
RGB-D Object Recognition and Pose Estimation based on

Pre-trained Convolutional Neural Network Features

Max Schwarz, Hannes Schulz, and Sven Behnke

Abstract— Object recognition and pose estimation from
RGB-D images are important tasks for manipulation robots
which can be learned from examples. Creating and annotating
datasets for learning is expensive, however. We address this
problem with transfer learning from deep convolutional neural
networks (CNN) that are pre-trained for image categorization
and provide a rich, semantically meaningful feature set. We
incorporate depth information, which the CNN was not trained
with, by rendering objects from a canonical perspective and
colorizing the depth channel according to distance from the
object center. We evaluate our approach on the Washington
RGB-D Objects dataset, where we find that the generated
feature set naturally separates classes and instances well and
retains pose manifolds. We outperform state-of-the-art on a
number of subtasks and show that our approach can yield
superior results when only little training data is available.

I. INTRODUCTION

The recent success of deep convolutional neural networks

(CNN) in computer vision can largely be attributed to

massive amounts of data and immense processing speed

for training these non-linear models. However, the amount

of data available varies considerably depending on the task.

Especially robotics applications typically rely on very little

data, since generating and annotating data is highly specific

to the robot and the task (e.g. grasping) and thus prohibitively

expensive. This paper addresses the problem of small datasets

in robotic vision by reusing features learned by a CNN on

a large-scale task and applying them to different tasks on a

comparably small household object dataset. Works in other

domains [1]–[3] demonstrated that this transfer learning is a

promising alternative to feature design.

Figure 1 gives an overview of our approach. To employ

a CNN, the image data needs to be carefully prepared. Our

algorithm segments objects, removes confounding background

information and adjusts them to the input distribution of the

CNN. Features computed by the CNN are then fed to a

support vector machine (SVM) to determine object class,

instance, and pose. While already on-par with other state-of-

the-art methods, this approach does not make use of depth

information.

Depth sensors are prevalent in todays robotics, but large

datasets for CNN training are not available. Here, we propose

to transform depth data into a representation which is easily

interpretable by a CNN trained on color images. After

detecting the ground plane and segmenting the object, we

render it from a canonical pose and color it according

All authors are with Rheinische Friedrich-Wilhelms-Universität Bonn,
Computer Science Institute VI, Autonomous Intelligent Systems, Friedrich-
Ebert-Allee 144, 53113 Bonn schwarzm@cs.uni-bonn.de,
schulzh@ais.uni-bonn.de, behnke@cs.uni-bonn.de

Color Masked color Pre-trained CNN

Depth Colorized depth Pre-trained CNN

C
N

N
fe

a
tu

re
s

CategoryInstancePose
SVMSVMSVR

Fig. 1: Overview of our approach. Images are pre-processed

by extracting foreground, reprojecting to canonical pose, and

colorizing depth. The two images are processed independently

by a convolutional neural network. CNN features are then

used to successively determine category, instance, and pose.

to distance from the object center. Combined with the

image color features, this method outperforms other recent

approaches on the Washington RGB-D Objects dataset on

a number of subtasks. This dataset requires categorization

of household objects, recognizing category instances, and

estimating their pose.

In short, our contributions are as follows:

1) We introduce a novel pre-processing pipeline for

RGB-D images facilitating CNN use for object cat-

egorization, instance recognition, and pose regression.

2) We analyze features produced by our pipeline and a

pre-trained CNN. We show that they naturally separate

common household object categories, as well as their

instances, and produce low-dimensional pose manifolds.

3) We demonstrate that with discriminative training, our

features improve state-of-the-art on the Washington

RGB-D Objects classification dataset.

4) We show that in contrast to previous work, only few

instances are required to attain good results.

5) Finally, we demonstrate that with our method even

category level pose estimation is possible without

sacrificing accuracy.

After discussing related work, we describe our feature

extraction pipeline and supervised learning setup in Sec-

tions III and IV, respectively. We analyze the features and

their performance in Section V.

behnke
Text-Box
IEEE International Conference on Robotics and Automation (ICRA), Seattle, May 2015.



II. RELATED WORK

Deep convolutional neural networks (CNN) [4]–[6] became

the dominant method in the ImageNet large scale image clas-

sification challenge [7] since the seminal work of Krizhevsky

et al. [8]. Their success can mainly be attributed to large

amounts of available data and fast GPU implementations,

enabling the use of large non-linear models. To solve the

task of distinguishing 1000, sometimes very similar object

categories, these networks compute new representations of

the image with repeated convolutions, spatial max-pooling

[9], and non-linearities [8]. The higher-level representations

are of special interest, as they provide a generic description

of the image in an increasingly semantic feature space [10].

This observation is supported by the impressive performance

of CNN features learned purely on classification tasks applied

to novel tasks in computer vision such as object detection [1],

[2], subcategorization, domain adaptation, scene recognition

[3], attribute detection, and instance retrieval [2]. In many

cases, the results are on par with or surpass the state of the

art on the respective datasets.

While Girshick et al. [1] report improvements when fine-

tuning the CNN features on the new task, this approach

is prone to overfitting in the case of very few training

instances. We instead follow Donahue et al. [3] and only

re-interpret features computed by the CNN. In contrast to the

investigations of Donahue et al. [3] and Razavian et al. [2],

we focus on a dataset in a robotic setting with few labeled

instances.

We use pre-trained CNN in conjunction with preprocessed

depth images, which is not addressed by the works discussed

so far. Very recently, Gupta et al. [11] proposed a similar

technique, where “color” channels are given by horizontal

disparity, height above ground, and angle with vertical. In

contrast to their method, we propose an object-centered

colorization scheme, which is tailored to the classification

and pose estimation task.

Previous work on the investigated RGB-D Objects dataset

begins with the dataset publication by Lai et al. [12], who

use a combination of several hand-crafted features (SIFT,

Texton, color histogram, spin images, 3D bounding boxes)

and compares the performance of several classifiers (linear

SVM, Gaussian kernel SVM, random forests). These baseline

results have been improved significantly in later publications.

Lai et al. [13] propose a very efficient hierarchical

classification method, which optimizes classification and

pose estimation jointly on all hierarchy levels. The method

uses stochastical gradient descent (SGD) for training and is

able to warm-start training when adding new objects to the

hierarchy. While the training method is very interesting and

could possibly be applied to this work, the reported results

stay significantly behind the state of art.

Finally, Bo et al. [14] show a very significant improvement

in classification accuracy and reduction in pose estimation

error. Their method learns hierarchical feature representations

from RGB-D Objects data without supervision using hierar-

chical matching pursuit (HMP). This work shows the promise

(a) Region of interest (b) Mask distance (c) Faded output

Fig. 2: Overview of the RGB preprocessing pipeline, with ROI

from object segmentation, distance transform from the object

mask and faded output used for CNN feature extraction.

of feature learning from raw data and is the current state-

of-the-art approach on the RGB-D Objects dataset. However,

the number of training examples must be suitably large to

allow for robust feature learning—in contrast to our work,

which uses pre-learned features and is thus able to learn

from few examples. Of course, the feature learning process

is not needed in our case which leads to a significant runtime

advantage for our method. Finally, our method generates less

feature dimensions (10,192 vs. 188,300) and thus is also

faster in the classifier training and recall steps.

III. CNN FEATURE EXTRACTION PIPELINE

In order to use a pre-trained CNN for feature extraction, it

is necessary to preprocess the input data into the format that

matches the training set of the neural network. CaffeNet [15],

which we use here, expects square 227×227 RGB images

depicting one dominant object as in the ImageNet Large Scale

Visual Recognition Challenge [7].

A. RGB Image Preprocessing

Since the investigated CNN was trained on RGB images,

not much pre-processing is needed to extract robust features

from color images. Example images from the preprocessing

pipeline can be seen in Fig. 2.

We first crop the image to a square region of interest

(see Fig. 2a). In a live situation, this region of interest is

simply the bounding box of all object points determined by

the tabletop segmentation (Section III-B). During evaluation

on the Washington RGB-D Objects dataset (Section V), we

use the provided object segmentation mask to determine the

bounding box.

The extracted image region is then scaled to fit the CNN

input size, in our case 227×227 pixels. To reduce the CNN’s

response to the background, we apply a fading operation to

the image (Fig. 2c). Each pixel is interpolated between its

RGB color c0 = (r0, g0, b0) and the corresponding ILSVRC

2011 mean image pixel cm = (rm, gm, bm) based on its

pixel distance r to the nearest object pixel:

c := α · c0 + (1− α) · cm , (1)

where

α :=











1 if r = 0,

0 if r > R,

(R− r)β else.

(2)



(a) Depth image (b) Object segmentation

(c) Region of interest (d) Fill-in result

(e) Generated mesh (f) Canonical view (g) Colorized image

Fig. 3: Overview of the depth preprocessing pipeline. (a) input

depth map, (b) extracted segmentation mask after tabletop

segmentation [16], (c) region of interest containing only the

object with unavailable depth pixels shown in red, (d) missing

depth values filled in, (e) mesh extracted from point cloud,

(f) reprojection of mesh to a canonical camera pose, (g) final

image used for CNN feature extraction.

The fade radius R = 30 was manually tuned to exclude as

much background as possible while keeping objects with

non-optimal segmentation intact. The exponent β = 0.75
was later roughly tuned for best cross-validation score in the

category level classification.

B. Depth Image Preprocessing

Feeding depth images to a CNN poses a harder problem.

The investigated CNN was trained on RGB images and is thus

not expected to perform well on raw depth images. To address

this, we render image-like views of the object from the depth

data using a five-step pipeline, which will be detailed below.

Figure 3 illustrates all steps for an example.

In the first step, we perform a basic segmentation to extract

the horizontal surface the object is resting on. Following Holz

et al. [16], we estimate surface normals from the depth image,

discard points from non-horizontal surfaces and register a

planar model using Random Sample Consensus (RANSAC).

The main objective here is to construct a local reference

frame which is fixed in all dimensions, except for rotation

around the vertical axis. To this end, we find points on the

plane and extract object clusters with Euclidean Clustering

(see Fig. 3b).

In a second step, we fill-in holes in the depth map. We

employ a common scheme based on the work of Levin et al.

[17], who investigated the colorization of grayscale images

from few given color pixels. The colorization is guided by

the grayscale image in such a way that regions with similar

intensity are colored the same. We fill-in depth values using

the same technique guided by a grayscale version of the RGB

image. This has the advantage of using the RGB information

for disambiguation between different depth layers, whereas

the standard approach of depth image median filtering cannot

include color information.

In detail, the objective of the fill-in step is to minimize the

squared difference between the depth value D(p) with p =
(u, v) and the weighted average of the depth at neighboring

pixels,

J(D) =
∑

p



D(p)−
∑

s∈N(p)

wpsD(s)





2

, (3)

with

wps = exp
[

−(G(p)−G(s))2/2σ2
p

]

, (4)

where G(p) is the grayscale intensity of p and σp is the

variance of intensity in a window around p defined by N(·).
Minimizing J(D) leads to a sparse linear equation system,

which we solve with the BiCGSTAB solver of the Eigen

linear algebra package. A result of the fill-in operation can

be seen in Fig. 3d.

After the fill-in operation, we filter the depth map using a

shadow filter, where points whose normals are perpendicular

to the view ray get discarded. This operation is only executed

on the boundaries of the object to keep the object depth map

continuous.

To increase invariance of the generated images against

camera pitch angle changes, we normalize the viewing angle

by an optional reprojection step. The goal is to create a view

of the object from a canonical camera pitch angle. To enable

reprojection, we first create a mesh using straight-forward

triangulation from the filled depth map (Fig. 3e). We then

render the mesh from the canonical perspective to create

a new depth image. Our naı̈ve meshing approach creates

a linear interpolation for previously hidden surfaces of the

object (see Fig. 3f). We believe this to be a plausible guess of

the unknown geometry without making further assumptions

about the object, such as symmetries.

The final preprocessing step is to calculate a color C for

each depth image pixel p = (u, v) with the 3D reprojection

p
∗ = (x, y, z). We first estimate a 3D object center q from

the bounding box of the object point cloud. The points are

then colored according to their distance r from a line g
through q in the direction of the plane normal n from tabletop

segmentation (Fig. 4):

C(p) = P (distg(p
∗)). (5)



n

Fig. 4: Coordinate system used for colorization. The detected

plane normal n through the object center is depicted as a

green bar, while an exemplary distance to a colorized point

is shown as a red bar.

We chose a fixed RGB interpolation from green over red and

blue to yellow as palette function P . Since the coloring is not

normalized, this allows the network to discriminate between

scaled versions of the same shape. If scale-invariant shape

recognition is desired, the coloring can easily be normalized.

Note that depth likely carries less information than color

and could be processed at a coarser resolution. We keep

resolution constant, however, since the input size of the

learned CNN cannot be changed.

C. Image Feature Extraction

We investigated the winning CNN from ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC) 2011 by

Krizhevsky et al. [8]. The open-source Caffe framework [15]

provides a pre-trained version of this network.

We extract features from the previous-to-last and the last

fully connected layer in the network (named fc7 and fc8

in Caffe). This gives us 4 096 + 1 000 = 5 096 features per

RGB and depth image each, resulting in 10 192 features per

RGB-D frame.

Reprojection and coloring are only used for instance-level

classification and pose regression, since object categoriza-

tion cannot benefit from a canonical perspective given the

evaluation regime of the Washington RGB-D dataset.

Figure 5 shows responses of the first convolutional layer

to RGB and depth stimuli. The same filters show different

behavior in RGB and depth channels. As intended by our

preprocessing, the activation images exhibit little activity in

faded-out background regions.

IV. LEARNING METHOD

A. Object Classification

For classification, we use linear Support Vector Machines

(SVMs). We follow a hierarchical approach as in Lai et al.

[13]: In a first level, a linear multiclass SVM predicts the

object category. The next level contains SVMs predicting the

instance in each particular category.

B. Object Pose Estimation

The RGB-D object dataset makes the assumption that

object orientation is defined by a single angle α around

the normal vector of the planar surface. This angle is

consistently annotated for instances of each object category.

However, annotations are not guaranteed to be consistent

across categories.

Instead of regressing α directly, we construct a hierarchy for

pose estimation to avoid the discontinuity at α = 0◦ = 360◦,

which is hard for a regressor to match. We first predict

a rough angle interval for α using a linear SVM. In our

experiments, four angle intervals of 90◦ gave best results. For

each interval, we then train one RBF-kernel support vector

regressor to predict α. During training, we include samples

from the neighboring angle intervals to increase robustness

against misclassifications on the interval level.

This two-step regressor is trained for each instance. We

further train the regressor for each category to provide pose

estimation without instance identification, which is supported

by the dataset but is not reported by other works, albeit being

required in any real-world household robotics application.

V. EVALUATION

A. Evaluation Protocol

We evaluate our approach on the Washington RGB-D

Objects dataset [12]. It contains 300 objects organized in

51 categories. For each object, there are three turntable

sequences captured from different camera elevation angles

(30◦, 45◦, 60◦). The sequences were captured with an ASUS

Xtion Pro Live camera with 640×480 resolution in both RGB

and depth channels. The dataset also contains approximate

ground truth labels for the turntable rotation angle.

Furthermore, the dataset provides an object segmentation

based on depth and color. We use this segmentation mask

in our pre-processing pipeline. However, since our RGB pre-

processing needs background pixels for smooth background

fading (Section III-A), we could not use the provided

pre-masked evaluation dataset but instead had to use the

corresponding frames from the full dataset. Since our method

fades out most of the background, only features close to

the object remain. This includes the turntable surface, which

is not interesting for classification or pose regression and

the turntable markers, which do not simplify the regression

problem since the objects are placed randomly on the turntable

in each view pose. Thus, we believe that our results are still

comparable to other results on the same dataset.

For evaluation, we follow the protocol established by Lai

et al. [12] and Bo et al. [14]. We use every fifth frame for

training and evaluation. For category recognition, we report

the cross-validation accuracy for ten predefined folds over

the objects, i.e. in each fold the test instances are completely

unknown to the system.

For instance recognition and pose estimation, we employ

the Leave-Sequence-Out scheme of Bo et al. [14], where

the system is trained on the 30◦ and 60◦ sequences, while

evaluation is on the 45◦ sequence of every instance.



Fig. 5: CNN activations for sample RGB-D frames. The first column shows the CNN input image (color and depth of a

pitcher and a banana), all other columns show corresponding selected responses from the first convolutional layer. Note that

each column is the result of the same filter applied to color and pre-processed depth.

classes (CNN) classes (PHOW)

instant noodles (CNN) instant noodles (PHOW)

Fig. 6: Visualization of our CNN-based features. Top row

shows t-SNE embedding of 1/10 of the Washington RGB-D

Objects dataset using CNN and PHOW features, colored by

class. CNN separates classes better than PHOW. Bottom row

shows a separate t-SNE embedding of the instant noodles

class (45◦ sequence), colored and connected by pose. The

CNN separates instances and creates pose manifolds.

B. Results

In addition to the work of Bo et al. [14], we compare our

proposed method to a baseline of dense SIFT features (PHOW,

[18]), which are extracted at multiple scales, quantized using

k-means and histogrammed in a 2×2 and a 4×4 grid over

the image. We used vlfeat1 with standard settings, which are

optimized for the Caltech 101 dataset. We then apply SVM

training for classification and pose estimation as described

in Section IV.

Without any supervised learning, we can embed the features

produced by the CNN and PHOW in R
2 using a t-SNE

1http://www.vlfeat.org

TABLE I: Comparison of category and instance level classifi-

cation accuracies on the Washington RGB-D Objects dataset.

Category Accuracy (%) Instance Accuracy (%)

Method RGB RGB-D RGB RGB-D

Lai et al. [12] 74.3± 3.3 81.9± 2.8 59.3 73.9
Bo et al. [14] 82.4± 3.1 87.5± 2.9 92.1 92.8
PHOW[18] 80.2± 1.8 — 62.8 —
Ours 83.1± 2.0 89.4± 1.3 92.0 94.1

embedding [19]. The result is shown in Fig. 6. While the

upper row shows that CNN object classes are well-separated

in the input space, the lower row demonstrates that object

instances of a single class also become well-separated. Similar

poses of the same object remain close in the feature-space,

expressing a low-dimensional manifold. These are highly

desirable properties for an unsupervised feature mapping

which facilitate learning with very few instances. In contrast,

PHOW features only exhibit these properties to a very limited

extent: Classes and instances are less well-separated, although

pose similarities are largely retained.

Table I summarizes our recognition results and compares

them with other works. We improve on the state-of-the-

art in category and instance recognition accuracy for RGB

and RGB-D data. The exception is RGB-based instance

recognition, where the HMP approach by Bo et al. [14]

wins by 0.1%.

Analyzing the confusion matrix (Fig. 7), the category level

classification exhibits few systematic errors. Some object

categories prove to be very difficult, since they contain

instances with widely varying shape but only few examples

(e.g. mushroom), or instances which are very similar in color

and shape to instances of other classes (e.g. pitcher and

coffe mug). Telling apart the peaches from similarly rounded

but brightly colored sponges would likely profit from more

examples and detailed texture analysis.

Classification performance degrades gracefully when the

dataset size is reduced, which is shown in Fig. 8. We

reduce the dataset for category and instance recognition by

uniform stratified sampling on category and instance level,

respectively. With only 30% of the training set available,

category classification accuracy decreases by 0.65 percentage



12

3

0 25 50
0

25

50

Prediction

C
at

eg
o

ry

0

0.2

0.4

0.6

0.8

Fig. 7: Top: Confusion matrix for category recognition,

normalized by number of samples for each ground truth

label. Selected outliers: 1) pitcher recognized as coffee mug,

2) peach as sponge, 3) keyboard as food bag. Bottom: Sample

images for pitcher, coffe mug, peach, and sponge.

CNN: RGB-D CNN: RGB

Bo et al. [14] (RGB-D) PHOW (RGB)

0.7

0.8

0.9

C
at

eg
o

ry
ac

c.

0.85

0.9

0.95

In
st

an
ce

ac
c.

0 0.2 0.4 0.6 0.8 1

20

40

60

Relative training set size

P
o

se
er

ro
r

(◦
) CNN: RGB-D (Instance)

CNN: RGB-D (Category)

Fig. 8: Learning curves for classification accuracy (top and

center) and median pose estimation error (bottom). We

report cross validation accuracy for category recognition and

accuracy on the 45◦ sequence for instance recognition.

0

50

100

150
Category level

Category

P
o

se
er

ro
r

(m
ed

ia
n

)

lemon

lime

tomato

Instance level

Category

Fig. 9: Distribution of median pose error over categories. Left

plot shows median pose error over categories, right plot over

instances. Median over all categories is shown in red. Some

objects of type lemon, lime, and tomato exhibit high rotation

symmetry and do not support pose estimation.

TABLE III: Runtimes of various algorithm steps per input

frame in seconds. We measured runtime on an Intel Core

i7-4800MQ @ 2.7 GHz and a standard mobile graphics

card (NVidia GeForce GT 730M) for CUDA computations.

Timings include all preprocessing steps.

Step Our work Bo et al. [14]

Feature extraction (RGB) 0.013 0.294
Feature extraction (depth) 0.173 0.859
Total 0.186 1.153

points only (PHOW: 2.2%), while instance classification

decreases by roughly 2% (PHOW: 25.2% from 62.6%, not

shown). This supports our observation that the CNN feature

space already separates the categories of the RGB-D objects

in a semantically meaningful way.

We also performed an categorization experiment with the

Leave-Sequence-Out evaluation protocol. When training on

the two camera pitch angles of 30◦ and 60◦ and testing the

same objects for the pitch angle of 45◦, our method achieves

near perfect category recognition accuracy (99.6%).

We also improve the state-of-the-art in pose estimation by a

small margin. Table II reports the pose estimation error of the

instance-level estimation and the category-level estimation.

Notably, our average pose error is significantly lower than

the pose error of the other methods. We were not able to

produce reasonable accuracies for pose based on the PHOW

features, since the large instance classification error strongly

affects all pose estimation metrics.

Surprisingly, our category-level pose regression achieves

even lower median pose error, surpassing the state-of-the-art

result of Bo et al. [14]. The category-level estimation is less

precise only in the MedPose(I) and AvePose(I) categories,

where its broader knowledge is not as useful as precise fitting

to the specific instance. Figure 9 shows the distribution of

pose errors over categories. We note that the dataset contains

objects in at least three categories which exhibit rotation

symmetries and do not support estimating pose. This effect is

mitigated by category level pose estimation, which shows that

pose estimation can greatly benefit from the generalization

across instances provided by category-level training.



TABLE II: Median and average pose estimation error on Washington RGB-D Objects dataset. Wrong classifications are

penalized with 180◦ error. (C) and (I) describe subsets with correct category/instance classification, respectively.

Angular Error (◦)

Work MedPose MedPose(C) MedPose(I) AvePose AvePose(C) AvePose(I)

Lai et al. [13] 62.6 51.5 30.2 83.7 77.7 57.1
Bo et al. [14] 20.0 18.7 18.0 53.6 47.5 44.8
Ours – instance level pose regression 20.4 20.4 18.7 51.0 50.4 42.8

Ours – category level pose regression 19.2 19.1 18.9 45.0 44.5 43.7

The MedPose error is the median pose error, with 180
◦ penalty if the class or instance of the object was not recognized. MedPose(C) is the median pose

error of only the cases where the class was correctly identified, again with 180
◦ penalty if the instance is predicted wrongly. Finally, MedPose(I) only

counts the samples where class and instance were identified correctly. AvePose, AvePose(C) and AvePose(I) describe the average pose error in each case
respectively.

TABLE IV: Color palettes for depth colorization with

corresponding instance recognition accuracy.

Accuracy (%)

Palette Depth Only RGB-D

Gray 41.8 93.1

Green 38.8 93.3

Green-red-blue-yellow 45.5 94.1

The color palette choice for our depth colorization is a cru-

cial parameter. We compare the four-color palette introduced

in Section III to two simpler colorization schemes (black

and green with brightness gradients) shown in Table IV and

compared them by instance recognition accuracy. Especially

when considering purely depth-based prediction, the four-

color palette wins by a large margin. We conclude that more

colors result in more discriminative depth features.

Since computing power is usually very constrained in

robotic applications, we benchmarked runtime for feature

extraction and prediction on a lightweight mobile computer

with an Intel Core i7-4800MQ CPU @ 2.7 GHz and a

common mobile graphics card (NVidia GeForce GT 730M)

for CUDA computations. As can be seen in Table III, the

runtime of our approach is dominated by the depth pre-

processing pipeline, which is not yet optimized for speed.

Still, our runtimes are low enough to allow frame rates of

up to 5 Hz in a future real-time application.

VI. CONCLUSION

We presented an approach which allows object categoriza-

tion, instance recognition and pose estimation of objects on

planar surfaces. Instead of handcrafting or learning features,

we relied on a convolutional neural network (CNN) which was

trained on a large image categorization dataset. We made use

of depth features by rendering objects from canonical views

and proposed a CNN-compatible coloring scheme which

codes metric distance from the object center. We evaluated

our approach on the challenging Washington RGB-D Objects

dataset and find that in feature space, categories and instances

are well separated. Supervised learning on the CNN features

improves state-of-the-art in classification as well as average

pose accuracy. Our performance degrades gracefully when

the dataset size is reduced.

REFERENCES

[1] R. Girshick, J. Donahue, T. Darrell, and J. Malik. (2013). Rich feature
hierarchies for accurate object detection and semantic segmentation.
arXiv: 1311.2524.

[2] A. S. Razavian, H. Azizpour, J. Sullivan, and S. Carlsson, “CNN
features off-the-shelf: an astounding baseline for recognition,” CVPR

DeepVision Workshop, 2014.
[3] J. Donahue, Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and

T. Darrell, “Decaf: a deep convolutional activation feature for generic
visual recognition,” in Proceedings of International Conference on

Machine Learning (ICML), 2014, pp. 647–655.
[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based

learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[5] M. Riesenhuber and T. Poggio, “Hierarchical models of object recog-
nition in cortex,” Nature neuroscience, vol. 2, no. 11, pp. 1019–1025,
1999.

[6] S. Behnke, Hierarchical neural networks for image interpretation,
ser. Lecture Notes in Computer Science (LNCS). Springer, 2003,
vol. 2766.

[7] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. (2014).
ImageNet large scale visual recognition challenge. arXiv: 1409.
0575.

[8] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural

Information Processing Systems (NIPS), 2012, pp. 1097–1105.
[9] D. Scherer, A. Müller, and S. Behnke, “Evaluation of pooling

operations in convolutional architectures for object recognition,” in
Artificial Neural Networks (ICANN), Springer, 2010, pp. 92–101.

[10] M. D. Zeiler and R. Fergus, “Visualizing and understanding con-
volutional networks,” in European Conference on Computer Vision

(ECCV), 2014, pp. 818–833.
[11] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich

features from RGB-D images for object detection and segmentation,”
in Europ. Conf. on Computer Vision (ECCV), 2014, pp. 345–360.

[12] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-
view RGB-D object dataset,” in International Conference on Robotics

and Automation (ICRA), 2011, pp. 1817–1824.
[13] K. Lai, L. Bo, X. Ren, and D. Fox, “A scalable tree-based approach

for joint object and pose recognition.,” in Proceedings of Conference

on Artificial Intelligence (AAAI), 2011.
[14] L. Bo, X. Ren, and D. Fox, “Unsupervised feature learning for RGB-

D based object recognition,” in International Symp. Experimental

Robotics, 2013, pp. 387–402.
[15] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.

Guadarrama, and T. Darrell. (2014). Caffe: convolutional architecture
for fast feature embedding. arXiv: 1408.5093.

[16] D. Holz, S. Holzer, R. B. Rusu, and S. Behnke, “Real-time plane
segmentation using RGB-D cameras,” in RoboCup 2011: Robot

Soccer World Cup XV, 2012, pp. 306–317.
[17] A. Levin, D. Lischinski, and Y. Weiss, “Colorization using optimiza-

tion,” in Transactions on Graphics (TOG), vol. 23, 2004, pp. 689–694.
[18] A. Bosch, A. Zisserman, and X. Munoz, “Image classification using

random forests and ferns,” in Int. Conf. on Computer Vision, 2007.
[19] L. Van der Maaten and G. Hinton, “Visualizing data using t-SNE,”

Journal of Machine Learning Research, vol. 9, pp. 2579–2605, 2008.


