug”)

represents instances which share similar features (e.g., shape

or structure). In instance recognition, the task is to recognize

the exact physical instance of an object which was previously

learnt during the training phase. During testing, the object may

then appear in a different setting (e.g., a different pose, in a

different scene, under different lighting or different viewpoint)

compared to the training instance. In category recognition, a

set of training images with corresponding labels is presented

offline. The labels group all object instances into a set of

categories (e.g. all instances of mugs are assigned to the label

“mug”). During testing, unseen instances of a given object

category are presented, and the task of the algorithm is to

assign the correct label to the object in the image.

Object recognition is affected by three main challenges: i)

intra-class variance due to the difference in appearance of

objects from the same category (e.g., red vs. green mug),

ii) inter-class similarity due to the similar shape of objects

from different categories (e.g., lemon vs. lime), and iii) the

recognition time and computational complexity, which gener-

ally scale linearly with respect to the number of learned object-

classes. Methods (e.g., [1], [2]) extract feature descriptors from

the training models and the test scene and use a descriptor

matching technique to determine model-to-scene point corre-

spondences which are then used to generate a specific object

hypothesis in the scene. In this context, local descriptors (e.g.,

[3]) perform well on objects with locally rich geometries or

with high textures, they do not, however, efficiently handle

simple objects with repetitive structures or objects with low/no

textures. Global descriptors (e.g., [1]), on the other hand, are

beneficial in terms of computational efficiency and memory

footprint compared to the local descriptors (since each object

is characterized by one single descriptor). However, global

descriptors are less accurate in the presence of partial occlu-

sions and require an accurate prior segmentation of the scene,

which restricts their use in scenarios where objects highly

occlude each others or in situations where an accurate prior

segmentation is not available. Other methods (e.g., [4]–[6])

use the popular Bag-of-Words (BOW) approach to quantize

local feature descriptors into visual words in a pre-defined

visual vocabulary. The generated visual words are then used

for classification. However, the feature quantization step in

most of the BOW-based methods is computationally expen-

sive and restricts their use in real-world robotic applications.

Furthermore, the loss of information during the quantization

step results in visual words which are often not discriminative

enough for large scale image classification applications [7].

Robotic grasping in real-world environments is challenging
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because it depends on the pose of the robotic gripper as well

as the structural properties of the object to be grasped. Many

recent works (e.g., [8]–[10]) treat the perception aspect of

robotic grasping as a detection/recognition problem whereby,

given a partial view of the object, the goal is to predict a

grasp rectangle that defines the pose of the gripper to grasp

the object. Specifically, the approaches in [8]–[10] extract rich

features from the image data and learn a mapping from the

features-set to grasp quality using a set of training objects.

This knowledge is then used to predict grasp rectangles for

resembling, or unknown objects. Although these approaches

have produced impressive performances in recognizing and

grasping known and familiar objects, they still struggle with

challenges including: i) the requirement to design input fea-

tures that are able to generalize to unknown objects, and ii)

overall fast runtimes. In this paper, we propose to learn rich

and highly discriminative features through transfer learning

[11] in order to improve the recognition accuracies, and

introduce a unified framework for object recognition and grasp

detection to achieve real-time runtime. Earlier versions of this

work appeared in [12] and [13], where we introduced a Cas-

caded Architecture of Random Forests (CaRFs) to recognize

object categories in RGB-D point clouds. In this paper, we

present an enhanced and extended version of CaRFs to handle

other high-level tasks such as grasp detection for objects in

real-world scenes. In addition to our work in [12] and [13],

the specific contributions of this paper are as follows:

1) We present a unified framework (see Sec. III) for the

recognition and grasp detection of RGB-D objects in

real-world scenes. For that, we propose a novel training

objective function (see Sec. VI-C), where we learn

discrete and continuous predictors based on discrete

object-class labels and continuous grasp-pose ground-

truths at different levels of the image hierarchy. The

proposed objective function decreases the uncertainties

of object-class and grasp-pose probability distributions

at the leaves of the hierarchical forests, thereby enabling

the predictions of object classes and grasp poses.

2) We introduce a novel representation of RGB-D data to

extract highly discriminative features using pre-trained

CNNs. For that, we propose a method (see Sec. V-A),

which captures the appearance and structural infor-

mation of an RGB-D point cloud through multiple

feature maps (RGB color, LAB color gradients, local

surface normals, local orientations of surface normals,

and projected distances of the points of the point cloud).

We term this representation as “STructural EMbedding”

(STEM) of RGB-D data. We show that, CNN-features

extracted using STEM feature maps yield substantial

improvements over the naive use of raw RGB-D images

for the tasks of object recognition, and grasp detection

(see Sec. IX-C).

3) We present an extensive evaluation of the proposed

framework on two challenging datasets: i) the Wash-

ington RGB-D object dataset [4] and Washington Scene

dataset [14] for object recognition, and ii) the Cornell

Grasping object dataset [15] for object recognition and

grasp detection. In experiments, we show that the pro-

posed framework produces substantial improvements in

the recognition and grasp-detection accuracies compared

with the state-of-the-art methods (see Sec. IX).

4) We present real-world robotic experiments using live

video streams from a Kinect (mounted on our in-house

robotic platform named “AIPAR”), and demonstrate the

capabilities of the proposed framework to successfully

generalize to unknown objects with success rates of

up to 93% for object recognition and 92% to execute

successful grasps (see Sec. IX-E, and our video in the

supplementary material).

II. RELATED WORK

In this section we review the related work for object

recognition and grasp detection.

A. Object Recognition

State-of-the-art methods (e.g., [4], [5], [16]) generalise the

“Bag-of-Words” (BOW) approach and combine several local

RGB and depth features for object recognition. For instance,

Lai et al. [4] used a combination of several hand-crafted

features (e.g., SIFT, color histograms, Spin Images, 3d bound-

ing boxes) in a BOW model to perform object recognition

on an RGBD object dataset [4]. In [17], kernel descriptors

were proposed, which showed higher recognition accura-

cies compared with the hand-designed feature sets on the

WRGBD object dataset [4]. Recently, Bo et al. [16] proposed

a multi-layer sparse coding approach to unsupervised feature

learning and demonstrated state-of-the-art performances in

object recognition. Their approach uses Hierarchical Matching

Pursuit (HMP) to learn hierarchical feature representations

from RGB-D images of the objects in a top-down learning

manner. Although, these sparse-coding based methods are

highly efficient in learning discriminative features, they are

computationally expensive which restricts their use in real-

time robotic applications. Our work is related to these methods

in the sense that, our framework also learns a hierarchical

image representation to recognize objects. However, instead

of using a BOW approach, we compute object-class probabil-

ities at different levels of the image hierarchy and fuse the

probabilities into a cumulative probabilistic output which is

used for the final inferencing.

B. Grasp Detection

Recently, learning-based approaches (e.g., [8], [9], [18])

have shown their ability to produce an effective performance

to grasp unknown objects [9]. These approaches extract rich

features from the image data and learn a mapping from the

features-set to grasp-quality using a set of training objects.

This knowledge is then used to predict grasps for resembling,

or unknown objects. For instance, in [9], grasp hypotheses

were learned based on a set of 2D image features (edge

and color) using synthetic data to grasp new objects. Koostra

et al. [19] presented an early cognitive system to learn the

grasping of unknown objects using edge and texture fea-

tures. Ekvall et. al. [20] used shape-based approximations to
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learn approach vectors which were used as potential grasps.

Although, learning-based approaches have shown impressive

performance in grasping known and familiar objects, these

approaches still require a significant hand-engineering effort

to design effective input features that are able to generalize

to unknown objects. Lenz et al. [8] successfully addressed

this challenge with the use of multiple CNNs for feature

representation and final classification in a sliding window

detection pipeline for grasp detection. However, their method

operates at 13.5 seconds per frame with an overall accuracy of

around 75 percent [8], [10]. This translates to a delay of 13.5

seconds between the recognition and grasp-detection of the

object. Therefore, the high computational cost of their method

restricts its use in real-time industrial applications, where a fast

response time is highly important. Recently, Redmon et al.

[21] applied a large CNN for detecting grasp candidates using

the Cornell grasp dataset [15]. Due to the small amount of

training data in the Cornell dataset, the authors pre-trained the

CNN on ImageNet (which requires several days of training)

and performed extensive augmentation (3000 times per image)

to fine-tune on the Cornell dataset. We address the same

problem as in [8], [21] but use a different pipeline for the

pre-processing of the RGB-D data and a different framework

for grasp-detection, which is capable of higher grasp detection

accuracy.

III. OVERVIEW OF THE PROPOSED FRAMEWORK

Fig. 1 shows the main steps of our proposed framework.

Given an input RGB and a depth image (Fig. 1-A), the first

step is to perform a segmentation of the scene (Fig. 1-B).

This is achieved with the use of our previous segmentation

algorithms [12], [22]–[24] (selected for their efficiency and

accuracy, though any RGB-D based superpixel algorithm can

be used). Specifically, we use the Hierarchical Pointcloud

Decomposition (HPD) algorithm in [12] (see Sec. IV) to

generate a hierarchical segmentation of the scene into mid-

level segments (termed surfels), and high-level object hypothe-

ses (termed objects). In the second step, for each object-

hypothesis (of the segmented scene), the framework generates

a STEM representation (see Sec. V-A) and extracts CNN-based

features (see Sec. V-B). In the third step, the framework uses

hierarchical cascaded forests (Fig. 1-D) to compute object

class-label and grasp-pose probabilities at the surfel- and

object-levels. These probabilities are fused into a cumulative

probabilistic output (see Sec. VI), which is used to infer the

class label and grasp-pose of the target object (Fig. 1-E).

Finally, the framework uses a grasp synthesis algorithm (see

Sec. VII) to perform robotic grasping of the target object (Fig.

1-E).

IV. HIERARCHICAL POINTCLOUD DECOMPOSITION

Our goal here is to generate mid-level surfels S , and high-

level object hypotheses O from a given point cloud. To achieve

this, we follow a two step procedure. In the first step, we

group structurally similar points (i.e., points with close 3D

proximities, and similar local- and global-orientations of their

surface normals) into distinct clusters. This is achieved with

the use of a clustering algorithm [24], where initial surfel

centers (sk, k = 1, ..., Ns instantiated on a grid space of Ns

cells as shown in Fig. 1-G), are iteratively grown into patches

S = {sk}
Ns

k=1 (see Fig. 1-H). In the second step, we combine

the surfels based on their perceptual grouping relationships

(i.e., their local shape convexity and co-planarity) [12], to

generate high-level object hypotheses O (see Fig. 1-I).

V. FEATURE REPRESENTATION

Recently, deep convolutional neural networks (CNNs) [25]

have gained a huge interest in image classification by demon-

strating state-of-the-art performance in various computer-

vision related tasks such object detection and semantic seg-

mentation [26]. With the recent widespread availability of low-

cost RGB-D sensors (e.g., Kinect), the use of RGB-D data, as

opposed to simple RGB data, has demonstrated a substantial

improvement in object recognition [27], and grasp detection

[8] performances. However, the limited amount of currently

available RGB-D-based labeled data is insufficient to train a

large CNN from scratch. To overcome this problem, we pro-

pose a method to represent RGB-D data of a given point cloud

by multiple feature channels (termed STEM representation),

which facilitate transfer learning in order to learn rich and

highly discriminative multi-modal features using large CNN

models even when the available training data is scarce (e.g.,

Washington RGB-D dataset [4], and Cornell Grasping dataset

[15]). In the following, we describe the computation of the

proposed STEM representation and the extraction of STEM-

based features at the surfel- and object-levels.

A. Proposed STructural EMbedding (STEM)

STEM encodes the appearance and structural characteristics

of an RGB-D point cloud in terms of five feature maps as

shown in Fig. 2-Left. The first feature map frgb captures the

original RGB color values of the points of the point cloud. The

second feature map flab captures the most dominant gradients

of the points in CIELab-colorspace. The third feature map

fnormals captures the local surface normals of the points of

the point cloud. The fourth feature map fangles captures the

local pose-invariant orientations of the surface normals of the

points of the point cloud. The fifth feature map fdist captures

the projected distances of the points (of the point cloud) with

respect to the centroid of the point cloud. Specifically, the

feature map flab is composed of three channels represented

by gradients (G), gradient-directions (Γ), and raw intensity

values of the L image-channel of the CIELab color image Ilab,

respectively. To build G and Γ, the algorithm first computes the

most dominant oriented gradients (∇) and gradient directions

(τ ), independently from the L, A, and B channels of image

ILAB . For a pixel i, ∇ and τ are given by:

∇i(If , σ, θ) = (va × vb)/||va × vb||,
τi(If , σ, θ) = atan2(||va × vb||,va · vb),

(1)

where If ∈ {L,A,B}, the vectors va (defined between the top

and bottom pixels to the query pixel) and vb (defined between

the left and right pixels of the query pixel) are defined in a 3D

space where their first two components correspond to the 2D
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Fig. 1. Top: An overview of the proposed framework. Given an input RGB and a depth image of the scene (A), the proposed framework first segments
the scene into surfels and objects (B). Next, for a query object (e.g., cereal box highlighted in red rectangle), the framework extracts features (C) and uses
hierarchical cascaded Random Forests (D) to perform object recognition and grasp detection (E). The inferred grasp pose is used to perform robotic grasping
(F). Bottom: Hierarchical Point cloud Decomposition (HPD) of a scene into surfels (H) and objects (I). Figure best viewed in color.
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Fig. 2. A: Our STEM encoding of a point cloud. The feature maps flab and fnormals are computed for each point with respect to its local neighbourhood,
whereas the feature maps fangles and fdist are computed with respect to the centroid of the point cloud. B: Feature extraction at different image levels. At
the surfel-level, CNN-features are computed for each surfel. At the object-level, CNN-features are computed for the entire object.

locations of the pixels and their third component corresponds

to the intensity values (at the corresponding pixel locations)

in the color channels. The term σ represents the scale and θ
represents the orientation at which the gradient is computed.

Next, the algorithm linearly combines the gradient magnitudes

and gradient directions from the three color channels into

multi-scale oriented gradient responses G and Γ, as follows:

Gi =
∑

σ

∑

If
argmaxθ∇i(If , σ, θ),

Γi =
∑

σ

∑

If
argmaxθ τi(If , σ, θ).

(2)

Finally, the feature map flab is constructed by normalizing the

G, Γ, and L values between 0 and 255.

flab = {||Gi||, ||Γi||, ||Li||} , ∀i ∈ ILAB . (3)

The feature map fangles, encodes the orientations (Φ,Ψ, and

α) of the local surface normals of the points in a point cloud

P with respect to its centroid cP . For a point pi ∈ P ,

the orientations Φ,Ψ, and α are computed with respect to

the centroid of the point cloud as in [1], but without the

viewpoint component of [1] to retain rotational invariance

(with respect to the viewpoint) which is required to build a

general representation of an object when viewed from different

viewpoints. Specifically, the orientations are computed as:

Φpi
= acos(ni · vn),Ψpi

= acos(nP · vn),
αpi

= atan2(ρ, ν), ρ = (nP × (vn × ni)) · ni, ν = nP · ni,
(4)

where ni represents the surface normal of the point pi, vn is

a normalized vector between pi and the centroid cP , and nP
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flab fangles fdistfrgb fnormals

Fig. 3. CNN activations for sample images. From left to right, the columns show the CNN responses from the first convolutional layer for the frgb, flab,
fnormals, fangles, and fdist input feature maps respectively. Note that the CNN responses are considerably different for different feature maps and therefore
provide complimentary information.

represents the surface normal of the point cloud (estimated by

taking the mean of the surface normals of all points in the

point cloud). Finally, the feature map fangles is constructed

by normalizing the Φ, Ψ, and α values between 0 and 255.

fangles = {||Φpi
||, ||Ψpi

||, ||αpi
||} , ∀pi ∈ P . (5)

The feature map fdist captures the 3D geometry of a point

cloud. It is composed of three feature channels Dλ1 , Dλ2

and Dλ3 . These channels represent the signed distances of

the points of a point cloud with respect to its centroid, along

each of the three eigenvectors (vλ1
, vλ2

and vλ3
) of the scatter

matrix of the points of the point cloud. Mathematically, Dλ1 ,

Dλ2 and Dλ3 of a point pi ∈ P are computed as:

Dλ1

pi
= (pi − cP) · vλ1

,Dλ2

pi
= (pi − cP) · vλ2

,
Dλ3

pi
= (pi − cP) · vλ3

,
(6)

Finally, the feature map fdist is constructed by normalizing

the Dλ1

pi
, Dλ2

pi
, and Dλ3

pi
values between 0 and 255.

fdist =
{

||Dλ1

pi
||, ||Dλ2

pi
||, ||Dλ3

pi
||
}

, ∀pi ∈ P . (7)

Our proposed STEM representation offers an effective and

computationally inexpensive encoding of RGB-D images. Our

hypothesis, to be borne out in experiments, is that the CNN-

based features extracted from the feature maps of the proposed

STEM representation of RGB-D data provide more discrim-

inative multi-modal information for large-scale classification

compared to the features extracted from raw RGB and depth

images. To elaborate on this, we visualize the responses learnt

by the first convolutional layer of a CNN for the output feature

maps of the proposed STEM encoding in Fig. 3. From the

figure, one can conclude that the features which qualitatively

appear in the CNN responses are considerably different for

different feature maps and therefore provide complimentary

multi-modal information during the final classification.

B. Feature Extraction

We used the CNN network of [11] to extract CNN-based

feature vectors Fcnn at the surfel- and object-levels. At the

surfel-level, Fcnn is computed for each surfel using the STEM

feature values of the points within the query surfel. At the

object-level, Fcnn is computed using the STEM feature maps

for the entire object (see Fig. 2-Right). The network of [11]

accepts a three-dimensional image of size 224×224 as input.

Therefore, for a surfel or an object, the corresponding STEM

feature maps are first resized to 224×224×3 dimensions and

then independently fed into the CNN to extract 4096− dimen-

sional feature vectors from the fully connected layer named fc7

of the network. Finally, Fcnn is built by the concatenation of

the 4096-dimensional feature vectors for all the feature maps

of the STEM representation (see Fig. 2-Right).

VI. HIERARCHICAL CASCADED FORESTS FOR

CLASSIFICATION AND REGRESSION

A. Problem Description

We formulate the task of object grasping as an object

classification and grasp regression problem, where the learn-

ing objective is to decrease object-class and grasp-pose un-

certainties at the leaves of the forests. For this, we com-

pute a posterior distribution p(u|x) = p(y|x)p(r|x), where

x = (x1, ..., xd) ∈ R
d represents our d−dimensional input

feature vector, and u ∈ R
1+n is the (1 + n)−dimensional

output or prediction variable which has two components: i)

a one-dimensional discrete classification component yk ∈ Y
(which represents the class label), and ii) an n−dimensional

continuous regression component rk ∈ R which represents

the grasp-pose of the data sample. We use the five dimensional

representation for the grasp-pose proposed by Lenz et al. [8].

This representation gives the location and orientation of a two-

finger gripper before it closes on an object. It is given by:

rk = (rxk , r
y
k , r

φ
k , r

h
k , r

w
k ), (8)

where, (rxk , r
y
k) denotes the center, rφk the orientation relative

to the horizontal axis, rhk the height and rwk the width of

the rectangle (see Fig. 1-E for an example). Learning the

distribution p(u|x) allows us to make predictions about the

class and grasp-pose for previously unseen test objects.
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Fig. 4. A: An overview of the proposed hierarchical cascaded forests for object classification and grasp regression. For a given point cloud, the framework
computes surfel- and object-wise probabilistic outputs and fuses them to infer the class label and grasp-pose of the target object. B: Training a decision tree
involves sending the entire training subset X0 into the tree and optimizing the parameter ϕ of the split nodes. The edge thickness is proportional to the
amount of training data traversing through it. C: During testing, at each split node, a binary test is applied and the feature sample x is sent to the appropriate
child node. The process is repeated until a leaf node is reached (highlighted path) which stores the posterior probability distributions of object-class labels
and grasp poses. Figure best viewed in color.

B. Proposed Architecture of Hierarchical Cascaded Forests

Fig. 4-A shows the architecture of the proposed framework

which is comprised of two stages. Stage 1: We compute

object-class and grasp-pose probabilistic distributions at the

surfel-level using features extracted from the surfels. Stage

2: We compute probabilistic distributions at the object-level

using features extracted from the entire object, and combine

these probabilities with the probabilistic output (obtained from

Stage 1) for all surfels which belong to the query object.

This yields the final probabilistic output of the cascaded

forests in terms of discrete object-class label distributions and

continuous grasp-pose probability distributions. Specifically,

we learn a probabilistic function E (Eq. 9), which is the

combination of the output probabilities from two cascaded

Random Forests (termed surfel- and object forests). For an

object o ∈ O, Eo is given by the sum of the probabilistic

output of the object forest (i.e., ℘o) and the mean of the

probabilities of the surfels (So = {sk}∀k∈o) which belong

to the query object o. The probability of an individual surfel

sk is given by the output of the surfel forest (i.e., ℘s). The

general form of our probabilistic function E can be written

as:

Eo = β℘o + (1− β)
1

|So|

∑

∀s∈So

(℘s), (9)

where, ℘ for a sample x represents the probabilistic output

of a forest (i.e., p(u|x)), given by the average of the tree

probabilities of all trees in the forest as shown in Fig. 4-

A. The probabilities from the two classifiers are combined

with 0 ≤ β ≤ 1, being the trade-off parameter for balancing

their relative influence. We empirically found that a value

of β = 0.6 produced the best balance between the surfel-

level and the object-level classifications. In the following, we

describe in detail: our learning algorithm (see Sec. VI-C) and

our inferencing algorithm (see Sec. VI-D).

C. Randomized Learning

An ensemble of randomized decision trees (termed Random

Forest) is an ensemble of weak learners which are binary

decision trees [28]. We train one Random Forest (RF) for

the surfel-level, and one RF for the object-level. Our learning

process is the same for each of the two RFs.

Let a forest F = {Tt}
Nt

t=1 be a set of trees Tt, each one

trained on a random subset X0 ⊆ {xi}
Nk

i=1 of the training

data X = {(xk,uk)}
Nk

k=1, where Nk is the number of training

samples. For a given tree Tt, our learning procedure starts at

the root node (i.e., j = 0 as illustrated in Fig. 4-B), where

we learn a binary split function f(x, ϕj) which “best” splits

the incoming training data Xj into left-subtree data and right-

subtree data XL
j and right-subtree data XR

j :

XL
j (Xj , ϕ) = {(x,u) ∈ Xj |f(x, ϕj) = 0} ,
XR

j (Xj , ϕ) = {(x,u) ∈ Xj |f(x, ϕj) = 1} ,
(10)

where,
Xj = X

L
j ∪ X

R
j ,XL

j ∩ X
R
j = Ø,

XL
j = X2j+1,X

R
j = X2j+2.

(11)

At each node j, the best split function parameter ϕj is chosen

out of a set of randomly generated split parameter values T =
{ϕ}, which maximizes an objective function I:

ϕj = argmax
ϕ∈Tj

I(Xj , ϕ), (12)
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The splitting procedure is applied recursively to all the newly

constructed nodes in a breadth-first training manner and the

learning continues until a termination criterion is met. In this

work, we used two termination conditions: i) the number of

samples reaching the leaf node is smaller than a threshold (set

to be equal to 2), or ii) a maximum tree depth is reached. The

last created nodes are termed “leaf nodes” which store the

probabilistic distributions (i.e., p(u|x)) of the samples which

reached these nodes. We also considered a hybrid training

strategy, where we trained the first few tree levels with breadth-

first and then switched to depth-first for the lower tree levels.

However, the hybrid strategy did not produce any noticeable

improvements in terms of inference speed/accuracy compared

to a pure breadth-first training, except that the breadth-first

uses a very large amount of memory when the tree gets

deep. Since, we trained shallow trees using a limited amount

of training data, we found the breadth-wise training to be

equally performant compared to the hybrid/depth-first training

strategies. The split functions that we used in our current

setup are called axis-aligned functions. They are defined by:

f(x, ϕj) = (v · x ≥ ϕj), where v is a d-dimensional binary

(random) vector and ϕj ∈ R is a threshold. Note that v has

only one non-zero entry and thereby selects one dimension

from the input feature space. In order to learn the probability

p(u|x) at the split nodes, we propose an integrated quality

measure I(·), which is a linear weighted combination of a

discrete information gain Iy and a continuous information gain

Ir. It is given by:

I(Xj , ϕ) = (1−ω)·Iy(Xj , ϕ)+ω·(1−e−dp)·Ir(Xj , ϕ), (13)

where, the parameter ω ∈ R controls the relative influence of

the classification objective (Iy) and the regression objective

(Ir) on the overall integrated quality measure I. From Eq. 13,

we observe that when ω is small, classification is preferred

over regression and vice versa. In experiments, use ω to

tune the proposed learning objective for optimal classification

performance (i.e., object recognition), for optimal regression

performance (i.e., grasp detection), and for optimal joint

classification-regression performance (see Sec. IX-D). The

classification objective Iy in Eq. 13 optimises the performance

of object classification. It is given by:

Iy(Xj , ϕ) = Hy(Xj)−
∑

i∈{L,R}

|X i
j |

|Xj |
Hy(X

i
j ), (14)

where Hy(·) is the Shannon entropy of the distribution of the

training class labels in the set Xj . It is given by:

Hy(Xj) = −
∑

y∈Y

p(y|Xj) log(p(y|Xj)), (15)

where p(y|Xj) represents the empirical class distribution ex-

tracted from the samples, within the set Xj , as a normalized

histogram of the class labels. The regression objective Ir in

Eq. 13 learns the regression aspect of the decision trees by

measuring a continuous information gain, which optimises the

regression performance of grasp-poses within a node. It is

given by:

Ir(Xj , ϕ) = Hr(Xj)−
∑

i∈{L,R}

|X i
j |

|Xj |
Hr(X

i
j ), (16)

where Hr(·) is the differential entropy of the set of training

samples in the set Xj . It is given by:

Hr(Xj) = −
1

|Xj |

∑

x∈Xj

∫

r

p(r|x) log p(r|x)dr, (17)

where, p(r|x) is the conditional probability distribution of

grasp-poses of the training data which arrive at the node.

We model this conditional probability by an n-dimensional

multivariate Gaussian distribution which can efficiently be

stored in terms of their means and covariance matrices. It is

given by:

p(r|x) = N (r; µ̄r(x),Λr(x)), (18)

where, µ̄r is the mean and Λr is the conditional n × n
covariance matrix obtained from probabilistic Gaussian fitting

to the training data arriving at the node:

µ̄r =
∫

r · p(r|x)dr,
Λr =

∫

(r − µ̄r)(r − µ̄r)
T · p(r|x)dr.

(19)

By substituting Eq. 18 in Eq. 17 we can re-write the differen-

tial entropy as:

Hr(Xj) =
1

2
log((2πe)n|Λr(Xj)|), (20)

where, | · | denotes the determinant of a matrix. Finally,

substituting Eq. 20 in Eq. 16 yields the information gain for

a multivariate continuous probabilistic distribution as:

Ir(Xj , ϕ) = log |Λr(Xj)| −
∑

i∈{L,R}

|X i
j |

|Xj |
log |Λr(X

i
j )|. (21)

At the end of the learning process we obtain: i) the optimum

weak learners (split functions) associated with each node, ii) a

learned tree structure, iii) a discrete class distribution p(y|x)
(in the form of normalized histograms of the class labels),

and iv) a continuous probabilistic distribution p(r|x) (as the

learned means µ̄r and the covariance matrices Λr of the

regression targets r) of the training data stored at each leaf.

D. Inferencing

During testing, a test sample x is traversed through each

tree in the forest starting from the root node until it reaches

a leaf node (see Fig. 4-C for an illustration). Since the split

nodes act on features, the input test sample is likely to end

up in a leaf associated with training samples which are all

similar to the test sample. Thus, it is reasonable to assume

that the associated label and the pose must also be similar to

that of the training points in that leaf. This justifies the use

of the label and pose statistics which are stored in that leaf

to predict the label and the pose associated with the input test

sample. The classification output for each tree Tt is captured

using the conditional distribution pcTt
(y|x), where y represents

the categorical label. The probabilistic classification output of
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Algorithm 1 : Inferencing of hierarchical cascaded forests.

1: Input: C = {Fs,Fo}, surfel- and object-wise trained

Random Forests.

2: Output: y∗, r∗, object class and grasp-pose predictions

respectively.

3: o ∈ O, set of object hypotheses of the segmented scene.

4: Function Inference(C, o)
5: So ← {sk}∀k∈o, set of surfels which belong to o
6: ℘o ← ensembleProb(Fo, o) ⊲ Eq. 22 and Eq. 25

7: ℘s ← ∅, initialize surfel-wise probability matrix

8: for each sk ∈ So do

9: ℘s ← ℘s + ensembleProb(Fs, sk)

10: ℘s ← ℘s/|So|
11: Eo ← ℘o + ℘s ⊲ Eq. 9

12: y∗, r∗ ← predict label and regression targets using Eo

13: Function ensembleProb(F ,x)
14: Nt ← |F|, initialize number of trees

15: P ← ∅, initialize ensemble probability matrix

16: for each tree Tt ∈ F do

17: p← treeProb(Tt,x), P ← P + p

18: return P ← P/Nt

19: Function treeProb(T,x)
20: for each node nj ∈ T do

21: if nj is a split node then

22: if f(x, ϕj) = 1 then

23: treeProb(TR,x), send sample to right-subtree

24: else

25: treeProb(TL,x), send sample to left-subtree

26: else

27: return < pcT (y|x), p
r
T (r|x) >

the forest (i.e., pc(y|x)) can then be defined as the average of

the posterior class probabilities of all trees in the forest:

pc(y|x) =
1

Nt

Nt
∑

t=1

pcTt
(y|x). (22)

Finally, the class label y∗ for a query object o ∈ O is

obtained by substituting the object- and surfel-wise posterior

probabilities (pc(y|x)) in Eq. 9 and taking the Maximum

A-Posteriori (MAP) estimate of the cumulative probabilistic

output E (i.e., the class with the maximum score):

y∗ = argmax
y∈Y

(Eo) . (23)

The regression output prTt
(r|x) of the tth tree is given by the

multivariate Gaussian distribution N (r; µ̄r(x),Λr(x)). It is

given by:

prTt
(r|x) =

|Xl|

|X0|
N (r; µ̄l

r
(x),Λl

r
(x)), (24)

where, the vector µ̄l
r

denotes the mean of all samples reaching

the leaf l (i.e., Xl), and Λl
r

denotes the associated covariance

matrix. The probabilistic output of the forest (i.e., pr(r|x)) is

then given by the average of all trees in the forest:

pr(r|x) =
1

Nt

Nt
∑

t=1

prTt
(r|x). (25)

The grasp inference r∗ is then obtained by substituting the

surfel- and object-wise posterior estimates (pr(r|x)) in Eq. 9

and taking the mean of the predicted regression targets. The

inferencing algorithm is summarized in Algorithm 1.

VII. GRASP SYNTHESIS

Here, we present our algorithm to perform robotic grasps us-

ing the inferred grasp-rectangle. Our algorithm proceeds in two

steps: i) grasp generation, and ii) grasp execution. For grasp

generation, the algorithm generates a grasp-configuration for

a 2-finger gripper (in terms of two grasping points, gripper

position and orientation). For grasp execution, the algorithm

uses 7 degrees-of-freedom inverse kinematics to drive a robotic

arm to grasp the target object.

A. Grasp Generation

Our general grasp notation Gr for a grasp-rectangle r is

defined as:

Gr = {pg, qg, L
r,pap} (26)

As illustrated in Fig. 5-B, pg and qg are the two grasping

points associated with the grasp-rectangle. Lr is a local

reference frame whose origin is the midpoint pm of the grasp-

rectangle. The z axis of Lr corresponds to the surface normal

npm
of the point located at the centroid (rx, ry) of the grasp-

rectangle. The x and y axes of Lr correspond to the unit

direction vector p̂w along the width, and the unit direction

vector p̂h along the height of the grasp-rectangle, respectively.

pap is a point located at a distance dal from Lr along +npm

(positive direction of the normal) and is used as the approach

point to align the gripper for the corresponding grasp (see Fig.

5-F). To compute the grasping points pg and qg , the algorithm

finds a pair of grasping points which satisfy the reflection

symmetry criteria in both the 2D image plane and the 3D

Cartesian space (i.e., their surface normals minimize the angles

θ1 and θ2 as shown in Fig. 5-A and Fig. 5-B). These grasping

points are extracted from the set of points which lie within

an enclosed search volume V r

g defined by the grasp-rectangle

(see Fig. 5-B). The width and height of V r

g are defined by

the width and height of the grasp-rectangle, respectively. The

depth of Vg was set to 1cm in our experiments. For the case

where V r

g does not contain a pair of points which satisfies the

reflection symmetry criterion, the midpoints along the height

of the grasp-rectangle are selected as the grasping points (see

Fig. 5-C for an example).

B. Grasp Execution

To drive the gripper to the grasp location, our grasp-

execution represents the following mapping:

Ge = (pg, qg, L
r,pap)→ (Lg, dg). (27)

As illustrated in Fig. 5-F, Lg denotes the gripper reference

frame calibrated with respect to the camera. The orientation

of Lg is such that zLg

(z-axis of Lg frame) is parallel to the

grippers fingers, xLg

connects the fingers, yLg

= zLg

×xLg

,

and the origin pLg

is placed between the two fingers. The

term dg corresponds to the distance between the fingers (i.e.,
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F: Grasp execution
C

Empty

Empty

Fig. 5. Grasp synthesis using the grasp rectangle. A: The grasp rectangle shown in 2D image plane, where its size is specified by the blue and black lines
and the orientation of the rectangle is represented by the angle φ. B: An illustration of our grasp generation in terms of two grasping points pg and qg
(which satisfy the reflection symmetry criterion) and the search volume V r

g . If there exist no point-pair which satisfies the reflection symmetry criterion, the
midpoints along the height of the grasp-rectangle are selected as the grasping points (see C). D: Illustration of a valid grasp, where the grasp space around
each grasping point is empty. E: Illustration of an invalid grasp, where the grasp space contains colliding points (i.e., the mode values of their corresponding
distance histograms are less than the threshold δmin. F: Illustration of the reference frames Lr and Lg , the approach point pap, and the approach vector
vap.

derived from the width of the inferred grasp rectangle). The

grasp execution algorithm proceeds as follows: the gripper is

set to a pre-grasp configuration (i.e., dg = dg(max)), and is

moved to the approach point, pap (i.e., pLg

:= pap), along

the shortest directed path vap. Next, the gripper orientation is

set to align with the object surface (i.e., zLg

:= npm
), and

xLg

:= ˆpqg , and the gripper is translated along the direction

npm
until it reaches the grasp-position (i.e., pLg

> pm). Fi-

nally, the fingers move from the pre-grasp configuration to the

grasp-configuration (i.e., dg ≤ ||pqg||) and the grasp-execution

concludes when the joints settle in a static configuration.

VIII. SELECTIVE GRASP

A grasp is considered to be valid if there is enough empty

space around its associated grasping points for the gripper to

place its fingers before closing onto the object. Otherwise,

the grasp is considered invalid (see Fig. 5 (D, E) for an

illustration). To facilitate the inferencing of valid grasps (i.e.,

grasps with grasping points which have sufficient empty space

for the gripper to fit its fingers without collision with the

neighboring surfaces), we present a variant of STEM-CaRFs

termed “Selective Grasp” model which produces an additional

output rκ (termed confidence score) for every grasp predicted

in the hierarchical inferencing and selects the grasp with the

highest rκ value as the final grasp for the target object. The

confidence score rκ represents the likelihood of a valid grasp.

Given a grasp rectangle r, the computation of its associated

rκ proceeds as follows: For each grasping-point (pg and qg), a

volumetric space (termed “grasp space”) is constructed in the

point cloud such that its length and width are co-linear and

perpendicular to the line pqg respectively (see Fig. 5-E). The

height of the grasp space is considered along the direction

opposite to nm. Next, for a grasping point (e.g., pg), the

algorithm extracts the set of points χp within its corresponding

grasp space and computes a normalized histogram of the

projected distances between the points χp and the grasping

point. Finally, the mode value (mp) of the corresponding

histogram is used to compute rκ:

rκ =











0, if (mp ≤ δmin OR mq ≤ δmin)

1, if (χp = Ø AND χq = Ø)
mp/mq−δmin

δmax−δmin
otherwise

(28)

where, δmin and δmax are two distance thresholds, empirically

found to be 20mm and 70mm respectively. A small value of

m (i.e., ≤ δmin) corresponds to the case where grasp space

contains colliding points, thereby indicating an insecure grasp

and assigning a value of rκ = 0 to the grasp-rectangle. On the

other hand, if the grasp space around each grasping point is

empty, rκ is set to 1, thereby assigning the highest probability

of a valid grasp to the grasp-rectangle. For all other cases, the

value of rκ is scaled between 0 and 1, corresponding to grasps

with low to high confidence.

The Selective Grasp model is trained in a similar way as

the STEM-CaRFs model. During testing, for an object o ∈ O,

the Selective Grasp model produces a 6-dimensional output

for each of the hierarchically inferred grasps, where the first

five values are the grasp coordinates and the sixth value is
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the confidence score rκ of the grasp rectangle. Specifically,

the model generates a regression estimate at the object level

(i.e., ℘o), a regression estimate for each surfel at the surfel-

level (i.e., {℘s}∀s∈So
), an average regression estimate at the

surfel-level (i.e., 1
|So|

∑

∀s∈So
(℘s)), and a regression estimate

averaged at both the surfel- and object levels (i.e., Eo).

The final grasp estimate r∗ is then determined by taking

the Maximum A-Posteriori (MAP) estimate of the predicted

regression targets with respect to the confidence score rκ.

r∗ = argmax
rκ

(

℘o, {℘s}∀s∈So
,

1

|So|

∑

∀s∈So

(℘s), Eo

)

. (29)

In experiments, we show that the Selective Grasp model pro-

duces more accurate grasps compared to the baseline STEM-

CaRFs model.

IX. EXPERIMENTS AND EVALUATION

We evaluated our framework for the tasks of object recogni-

tion, and grasp detection using popular object datasets (Wash-

ington RGB-D object dataset (WRGBD) [4] and Cornell Grasp

object dataset [15]) and through robotic experimentation. For

feature extraction, we used the deep network of [11]. The

open-source VLFeat [29] library provides a pre-trained version

of this network through its MatConvNet toolbox [30]. The

configuration “E” of the VGG model [11] which we used in

our setup has nearly 144 million parameters. These parameters

cannot be learnt by using just the few thousand training images

of the WRGBD dataset and the 885 images of the Cornell

grasp dataset [31]. Therefore, to adapt the pre-trained CNN to

the new tasks (RGB-D object recognition and grasp detection)

and with the new input domain (STEM representation), we

finetuned the CNN network (that was pre-trained on ImageNet

dataset) for each feature map of the proposed STEM rep-

resentation. For fine-tuning, the learning rate was initialized

to 0.0001 and was decreased by a factor of 10 every 20k

iterations. The batch size was set to 128 and the momentum

parameter was set to 0.9.

Unless stated otherwise, we used the same fixed set of

parameters for training and testing. Specifically, we trained

forests with 50 trees and a maximum tree depth of 6 each.

These parameters were optimized on subsets of the training

datasets (see Sec. IX-D for a discussion on the selection

of these parameters). We used bagging-without-replacement

during the training process and therefore trained each tree

on a random subset of the training samples. Specifically, at

the surfel level, we extracted surfel-wise features from a fixed

number of randomly selected surfels per training image. Using

subsets of surfels reduced the training time and ensured a

roughly even contribution from each training image. At the

object-level, we extracted one object-wise feature per training

image.

A. Evaluation on Washington RGB-D Object Dataset

This dataset contains 300 objects grouped into 51 categories.

For each object, there are three turntable sequences captured

from different camera elevation angles (30◦, 45◦, 60◦). The

TABLE I
COMPARISONS WITH THE STATE-OF-THE-ART METHODS ON THE WRGBD
OBJECT DATASET FOR OBJECT CATEGORY AND INSTANCE RECOGNITION.

Method
Category accuracy (%) Instance accuracy (%)

Depth RGB RGB-D Depth RGB RGB-D

[4] Random Forest 66.8±2.5 74.7±3.6 79.6±4.0
[32] HMP 70.3±2.2 74.7±2.5 82.1±3.3 39.8 75.8 78.9
[4] kSVM 64.7±2.2 74.5±3.1 83.8±3.5
[33] HKD 84.1±2.2
[34] IDL 70.2 78.6 85.4±3.2
[35] RICA 79.7±3.1 84.1±2.9 86.7±2.7 49.6 88.3 89.7
[36] CKM descriptor 86.4±2.3 82.9 90.4
[17] Kernel descriptor 80.3±2.9 80.7±2.1 86.5±2.1 54.7 90.8 91.2
[37] CNN-RNN 78.9±3.8 80.8±4.2 86.8±3.3
[16] SP+HMP 81.2±2.3 82.4±3.1 87.5±2.9 51.7 92.1 92.8
[12] CaRFs 88.1±2.4
[38] CNN features 83.1±2.0 89.4±1.3 92.0 94.1

STEM-CaRFs (ours) 80.8±2.1 88.8±2.0 92.2±1.3 56.3 97.0 97.6

TABLE II
RECOGNITION ACCURACIES (%) OF THE PROPOSED STEM-BASED

FEATURES ON THE WRGBD SCENES DATASET [14].

Category Depth fnormals fangles fdist STEM-D

Bowl 51.46 64.95 64.85 50.94 63.91
Cap 44.03 75.35 77.53 68.54 74.06
Cereal box 93.40 78.92 94.15 74.65 94.42
Coffee mug 60.77 59.66 74.58 67.67 71.54
Flashlight 93.44 90.70 80.57 91.41 91.17
Soda can 61.20 92.97 64.98 70.83 89.81

Average 68.26 78.08 76.12 70.52 81.79

dataset is challenging because it contains a large variety of

textured objects (e.g., food bags or cereal boxes) as well as

texture-less objects (e.g., bowls, fruits, or vegetables) captured

from different viewpoints. For training and testing, we used the

experimental setup described in [4], and tuned the proposed

framework for object recognition. Specifically, for category

recognition, we report the cross-validation accuracy for ten

predefined folds over the objects (i.e. in each fold, the test

instances are completely unknown to the system). For instance

recognition, we employ the Leave-Sequence-Out scheme of Bo

et al. [16], where training is performed on the 30◦ and 60◦

sequences, while testing is performed on the 45◦ sequence of

every instance.

Table I shows our object recognition results on the WRGBD

object dataset and a comparison with the state-of-the-art

methods. Table I shows that the proposed framework produces

superior accuracies compared to the state-of-the-art methods

for both the category and instance recognition tasks. For

instance, we achieved an improvement of around 2.8% in the

overall RGB-D categorization accuracy, compared with the

best results of 89.4% reported in [38], and an improvement

of around 3.5% in the overall RGB-D instance-recognition

accuracy, compared with the best results of 94.1% reported in

[38]. Table I also shows that we have significantly improved

over our previous categorization results in [12]. These results

provide strong evidence for the advantage of using STEM

representation for feature learning (Sec. V-A), where the

CNN-based features extracted from the feature maps of the

proposed STEM representation are highly discriminative and

provide more rich and complimentary information for object

recognition compared to the features learnt from only RGB

and depth images (e.g., [12], [38]).

In order to understand the significance of the proposed
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Fig. 6. Confusion matrices for WRGBD object dataset. Average classification
rates are shown along the main diagonal. Selected outliers: a) pitcher
recognized as coffee mug, b) peach as sponge, and c) lime as sponge.

cascaded architecture for object recognition, we performed

experiments using two variants of our classification model: i)

STEM-CaRFs-1, where we perform inferencing at the surfel-

level, and ii) STEM-CaRFs-2, where we cascade the surfel-

wise and object-wise forests and perform inferencing using

their cumulative probabilistic output (i.e., after stage 2). Fig.

6 shows the results for these experiments in terms of the

confusion matrices of the 51 test categories, where the reported

results show that the confusions significantly decrease as we

go from STEM-CaRFs-1 to STEM-CaRFs-2 configurations.

Fig. 6 also reveals the advantage of the cascaded inference

architecture for classes with high inter-class similarities in

their structural or appearance characteristics (e.g., pitcher v/s

coffee mug, peaches v/s similarly coloured sponges), where

the confusions consistently decrease as we go from stage-1 to

stage-2.

We also evaluated the effectiveness of the depth-derived

feature maps of the proposed STEM representation com-

pared to the use of raw depth images for depth-based object

recognition. For this, we performed additional recognition

experiments on the more challenging RGB-D scenes dataset

[14] using only depth images. This dataset consists of eight

video sequences of office, kitchen, and meeting room en-

vironments. Each sequence contains 1700 to 3000 RGB-D

image frames containing objects placed on flat surfaces. The

ground truth for this dataset is available in the form of object

bounding boxes for six object classes which overlap with

the classes of the WRGBD object dataset [4]. For these

experiments, we trained the proposed framework for object

category recognition using the WRGBD object dataset and

used the ground truth bounding boxes of the WRGBD scenes

dataset for testing. The results of these experiments are shown

in Table II that reports the recognition accuracy averaged over

all eight video sequences of the WRGBD scenes dataset. It

is evident from the table that the model trained using the

depth-dervied STEM-based features (STEM-D) outperforms

the model trained using features extracted from raw depth

images for all the test classes. Some classes (e.g., bowl,

cap, coffee mug, and soda can) greatly benefited from the

proposed STEM-based feature learning. This clearly indicates

that the features learnt from the depth-derived feature maps

of the proposed STEM representation provide more rich and

TABLE III
OBJECT RECOGNITION RESULTS ON THE CORNELL GRASPING DATASET.

Method
Object recognition accuracy (%)
RGB depth RGB-D

Jian et al. [10] - - 84.7
Jian et al. [10]+FPFH [40] - - 89.6
Deep learning [8] 90.3 92.8 93.7

Surfel-wise only 72.6 79.5 80.8
Object-wise only 75.3 81.2 83.2
STEM-CaRFs 91.2 93.5 94.1

TABLE IV
GRASP DETECTION RESULTS ON THE CORNELL GRASPING DATASET.

Method
Grasp detection accuracies (%)

image-wise split object-wise split

Jian et al. [10] 60.5 58.3
Deep learning [8] 73.9 75.6
CNN-Regression [21] 84.4 84.9
CNN-Multi [21] 88.0 87.1

Surfel-wise only 75.3 77.1
Object-wise only 84.7 84.8
STEM-CaRFs 86.8 86.2
STEM-CaRFs (Selective Grasp) 88.2 87.5

complimentary information compared to the features learnt

from raw depth images. This evaluation shows the importance

of the proposed STEM-based feature learning for robust depth-

based object recognition in real-world scenes.

B. Evaluation on Cornell Grasping Object Dataset

The Cornell Grasping Object Dataset [15] contains 885 im-

ages of 240 distinct graspable objects and labeled ground-truth

in terms of grasp-rectangles. During training, we performed

data augmentation through random image rotations, flips,

translations, and ZCA-whitening. For testing, we used the five-

fold cross validation setup described in [8]. Specifically, the

setup in [8] considers two different splits of the data: i) image-

wise splitting which splits images randomly (i.e., the training

set and the validation set do not share the same image), and

ii) object-wise splitting which splits object instances randomly

(i.e., the training set and the validation set do not share

any images from the same object-class). Image-wise splitting

criteria evaluates the performance of a classifier in terms of

its generalization to new positions for known objects. On the

other hand, the object-wise splitting criteria evaluates how

well the classifier generalizes to novel/unknown objects [8].

We present our grasp-detection results using the “rectangle-

metric” used in Jian et al. [10]. It considers a grasp to be

correct if: i) the grasp angle is within 30◦ of the ground-truth

grasp, and ii) the Jaccard index of the predicted grasp and

the ground-truth is greater than 25%. The Jaccard index for a

predicted rectangle r∗ and a ground-truth rectangle rg is given

by: J(rg, r∗) = |rg ∩ r∗|/|rg ∪ r∗|. For object recognition,

we manually categorized the objects in the Cornell grasping

dataset into 16 distinct categories, where objects with similar

grasp ground truths were grouped into the same category.

Table III shows our object recognition results on the Cornell

dataset. It shows that our framework outperforms the state-of-

the-art methods in object recognition accuracy. Specifically,

our framework produces an improvement of 9.4% over the

features in [10] and 4.5% over those features combined with

FPFH features [40]. We also observe that the accuracies

improve as we go from the RGB modality to the depth
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Fig. 7. Left and Middle: Examples of grasps produced by surfel-wise inference model (shown in black), object-wise inference model (shown in red), and
the proposed Selective Grasp model (shown in yellow). The ground truth grasps are shown in blue. Right: Illustration of the regression posteriors of six
different regression trees in an ensemble model. Some posteriors correspond to a higher confidence (sharp gaussian distributions) than the others. The ensemble
posterior (obtained by averaging all tree posteriors) is more influenced by the informative trees.

modality. The highest accuracy is obtained when using all

input modalities (i.e., RGB-D). This indicates that the color-

derived and the depth-derived feature maps of the proposed

STEM representation provide non-redundant information and

their combination leads to a feature representation which is

more robust than either modality alone.

Table IV shows our grasp detection results on the Cornell

grasping dataset. It shows that the performance of our frame-

work improves as we go from a single-level inferencing (i.e.,

surfel-wise or object-wise only) to a cascaded hierarchical

inferencing (i.e., STEM-CaRFs). The surfel-wise model uses

local information about the object to compute surfel-wise

predictions which are then averaged to estimate the final grasp

for the target object. Although, the surfel-wise model produces

reasonable grasps for most of the objects, it is effected by

sensor noise or missing depth information. For instance, the

surfel-wise model fails to predict viable grasps for the case

of incorrect segmentation or missing depth data (see Fig. 7-

middle for some examples). On the other hand, the object-

wise model makes much better predictions in these scenarios

because it considers the entire object (and uses global informa-

tion about the object) to make its prediction unlike the surfel-

wise model which focuses only on local regions. Our cascaded

architecture (STEM-CaRFs) combines the strongest aspects of

both the local and global models. Within the cascaded forests,

some trees produce more confident predictions than the others.

The fusion operation yields combined regression estimates

which are heavily influenced by the most confident trees (see

Fig. 7-right for an example), thereby producing more accurate

regression estimates compared to the estimates produced by

the single-level models. Table IV also shows that the porposed

STEM-CaRFs model outperforms the deep learning method

in [8] and the CNN-based regression model of [21]. These

improvements are credited to the use of the proposed STEM-

based feature learning which learns more useful and highly

discriminative multi-modal feature representations from RGB-

D images compared to the feature learning approach of [21],

where the authors used RGD image channels (the blue channel

of the RGB image was replaced by the depth image) as

an undifferentiated input to a CNN model for direct grasp

TABLE V
RECOGNITION ACCURACIES (%) OF THE PROPOSED STEM BASED

FEATURES ON THE WRGBD OBJECT DATASET [4].

Feature map Category recognition Instance recognition

frgb 88.82 97.00
flab 86.89 96.68
fnormals 80.83 62.40
fangles 80.45 58.97
fdist 78.68 55.25

STEM-All feature maps 92.25 97.63

regression. While the grasp rectangles predicted by the STEM-

CaRFs model are valid for most of the objects, an output

grasp can be infeasible for the actual robotic grasping if the

space around a predicted grasp is not collision-free. This

effect is mitigated by the proposed Selective Grasp model

which ranks the hierarchically inferred grasps based on their

confidence scores (rκ) and selects the grasp with the highest

confidence score as the final grasp for the target object unlike

the STEM-CaRFs model which always output the average of

the regression outputs of the cascaded forests. The proposed

Selective Grasp model outperforms our baseline STEM-CaRFs

model and the method of [21]. Overall, the grasps predicted

by the Selective Grasp model clearly represent valid grasps

for robotic grasping (see Fig. 7 for some examples).

C. Significance of the STEM-based features

To highlight the significance of the proposed STEM repre-

sentation for the extraction of highly discriminative features,

we compare our STEM-based CNN-features with local fea-

tures of [41] (extracted from RGB-D images), in terms of

their capability to separate a large number of classes under

different training set sizes. We use the t-SNE embedding

[42] to visualize the results. As shown in Fig. 8 (A, B), the

use of STEM-based features results in a good separation of

the object-classes (Fig. 8-A) even when the training set size

is small (e.g., 10% of the available training data used for

learning). Fig. 9 (A1, A2) shows that object instances of a

single class (toothpaste) also become well-separated in the

feature space. In contrast, local features extracted from RGB-

D images exhibit this property only to a very limited extent,

i.e., classes and instances are less well-separated as shown in
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Training size= 10% Training size = 50% Training size= 100%

A
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C D E F

Fig. 8. A-B: Visualization of our STEM-based CNN features (A) compared to the local features [41] extracted from raw RGB-D images (B), in terms of
the t-SNE embeddings and the boundaries learnt by our object forest using axis-aligned weak learners w.r.t. different training set sizes. STEM-based CNN
features separate the object classes better than the local features, especially when the training data is small. The training subsets are sampled randomly from
the full training set. C-F: Qualitative comparison of grasp detection results based on depth derived STEM features (shown in yellow), and features extracted
from raw depth images (shown in red) on the Cornell grasping dataset. The ground truths are shown in blue in columns C and E.

Fig. 8-B and Fig. 9 (B1, B2). Fig. 8 (C-F) shows a qualitative

comparison of the grasps produced using depth-derived STEM

features and the grasps produced using local features [41]

extracted from raw depth images. From the figure we see that

the grasps detected by the model trained using raw depth data

appear invalid for most of the cases. On the other hand, the

grasps detected using our depth-derived STEM features are

clearly valid for almost all of the tested cases. These results

signify the integration of several structural cues (e.g., pose

invariant orientations of the surface normals and the projected

distances of the points with respect to the centroid of the point

cloud) in an RGB-like image structure (i.e., all feature values

scaled between 0 and 255) yielding an image representation

which is rich and more discriminative compared to the raw

depth values.

We further evaluate the performance of the proposed STEM

representation for large scale RGB-D object recognition by

independently using the feature maps of STEM representation

for feature learning. The results of these experiments are

shown in Table V and Fig. 10. Table V shows that the

CNN network generalizes surprisingly well to the individual

feature maps of the proposed STEM representation for the

case of category recognition, where we observe mean accu-

racy of 86.8%, 80.83%, 80.45%, and 78.68% for the cases

of flab, fnormals, fangles, and fdist, respectively. Fig. 10

shows the categorization accuracy for each class for the color-

derived features (frgb+flab) and the depth-derived features

(fnormals+fangles+fdist). From the figure, we observe that

some object classes were classified with a higher accuracy

using depth-derived features compared to the use of color-

derived features. These objects have texture-less surfaces

with no distinguishing visual features and hence the depth-

derived features were able to utilize shape information to

achieve a higher accuracy (e.g., see the case of bowl class
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A1 A2 B1 B2

Fig. 9. Visualization of our STEM-based CNN-features (A1, A2) compared to the local features [41] extracted from raw RGB-D images (B1, B2), in terms of
the t-SNE embeddings of the toothpaste class, colored by instances (shown by large circles). STEM-based CNN features separate the object instances better
than the local features extracted from raw RGB-D images.
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Fig. 10. Classification accuracy (measured per category) of our STEM-based CNN features on the WRGBD object dataset [4].

in Fig. 10). The best performance is achieved by using all

the features maps of the proposed STEM representation for

feature learning, yielding a mean accuracy of 92.2%. For

instance recognition, we observe that the accuracies for the

depth-derived features are considerably low compared to the

accuracies for the color-derived features (as shown in Table V).

This is attributed to the fact that color information provides

better discrimination across intra-class instances while they

share very similar structural characteristics (e.g., soda cans

are cylindrical). Nonetheless, this problem can effectively be

mitigated by the fusion of the color-derived and depth-derived

feature maps in the proposed STEM representation yielding

an average accuracy of 97.63%. These results validate our

hypothesis that STEM feature maps contain complimentary

information and it is appropriate to use STEM-encoding as an

initialization for the fine tuning of a large CNN pre-trained on

RGB images.

D. Parameter Selection

Here, we analyze the most relevant parameters of our

proposed framework. First, we investigate the performance

of the proposed framework by varying the parameter ω in Eq.

13, which controls the relative influence of classification and

regression on the overall objective function. Fig. 11 shows the

average accuracies for object recognition and grasp detection

for different values of ω on the Cornell grasping dataset.

From the figure we observe that, for large values of ω (e.g.,

ω > 0.65), the classification accuracy starts decreasing. We

manually inspected the cascaded ensemble and found that the

tree-learning termination criterion was reached in parts of the

trees during training before the object classes were properly
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Fig. 11. Average accuracies for object recognition and grasp detection on the
Cornell grasping dataset for different values of ω.

clustered in the leaves. Since the influence of the regression

component Ir in Eq. 13 on the overall objective function

increases with an increase in the value of ω, for large values

of ω, the objective function (see Eq. 13) favours regression

over classification. This leads to a sub-optimal clustering of

the class-labels at the leaves of the forests and results in a

decrease in the overall classification accuracy (for values of

ω > 0.65). On the other hand, the grasp regression accuracy

increases with the increase in the ω value (as shown in Fig.

11). We empirically found that, a value of ω = 0.6 produced

the best balance between the classification and the regression

contributions to the overall training objective function. This

analysis supports our observation that while the proposed

framework can be tuned for optimal classification performance



JOURNAL OF LATEX VOL. , NO. , 15

68

72

76

80

84

88

92

0 20 40 60 80 100

A
v

er
ag

e 
A

cc
u

ra
cy

 (
%

)

Number of trees

Object recognition

Grasp detection

Tree depth: 6
73

77

81

85

89

93

0 2 4 6 8 10 12 14

Tree depth

Object recognition

Grasp detection

Number of trees: 50

70

74

78

82

86

90

94

10 25 40 55 70 85 100 115

Number of surfels per image

Object recognition

Grasp detection

Number of trees: 50

Tree depth: 6

Fig. 12. Left to right: Evaluation of the parameters (number of trees, tree depth, and segmentation resolution) of the framework on the Cornell dataset.

TABLE VI
RESULTS FOR ROBOTIC EXPERIMENTS, SORTED BY OBJECT CATEGORY.

Category Trials Recognition (%) Grasp success rate (%)

Tennis ball 10 91.6 84.2
Soda can 15 94.6 98.8
Stapler 8 91.2 93.7
Food box 19 92.3 98.4
Food can 21 95.5 98.5
Shampoo 16 95.6 97.5
Joystick 15 91.1 82.6
Coffee mug 10 93.4 85.2
Dish cleaner 20 92.5 88.3

Average - 93.0 91.9

or optimal regression performance by simply adjusting the

parameter ω, nevertheless, the proposed framework is robust

for joint classification-regression. The joint minimization of

the uncertainties of the object-class labels and the grasp ground

truths at the leaves of the cascaded forests using the proposed

quality measure I (see Eq. 13) produces accurate separation

of both the object classes and the grasp-pose manifolds. This

signifies the robustness of the proposed framework for the

recognition and grasp detection of objects within a unified

framework. Next, we evaluate the number of trees Nt while

setting the maximum tree depth to 6 on the Cornell grasping

dataset. The results of this experiment are shown in Fig. 12-

left. As expected, we can see a clear trend of an increasing

recognition accuracy with respect to the number of trees up

to Nt = 50. For more trees, i.e., Nt > 50, the results are

saturated. By setting Nt = 50, increasing the tree depth has

little influence beyond 6 levels (see Fig. 12-middle). Finally,

we evaluate the performance of the proposed framework in

terms of resolution of the segmentation, where we set the

number of trees to be Nt = 50 with a depth of 6 levels each,

and report the results in Fig. 12-right. The figure shows that

increasing the resolution of the segmentation from 55 to 125
surfels per image does not produce a significant difference in

the overall accuracy. Overall, our framework is robust with

respect to the variations of its hyper-parameters.

E. Robotic experiment

To evaluate the performance of our framework for robotic

grasping of household objects, we ran an extensive series

of robotic experiments using live video streams acquired by

a Kinect that is mounted on our in-house robotic platform

named “AIPAR”. AIPAR is equipped with two arms with

seven degrees of freedom each. We only used the left arm

for these experiments. The end-effector for this arm is a two-

finger gripper. We attached rubber strips to the gripper fingers

to increase friction. For each experiment, we placed a number

of different objects within a working square of 25cm×25cm

square (with respect to the robot base) on the floor (see Fig.

13-left). This square was chosen to be well-contained within

the robots workspace, allowing objects to be grasped from

most approach vectors. Object positions and orientations were

varied between trials, although objects were always placed

in configurations in which at least one viable grasp was

accessible to the robot. During testing, the robot is commanded

by voice to grasp a specific object (e.g., “AIPAR pick food

can”). Upon successful recognition and grasp detection of the

object, the robot executes the grasp on the object and lifts it

30 cm upwards. A grasp is determined to be successful if it

is sufficient to lift the object and hold it for three seconds.

Table VI shows the results of these experiments using a set

of 35 household objects grouped in 9 different categories (most

of these objects were not included in the training dataset, and

thus were completely new to the framework), and a total of

134 trials. From Table VI, we see that the proposed framework

correctly predicts the object category for more than 92% of

the trials. Even with the added grasp-detection task, the joint

classification-regression model maintains high accuracies for

the case of unseen objects. Table VI also shows that AIPAR

was able to successfully execute a grasp for more than 90%

of the trials. Fig. 13-right shows AIPAR executing several of

these grasps. A video of one of these experiments is available

in the supplementary material. Among these experiments, the

joystick-controller proved to be the most difficult object for

the robot to grasp. From a top-down angle, there is only a

small space of viable grasps with a span of less than 7cm. The

grasps across the two “handles” tend to slip off. Therefore,

all valid grasps are very close to the 7cm span and even a

slight imprecision in positioning can lead to failure. Using

the proposed selective-grasp model (Sec. VIII), AIPAR was

able to execute successful grasps for more than 90% of the

trials. Our framework was also able to successfully detect

and execute grasps with non-vertical approach vectors. The

grasps shown for the “food box”, and “dish cleaner” (shown

in Fig. 13-right) were all executed by aligning the gripper to a

non-vertical approach vector. This shows that our framework

is not restricted to the detection of top-down grasps, but

can be applied to grasps from many orientations. Fig. 14

shows a qualitative evaluation of our framework on scenes

with objects in stacked layouts. From the figure it is clear

that our framework successfully handles the case of object

classification and grasp detection under different object layouts
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Fig. 13. Left: Visualization of our robotic experiment setup (where objects are placed in front of the robot in different orientations and locations, and the
task of the robot is to pick a target object selected by the human operator), and the output of the proposed framework in terms of segmented objects, their
predicted class labels and estimated grasp rectangles (each with a fixed height of 3 cm). Right: Examples of robotic grasping. Figure best viewed in color.
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Fig. 14. Qualitative evaluation of the proposed framework for object classification and grasp detection on real-world scenes with objects in stacked layouts.
Note that for clarity we only show the class labels of selected object hypotheses with their corresponding grasp rectangles. Figures 5 to 8 show cases of
incorrect classification and incorrect segmentation (shown in red color). Figure best viewed in color.

and partial occlusions. Fig. 14-(5-8) show the cases where

our framework produces acceptable/valid grasps even when

the classification fails (e.g., soda can is classified as a ball as

shown in 6) or for the cases of incorrect segmentation (e.g.,

the bowl splits into two parts as shown in 7, or the coffee mug

merges with the food box as shown in 8).

X. CONCLUSIONS

We introduce a novel framework of hierarchical cascaded

forests for the recognition and grasp detection of RGB-D ob-

jects in real-world scenes. To achieve this, we propose a novel

image representation (termed STEM) to extract multi-modal

features using large CNN models, and a cascaded architecture

of Random Forests (STEM-CaRFs) to learn object-class and

grasp-pose probability distributions at different levels of an im-

age hierarchy (e.g., surfel and object-levels). The experiments

show that, the proposed STEM-based features separate object

classes in a highly discriminative manner compared to local

features extracted from raw RGB-D images, and the proposed

STEM-CaRFs framework yield superior object recognition and

grasp detection accuracies compared to the state-of-the-art

methods. Furthermore, the real-world experiments using our

in-house robotic platform show that the proposed framework

is robust to the real-world noise and it generalizes to new

object instances with high predictive accuracies. The proposed

framework is scalable in terms of training set size and in terms

of parallelization. These characteristics make the proposed

framework ideally suited for real-world robotic applications,

where robustness to real-world noise and generalization to new

object instances are the key requirements.
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