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Abstract

Person re-identification (Re-ID) is an important prob-

lem in video surveillance, aiming to match pedestrian im-

ages across camera views. Currently, most works focus

on RGB-based Re-ID. However, in some applications, RGB

images are not suitable, e.g. in a dark environment or at

night. Infrared (IR) imaging becomes necessary in many

visual systems. To that end, matching RGB images with

infrared images is required, which are heterogeneous with

very different visual characteristics. For person Re-ID, this

is a very challenging cross-modality problem that has not

been studied so far. In this work, we address the RGB-IR

cross-modality Re-ID problem and contribute a new mul-

tiple modality Re-ID dataset named SYSU-MM01, includ-

ing RGB and IR images of 491 identities from 6 cameras,

giving in total 287,628 RGB images and 15,792 IR im-

ages. To explore the RGB-IR Re-ID problem, we evalu-

ate existing popular cross-domain models, including three

commonly used neural network structures (one-stream, two-

stream and asymmetric FC layer) and analyse the relation

between them. We further propose deep zero-padding for

training one-stream network towards automatically evolv-

ing domain-specific nodes in the network for cross-modality

matching. Our experiments show that RGB-IR cross-

modality matching is very challenging but still feasible us-

ing the proposed model with deep zero-padding, giving the

best performance. Our dataset is available at http://

isee.sysu.edu.cn/project/RGBIRReID.htm.

1. Introduction

Person re-identification (Re-ID) is an important field in

video surveillance. A large number of models for Re-ID

problem have been proposed, including feature learning

[29, 48, 23], distance metric learning [55, 15, 22, 28, 23, 24,
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Figure 1. Examples of RGB images and infrared (IR) images cap-

tured in two outdoor scenes in the day time and in the night, re-

spectively. The images in every two columns are of the same per-

son. Captured by devices receiving light of different wavelength,

RGB images and IR images of the same person look very different.

49, 57, 21, 44, 56] and end-to-end learning [20, 1, 47, 46].

Most Re-ID methods are based on RGB-RGB matching, the

most common single-modality Re-ID problem.

However, RGB-RGB Re-ID can be limited in surveil-

lance when lighting is either poor or unavailable. For in-

stance, RGB images become uninformative at night (Fig-

ure 1). In such a case, imaging devices without relying

on visible light should be applied. Infrared (IR) cameras

are commonly used in video surveillance systems. While

depth images captured by RGB-D cameras such as Kinect

are also independent of visible light, but they are rarely de-

ployed because they are more expensive, used indoor only

and with distance limitations. Since most surveillance cam-

eras are able to automatically switch from RGB to IR mode

in the dark, it is necessary to study RGB-IR cross-modality

matching in 24-hour surveillance systems.

In this work, we introduce the RGB-IR cross-modality

Re-ID problem. Although RGB-IR Re-ID is common and

significant in real-world applications, to our best knowl-

edge, it has been rarely explored and remains an open is-
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sue. RGB-IR Re-ID is a very challenging problem due to

the great differences between two modalities. Firstly, RG-

B and IR images are intrinsically distinct. See Figure 1,

RGB images in the first row have three channels containing

colour information of visible light, while IR images in the

second row have one channel containing information of in-

visible light. Thus, they can be regarded as heterogeneous

data. Secondly, from imaging principle aspect, the wave-

length range of RGB and IR images is different. In existing

Re-ID works, colour information is the most important ap-

pearance cue for identifying persons. However, in the RGB-

IR Re-ID problem, this cue can hardly be used. As shown

in Figure 1, even human can hardly recognise the persons

by colour information. This leads to severe data misalign-

ment within the same class. Moreover, viewpoint change,

pose and exposure problems which cause large intra-class

discrepancy in RGB-based Re-ID also bring difficulties to

RGB-IR cross-modality Re-ID, resulting in a much more

challenging problem. Although there exists a few Re-ID

methods using IR images such as Jungling et al. [13]. They

only consider the IR-IR video matching for Re-ID but does

not consider the cross-modality RGB-IR Re-ID problem.

We first identify the challenge of RGB-IR Re-ID by

conducting extensive evaluations on popularly used cross-

modality methods. For this purpose, we have collected a

new dataset called SYSU Multiple Modality Re-ID (SYSU-

MM01) dataset. The comparison with existing commonly

used Re-ID datasets is shown in Table 1. It contains 287,628

RGB images and 15,792 IR images of 491 persons captured

in 6 cameras. To our best knowledge, this new RGB-IR Re-

ID dataset provides for the first time a meaningful bench-

mark for the study of cross-modality RGB-IR Re-ID.

For cross-modality matching tasks, domain-specific

modelling is important for extracting shared features for

matching because of the domain shift. Considering using

neural networks for cross-modality matching, we investi-

gate and analyse the relation between different neural net-

work structures, including two-stream structure and asym-

metric FC layer structure, in which the domain-specific

modelling exists but is designed manually. Alternatively,

we propose a deep zero-padding method for training one-

stream network tending towards evolving domain-specific

structures automatically. Extensive experiments show the

effectiveness of deep zero-padding, which outperforms the

compared hand-crafted feature and deep models.

The contributions of this paper are: (1) We contribute

for the first time a standard benchmark SYSU-MM01 for

supporting the study of RGB-IR cross-modality Re-ID. We

conducted extensive experiments to evaluate popular base-

line deep learning architectures for cross-modality RGB-IR

Re-ID. (2) We analyse three different network structures

(one-stream structure, two-stream structure and asymmet-

ric FC layer structure) and give insights on their effective-

Table 1. Comparison between SYSU-MM01 with existing Re-ID

datasets. (-/- denotes the RGB#/IR#.)
Datasets ID# images# cameras# RGB IR

VIPER [7] 632 1,264 2 yes no

iLIDS [54] 119 476 2 yes no

CAVIAR [5] 72 610 2 yes no

PRID2011 [11] 200 971 2 yes no

CUHK01 [19] 972 1,942 2 yes no

SYSU [8] 502 24,448 2 yes no

CUHK03 [20] 1467 13,164 6 yes no

Market [53] 1501 32,668 6 yes no

MARS [52] 1261 1,191,003 6 yes no

SYSU-MM01 491 287,628/15,792 6 yes yes

cam2

cam3

cam4

cam6

cam5

cam1

Figure 2. Examples of RGB images and infrared (IR) images in

our SYSU-MM01 dataset. Cameras 1-3 on the left are indoor

scenes and cameras 4-6 on the right are outdoor scenes. Every

two columns are of the same person.

ness for RGB-IR Re-ID. (3) We propose deep zero-padding

for evolving domain-specific structure automatically in one-

stream network optimised for RGB-IR Re-ID tasks. Our

experiments show that this approach for RGB-IR cross-

modality Re-ID outperforms not only a standard one-stream

network but also a two-stream network with explicit cross-

domain learning and extra computational costs.

2. SYSU-MM01 Dataset

2.1. Dataset Description

SYSU-MM01 contains images captured by 6 cameras,

including two IR cameras and four RGB ones. Differen-

t from RGB cameras, IR cameras work in dark scenarios.

We show the details in Table 2 and some samples from each

camera view in Figure 2. RGB images of camera 1 and

camera 2 were captured in two bright indoor rooms (room

1 and room 2) by Kinect V1. For each person, there are at

least 400 continuous RGB frames with different poses and

viewpoints. IR images of camera 3 and camera 6 are cap-

tured by IR cameras in the dark. The IR images have only

one channel, and they are different from 3-channel RGB

images. Camera 3 is placed in room 2 in dark environment,

while camera 6 is placed in an outdoor passage with back-

ground clutters. Camera 4 and 5 are RGB surveillance cam-

eras placed in two outdoor scenes named gate and garden.

Observing the samples of the dataset, we can see clearly

that the images of IR cameras (camera 3 and 6) are distinct

from RGB images, in terms of both colour and exposure.

Specifically, although camera 2 and 3 are in the same sce-
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Table 2. Overview of SYSU-MM01 dataset.
Cam location (in/out)door lighting ID# RGB#/ID IR#/ID

1 room1 indoor bright 259 400+ -

2 room2 indoor bright 259 400+ -

3 room2 indoor dark 486 - 20

4 gate outdoor bright 493 20 -

5 garden outdoor bright 502 20 -

6 passage outdoor dark 299 - 20

nario, the images of them suffer from dramatic colour shift

and exposure difference. For example, the first person’s

yellow clothes is distinct from her black trousers under the

RGB camera, but this colour distinction is nearly eliminat-

ed under IR camera (Column 1,2, Row 2,3 in Figure 2).

Moreover, IR images have only one channel and might lose

some texture details. The exposure of IR images captured

at different distances is also an issue. These all introduce

difficulties for the RGB-IR cross-modality Re-ID problem.

2.2. Evaluation Protocol

There are 491 valid IDs in SYSU-MM01 dataset. We

have a fixed split using 296 identities for training, 99 for

validation and 96 for testing. During training, all images of

the 296 persons in training set in all cameras can be applied.

In the testing stage, samples from RGB cameras are for

gallery set, and those from IR cameras are for probe set.

We design two modes, all-search mode and indoor-search

mode. For all-search mode, RGB cameras 1, 2, 4 and 5 are

for gallery set and IR cameras 3 and 6 are for probe set.

For indoor-search mode, RGB cameras 1 and 2 (excluding

outdoor cameras 4 and 5) are for gallery set and IR cameras

3 and 6 are for probe set, which is less challenging.

For both modes, we adopt single-shot and multi-shot set-

tings. For every identity under an RGB camera, we ran-

domly choose one/ten image(s) of the identity to form the

gallery set for single-shot/multi-shot setting. As for probe

set, all images are used. Given a probe image, matching is

conducted by computing similarities between the probe im-

age and gallery images. Notice that matching is conducted

between cameras in different locations (locations are shown

in Table 2). Camera 2 and camera 3 are in the same loca-

tion, so probe images of camera 3 skip the gallery images of

camera 2. After computing similarities, we can get a rank-

ing list according to descending order of similarities.

For indicating the performance, we use Cumulative

Matching Characteristic (CMC) [32] and mean average pre-

cision (mAP). Notice that, for CMC under multi-shot set-

ting, only the maximum similarity in all gallery images of

the same person is taken to compute the rank list. We repeat

the above evaluation 10 times with random split of gallery

and probe set and compute the average performance finally.

3. Network Structure Comparison on Cross-

Modality Modelling

We investigate deep learning network architectures for
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Figure 3. Four network structures in our evaluation. The structure

of conv blocks depends on the base network (ResNet [9] in our

evaluation). The colour of conv blocks and FC layers indicates

whether the parameters are shared or not. Red and blue indicate

specific parameters and green indicates shared parameters.

the task of RGB-IR cross-modality Re-ID. In particular, we

examine three commonly adopted network structures for vi-

sual recognition and cross-modality learning. We further

exploit the idea of deep zero-padding for model training and

give insights on its impact on cross-modality matching task.

3.1. Common Deep Model Network Structures

In the past few years, a large number of deep models

have been proposed for visual matching and cross-modality

modelling, and have achieved satisfactory performance in

many tasks. The most commonly used structures can main-

ly be categorized into 3 types. All structures that we are

going to discuss are shown in Figure 3.

One-stream Structure. One-stream structure is the most

commonly used in vision tasks. As shown in the first net-

work in Figure 3, there is single input and all parameters

are shared in the whole network. Representative networks

include AlexNet [16], VGG [38], GoogleNet [40], ResNet

[9] and so on, which perform well in classification, detec-

tion, tracking and many other tasks. In the field of Re-ID,

JSTL-DGD [47], one of the state-of-the-art network, uses

one-stream structure as well. Generally, in these tasks, the

inputs to the network are RGB images, which are of the

same modality. So sharing all parameters in the network is

appropriate for these tasks.

Two-stream Structure. Two-stream structure is commonly

used in cross-modality matching tasks. As shown in the sec-

ond network in Figure 3, there are two inputs, correspond-

ing to data in two different domains. In the shallower layers,

the parameters of network are specific for each domain. In

the deeper layers, shared parameters are used. The gener-

alized similarity net [26] proposed by Lin et al. for cross-
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Figure 4. Explanation of how one-stream network can represent

two-stream network in Assumption 1 with domain indicator and

domain selection sub-network in forward propagation.

domain visual matching including the Re-ID task is one of

the representative structure of this type. Networks with t-

wo inputs similar to two-stream structure are also favorable

in Re-ID tasks, for example, Ahmed’s net [1], SIR-CIR net

[42], gated siamese net [41], etc. Note that except for Lin’s

structure [26], most of them prefer sharing parameters in

domain-specific layers. This is not exactly identical to our

definition of two-stream structure. The reason may be, al-

though the images are from different cameras, they are all

of the same modality of RGB images. Compared to one-

stream structure, two-stream structure achieves two things,

domain adaptation and discriminative feature learning. It

is assumed that the domain-specific network can extract

shared features for different domains, and then the shared

network can extract discriminative features for matching.

Asymmetric FC Layer Structure. Asymmetric FC layer

model is also used in multi-domain tasks, for example, MD-

Net [33] for multi-domain tracking, CVDCA [2] for Re-ID

and IDR [10] for VIS-NIR face recognition, etc. As shown

in the third network in Figure 3, the structure shares nearly

all parameters except for the last FC layer. This design as-

sumes that the feature extraction for different domains can

be the same and domain adaptation is achieved in feature

level. This order of feature extraction and domain adapta-

tion is different from two-stream structure.

3.2. Analysis of Network Structures

– Connection of One-stream and Two-stream Structures

in special case. The three structures discussed above seem

to be different, we find interestingly that all structures can

be represented by one-stream structure in the forward prop-

agation process when the following assumption is hold:

Assumption 1. A domain selection sub-network would ex-

ist somewhere in a network, which can automatically select

samples of the corresponding domain as input, and the do-

main selection sub-network is fixed.

Under Assumption 1, we firstly give a simple example

how one-stream network can perform as two-stream net-

work in forward propagation. As shown in Figure 4, on the

left is a simplified two-stream network: two fully connect-

ed networks, each with a specific layer (blue and red) and a

shared layer (green). On the right is a one-stream network

which can be conditionally equivalent to the two-stream

one in forward propagation, in which there is a domain

selection sub-network for selecting the following domain-

specific structure. We first define some symbols for illus-

tration. Let xd1 ∈ R
d and xd2 ∈ R

d denote the input of

domain1 and domain2, respectively. We define a domain

indicator yind as a vector with two elements, of which the

value is [1, 0]T or [0, 1]T indicating domain1 or domain2,

respectively. Let fsel(x,yind) denote the domain selection

sub-network, implementing the following function:

fsel(x,yind) =

{

[Id,Od]
Tx, yind = [1, 0]T

[Od, Id]
Tx, yind = [0, 1]T .

(1)

The equation above suggests that if the domain selection

sub-network is fixed, the two-stream network can be repre-

sented by one-stream network in forward propagation.

– Analysis of One-stream Structure in General Case.

The assumption we hope above is less feasible. Now, we

drop this assumption and analyse the domain-specific prop-

erty of one-stream network. For cross-modality matching

tasks, domain-specific modelling is important for extract-

ing shared components for matching because of domain

shift. Generally, in neural networks, e.g., two-stream and

asymmetric FC layer structure, this is modelled by domain-

specific structures. Thus we intend to analyse the domain-

specific modelling in one-stream network. Our analysis is

based on the following relaxed assumption:

Assumption 2. As shown in Figure 5, for a one-stream net-

work dealing with inputs of two domains, we categorize

the output nodes of each layer into three types, domain1-

specific nodes, domain2-specific nodes and shared nodes.

The categorization depends on whether the response of the

node is domain-specific. Let x
(l)
d1 and x

(l)
d2 denote the input

to layer l + 1 of domain1 and domain2, respectively. For

example, x
(0)
d1 and x

(0)
d2 are inputs of the whole network. Let

η
(l)
i denote the i-th node in layer l and fout(x

(0), i, l) de-

note the output of η
(l)
i with the network input x(0), we have:

fout(x
(0), i, l) = σ(

∑

j

w
(l−1)
j,i fout(x

(0), j, l − 1) + b
(l−1)
i ), (2)

where σ(·) is the activation function, w
(l−1)
j,i and b

(l−1)
i are

weight and bias parameters of layer l− 1. The type of node

η
(l)
i is defined by

type(η
(l)
i ) =















domain1− specific, fout(x
(0)
d2 , i, l) ≡ 0

domain2− specific, fout(x
(0)
d1 , i, l) ≡ 0

shared, otherwise.

(3)

For domain1-specific nodes, we use identity sign in

fout(x
(0)
d2 , i, l) ≡ 0 , which means that for any input of do-

main2, the output of node η
(l)
i is always zero.

Under Assumption 2, we define some symbols for anal-

ysis. Let L denote the loss function. Let o
(l+1)
i denote the
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output of the i-th node before activation function in layer

l + 1, x(l) denote the input to layer l + 1 and w
(l)
i and

b
(l)
i denote the weight and bias parameters, i.e., o

(l+1)
i =

(w
(l)
i )Tx(l) + b

(l)
i . Using the above defined categorization,

without loss of generality, x(l) can be factorized into three

parts1 x(l) = [x(l),1spe;x(l),2spe;x(l),s] in which the three

components denote the domain1-specific, domain2-specific

and shared nodes, respectively. We can also denote w
(l)
i as

w
(l)
i = [w(l),1spe;w(l),2spe;w(l),s].

For an input of the network x
(0)
d1 in domain1, according

to the categorization definition, x
(l),2spe
d1 = 0 because for

the output of each domain2-specific node, fout(x
(0)
d1 , i, l) ≡

0. In the forward propagation process, the output of layer

l + 1 is

o
(l+1)
i = (w

(l),1spe
i )Tx

(l),1spe
d1 + (w

(l),s
i )Tx

(l),s
d1 + b

(l)
i . (4)

For an input of the network x
(0)
d2 in domain2, similarly, we

have

o
(l+1)
i = (w

(l),2spe
i )Tx

(l),2spe
d2 + (w

(l),s
i )Tx

(l),s
d2 + b

(l)
i . (5)

In the back propagation process, for input of the network

x
(0)
d1 in domain1,

∂L

∂w
(l),1spe
i

=
∂L

∂o
(l+1)
i

∂o
(l+1)
i

∂w
(l),1spe
i

=
∂L

∂o
(l+1)
i

x
(l),1spe
d1 , (6)

∂L

∂w
(l),s
i

=
∂L

∂o
(l+1)
i

∂o
(l+1)
i

∂w
(l),s
i

=
∂L

∂o
(l+1)
i

x
(l),s
d1 , (7)

∂L

∂w
(l),2spe
i

=
∂L

∂o
(l+1)
i

∂o
(l+1)
i

∂w
(l),2spe
i

=
∂L

∂o
(l+1)
i

x
(l),2spe
d1 = 0. (8)

From the analysis above, we have two conclusions: (1)

In forward propagation, as shown in Figure 5, the weight

parameters w
(l),1spe
i (blue connections) and w

(l),2spe
i (red

connections) only have impact on input of corresponding

domain, which is similar to the domain-specific parameters

in two-stream networks. While for w
(l),s
i (green connec-

tions), it has impact on both two domains, which is similar

to the shared parameters in two-stream networks. Thus, the

network can implicitly control the domain-specific structure

by domain-specific nodes and control the shared structure

by shared nodes. (2) In backward propagation, if a node is

domain2-specific, with input in domain1, its corresponding

weight parameters will not be updated because the gradi-

ent is zero. That means the training samples of the oth-

er domain would not influence the implicit domain-specific

structure. Note that for an input x
(0)
d2 , the same conclusion

can be drawn in a similar way.

Remark 1. A one-stream network may implicitly learn and

evolve the domain-specific and shared structures in the net-

work if the three types of nodes defined by Equation (3) are

assumed to be existed in the network.

1“;” means concatenation of vectors.
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Figure 5. Explanation of deep zero-padding method. In each lay-

er, the blue nodes denote the domain1-specific nodes, the red n-

odes denote the domain2-specific nodes, the green nodes denote

the shared nodes and the dotted line nodes denote zero values.

Remark 2. Considering two-stream structure and asym-

metric FC layer structure, they are designed manually and

fixed during training. Moreover, the domain-specific struc-

ture of two domains are decoupled, while the shared struc-

ture is completely identical. In contrast, if one-stream struc-

ture can implicitly learn the structure, the implicit struc-

tures corresponding to different domains are partially cou-

pled by shared nodes and shared bias parameters (Equations

(4) and (5)), which can provide more flexibility in training

for cross-modality matching tasks.

4. Deep Zero-Padding

4.1. Analysis of Zero­Padding as Network Input

Since the node type we define in the last section (E-

quation (3)) is very optimal based on the assumption that

fout(x
(0)
d1 , i, l) ≡ 0 or fout(x

(0)
d2 , i, l) ≡ 0, and how to make

the network learn such nodes with the domain-specific

property in training stage remains an important problem. In

most cases, one-stream network is applied in single-domain

tasks, which treats all samples equally so that generally

domain-specific nodes may not be learned.

As analyzed in the previous sections, the structures of

two-stream network and asymmetric FC layer network are

designed manually and fixed during training, while one-

stream network can evolve the network structure implicit-

ly by learning domain-specific nodes, which may generate

more optimal structure. For this purpose, we propose to

use zero-padding input to stimulate the domain-specific re-

sponse. As shown in Figure 5, for inputs from two domains

xd1 ∈ R
d and xd2 ∈ R

d, we apply zero-padding as follows:

x
pad
d1 = [xT

d1,O1×d]
T , x

pad
d2 = [O1×d,x

T
d2]

T . (9)

If we regard the network input as a prior-layer (or called

the 0-th layer), then all the nodes in such a prior-layer will

be definitely categorized as domain-specific nodes accord-

ing to our definition in Equation (3). Now, what is the case

for the nodes on the next layer? Indeed, it is hard to math-

ematically tell what it is, but we find that with the zero-

padding as network input, the nodes in the networks are
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Figure 6. Deep zero-padding for RGB and infrared (IR) images.

more possibly becoming domain-specific nodes. Here we

continue the analysis in Section 3.2, after applying activa-

tion function σ(·) to Equations (4) and (5) we have:

x
(l+1)
d1,i = σ((w

(l),1spe
i )Tx

(l),1spe
d1 + (w

(l),s
i )Tx

(l),s
d1 + b

(l)
i ),

x
(l+1)
d2,i = σ((w

(l),2spe
i )Tx

(l),2spe
d2 + (w

(l),s
i )Tx

(l),s
d2 + b

(l)
i ).

(10)

where x
(l+1)
d1,i and x

(l+1)
d2,i denote the output of the i-th node

in layer l + 1 with input from domain1 and domain2.

We find that for x
(l+1)
d1,i , there is an independent projec-

tion (w
(l),1spe
i )Tx

(l),1spe
d1 which has no overlap with the

part inside the activation function for x
(l+1)
d2,i . This means

w
(l),1spe
i becomes a free variable independent of the terms

in the activation function for x
(l+1)
d2,i . Thus it can provide

more flexibility for neural networks to make fout(x
(0)
d1 , i, l+

1) > 0 and fout(x
(0)
d2 , i, l+ 1) ≡ 0 to meet the requiremen-

t for domain1-specific nodes as compared to Equation(3).

It would be easier for neural network to spread the domain

specific-nodes in deeper layers. Since the zero-padding not

only appears in the input, but also can spread in the network.

We call this method deep zero-padding.

Of course, our deep zero-padding only makes neural net-

works more flexible in spreading domain-specific nodes in

the network but not force to. Actually, our neural network-

s learning empirically support this. As shown in Figure 7

and Figure 8, deep zero-padding helps the network learn

domain-specific nodes more easily than that without zero-

padding. The details will be illustrated later in Section 4.2.

4.2. Deep Zero­Padding for RGB­IR Re­ID

In our task RGB-IR cross-modality Re-ID, a channel is

corresponding to a node in FC layer for convolutional neural

network. For images, zero-padding is conducted in channel

level. As illustrated in Figure 6, RGB image is converted to

gray-scale image and placed in the first channel, and then

zero-padding image is placed in the second channel. For

infrared image, it is placed in the second channel and zero-

padding image is placed in the first channel.

To show the effectiveness of deep zero-padding, we vi-

sualize the feature map of ResNet-6 in our experiments and

Single-channel input

conv1

conv2

conv1

conv2

RGB

IR

Deep zero-padding

RGB-specific 

channel

IR-specific 

channel
RGB

IR

Figure 7. Feature maps of the first and second convolution lay-

ers of ResNet-6 with deep zero-padding and single channel in-

put. In each layer, the first row shows feature maps of RGB input

and the second row shows those of IR input. It is evident that

domain-specific channels on the left learned by deep zero-padding

are much more than those learned by single-channel input.

compare the differences between deep zero-padding and o-

riginal single-channel input. In Figure 7, we compute the

average feature maps of 50 different persons on our dataset,

and show all the 16 feature maps of the first and second con-

volution layers. As defined in Equation (3), we can catego-

rize the domain-specific channels indicated by the bounding

boxes. It is evident that, deep zero-padding helps to learn

more domain-specific channels than single-channel input.

To quantify the domain-specific nodes in the network,

we calculate the proportion of domain-specific nodes in

each layer. Both a small (strict) threshold and a large (loose)

threshold were set to determine whether the node is domain-

specific according to Equation (3). The relation between

the proportion of domain-specific nodes and layer depth is

shown in Figure 8. It can be observed that, the domain-

specific nodes mainly appear in shallower layers. It is rea-

sonable that the network prefers shared structure after layer

6. Using deep zero-padding helps to generate more domain-

specific nodes, while the proportions without zero-padding

are low in most layers. The details about the respective pro-

portions of two domains are provided in supplementary.

Domain-specific nodes enable the network to convolve

image from different domains using different filters, so as

to better alleviate the differences (e.g., gradient orientations

and exposure differences in Figure 1) between two domain-

s. The analysis above and experiment results in Table 3

show that, the network can learn domain-specific nodes eas-

ier with deep zero-padding and achieve better performance.

4.3. Comparison of Cross­Modality Learning

While cross-modality matching task has not drawn much

attention in Re-ID problem, it has been studied a lot in other

fields like information retrieval and face verification. Cross-

modality retrieval (e.g. text-image, tag-image) plays an im-

portant role in information retrieval. The models for cross-

modality retrieval can be classified into real-value represen-

tation and binary representation learning [43]. The former
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Figure 8. Relation between proportion of domain-specific nodes

and layer depth. The x-axis denotes layer depth from bottom to top

of the network, and the y-axis denotes the proportion of domain-

specific nodes. The strict threshold is T = 0.01 std(x
(l)
i ) and the

loose threshold is T = 0.05 std(x
(l)
i ) (std(x

(l)
i ) is the standard

deviation of the output of the i-th node in layer l). Generally, the

proportion of domain-specific nodes using deep zero-padding is

higher than that without zero-padding.

one includes subspace learning methods [25, 30, 60] and

deep learning frameworks [45, 6, 14, 12], while the latter

one includes linear models [39, 36, 59, 51] and non-linear

models [27, 50, 31]. Generalised similarity measure pro-

posed by Lin et al. [26] is for cross-domain visual match-

ing tasks, including RGB-RGB Re-ID task. Matching visu-

al face versus near infrared ones (VIS-NIR) [17, 58, 10] is

rather related to RGB-IR cross-modality Re-ID. Compared

with VIS-NIR face recognition, RGB-IR Re-ID is much

more challenging, due to lack of important colour informa-

tion. The remaining useful cues may be body shape, which

differs greatly with different viewpoints and poses.

In some multi-domain learning methods, e.g., HFA [18],

CRAFT [3], zero-padding in feature level is applied and

proved to be effective. These works are closely related to

our deep zero-padding. In comparison, our zero-padding is

done in raw image level and the domain-specific and shared

learning are done by deep neural network.

5. Experiments

We conducted extensive evaluations of existing Re-ID

and cross-domain matching models as baselines on our

SYSU-MM01 dataset. Then, we evaluated and analysed the

effectiveness of deep models, including the proposed deep

zero-padding and three network structures discussed in Sec-

tion 3. See Section 2.2 for detailed evaluation protocol.

5.1. Compared Models

Baseline Models. We evaluated three favorable handcraft-

ed features and cross-domain metric learning models as

baselines. Handcrafted features included HOG [4], LOMO

[23] and HIPHOP [3]. Metric learning methods included

KISSME [15], LFDA [34] and cross-domain models CCA

[35], CDFE [25], GMA [37], SCM [51] and CRAFT [3].

Deep Models. We evaluated four deep models shown in

Figure 3, including one-steam network, two-stream net-

work, asymmetric FC layer network and the proposed deep

zero-padding method (network structure is the same as one-

stream network). We applied residual block in ResNet [9]

as the base convolution block for all the four structures.

The number of filters for each block is 16, 16, 64, 128,

256 and 512, respectively. The next layer is an FC layer

of 256 dimensions used as feature. For these four networks,

the loss function was softmax loss as in ResNet [9], which

is commonly used and relatively stable. All of the hyper

parameters were kept the same. As for the input of the

first three networks, the images were converted to single-

channel gray-scale image and adjusted the size to 224×224.

For our proposed method, the input was further processed

by deep zero-padding as introduced in Section 3.

5.2. Model Comparisons and Analysis

Deep Models v.s. Baseline Models. We show comparative

results in Table 3, including the rank-1, 10, 20 accuracies of

CMC [32] and mean average precision (mAP).

From Table 3, we can see clearly that deep models out-

performed baseline models with large margins. Specifically,

the proposed deep zero-padding outperformed all the base-

lines by nearly 10% in terms of rank-1 accuracies.

All baseline models, i.e., handcrafted features with

cross-domain metric learning methods, performed poorly:

even the rank-1 accuracy of the best case failed to reach

10%. Note that LOMO feature contains rich colour in-

formation, and it performs very well in RGB-RGB Re-ID

problem. Hence the results indicate that in RGB-IR match-

ing, due to different imaging principles, the colour’s dis-

crimination degrades largely. Although body shape and

clothes textures can be used for identifying persons, low-

level features are not discriminative enough for the RGB-

IR cross-modality person Re-ID problem. As for the deep

models, however, the best rank-1 accuracy can achieve

20.58% for indoor-search. Although the problem is chal-

lenging, deep models are feasible to deal with it.

Deep Zero-Padding v.s. Other Deep Strategies. Although

deep models outperformed baseline models on the whole,

there were gaps among their performances to some extent.

In Table 3 we can see that the deep zero-padding out-

performed two-stream network and asymmetric FC lay-

er structure. Taking rank-1 accuracy in all-search mod-

e under single-shot setting for instance, the gaps between

deep zero-padding and two-stream/asymmetric FC layer are

3.15%/5.50%. It is possibly because two-stream and asym-

metric FC layer structure require careful architecture design

for this task, so their structures may not be optimal.

While with the same one-stream ResNet-6 network

structure, deep zero-padding also showed superiority over

the original one. The differences mainly took place in the

training stage. Deep zero-padding generated two domain-

specific channels in the input layer, helping the network

evolve the domain-specific structure implicitly during the

training stage. Since the domain-specific and shared struc-
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Table 3. Performance under all-search and indoor-search mode. r1, r10, r20 denote rank-1, 10, 20 accuracies (%).

Feature Metric

All-search Indoor-search

Single-shot Multi-shot Single-shot Multi-shot

r1 r10 r20 mAP r1 r10 r20 mAP r1 r10 r20 mAP r1 r10 r20 mAP

One-stream network

(deep zero-padding)
Euclidean 14.80 54.12 71.33 15.95 19.13 61.40 78.41 10.89 20.58 68.38 85.79 26.92 24.43 75.86 91.32 18.64

One-stream network Euclidean 12.04 49.68 66.74 13.67 16.26 58.14 75.05 8.59 16.94 63.55 82.10 22.95 22.62 71.74 87.82 15.04

Two-stream network

(2 specific + 4 shared blocks)
Euclidean 11.65 47.99 65.50 12.85 16.33 58.35 74.46 8.03 15.60 61.18 81.02 21.49 22.49 72.22 88.61 13.92

Asymmetric FC layer network Euclidean 9.30 43.26 60.38 10.82 13.06 52.11 69.52 6.68 14.59 57.94 78.68 20.33 20.09 69.37 85.80 13.04

Lin’s GSM 5.29 33.71 52.95 8.00 6.19 37.15 55.66 4.38 9.46 48.98 72.06 15.57 11.36 51.34 73.41 9.03

HIPHOP CRAFT 1.80 14.56 26.29 3.40 1.92 16.00 28.31 1.77 2.86 23.40 41.94 7.16 3.01 25.53 44.97 3.43

HOG

Euclidean 2.76 18.25 31.91 4.24 3.82 22.77 37.63 2.16 3.22 24.68 44.52 7.25 4.75 29.06 49.38 3.51

KISSME 2.12 16.21 29.13 3.53 2.79 18.23 31.25 1.96 3.11 25.47 46.47 7.43 4.10 29.32 50.59 3.61

LFDA 2.33 18.58 33.38 4.35 3.82 20.48 35.84 2.20 2.44 24.13 45.50 6.87 3.42 25.27 45.11 3.19

CCA 2.74 18.91 32.51 4.28 3.25 21.82 36.51 2.04 4.38 29.96 50.43 8.70 4.62 34.22 56.28 3.87

CDFE 2.09 16.68 30.51 3.75 2.47 19.11 34.11 1.86 2.80 23.39 44.46 6.91 3.28 27.31 48.61 3.24

GMA 1.07 10.42 20.91 2.52 1.03 10.29 20.73 1.39 1.84 17.97 36.14 5.64 1.80 18.10 35.79 2.63

SCM 1.86 15.16 28.27 3.57 2.40 17.45 31.22 1.66 3.30 25.82 46.23 7.52 3.90 28.84 51.64 3.22

CRAFT 2.59 17.93 31.50 4.24 3.58 22.90 38.59 2.06 3.03 24.07 42.89 7.07 4.16 27.75 47.16 3.17

LOMO

Euclidean 1.75 14.14 26.63 3.48 1.96 15.06 27.30 1.85 2.24 22.53 41.53 6.64 2.24 22.79 41.80 3.31

KISSME 2.23 18.95 32.67 4.05 2.65 20.36 34.78 2.45 3.83 31.09 52.86 8.94 4.46 34.35 58.43 4.93

LFDA 2.98 21.11 35.36 4.81 3.86 24.01 40.54 2.61 4.81 32.16 52.50 9.56 6.27 36.29 58.11 5.15

CCA 2.42 18.22 32.45 4.19 2.63 19.68 34.82 2.15 4.11 30.60 52.54 8.83 4.86 34.40 57.30 4.47

CDFE 3.64 23.18 37.28 4.53 4.70 28.23 43.05 2.28 5.75 34.35 54.90 10.19 7.36 40.38 60.33 5.64

GMA 1.04 10.45 20.81 2.54 0.99 10.50 21.06 1.47 1.79 17.90 36.01 5.63 1.71 18.11 36.17 2.88

SCM 1.54 14.12 26.27 3.34 1.66 15.17 28.41 1.57 2.86 24.34 44.53 7.06 2.89 25.81 48.33 3.02

CRAFT 2.34 18.70 32.93 4.22 3.03 21.70 37.05 2.13 3.89 27.55 48.16 8.37 2.45 20.20 38.15 2.69

Table 4. Comparison of deep zero-padding and similar networks.

r1 and r10 denote rank-1 and 10 accuracies (%).

Feature Metric
Single-shot Multi-shot

r1 r10 mAP r1 r10 mAP

One-stream network Euclidean 12.04 49.68 13.67 16.26 58.14 8.59

One-stream network

(domain indicator)
Euclidean 11.79 50.86 13.83 15.46 59.19 8.72

One-stream network

(deep zero-padding)
Euclidean 14.80 54.12 15.95 19.13 61.40 10.89

tures/components are learned by the network automatical-

ly, the implicit structure of the one-stream network may

be more suitable for RGB-IR Cross-modality Re-ID prob-

lem than the two-stream structure and asymmetric FC layer

structure in our experiments, which are set manually.

We also evaluated generalized similarity measure

(GSM), a closely related cross-domain two-stream deep

model proposed by Lin et al. [26]. We used the codes re-

leased by the authors in the experiments. Lin’s network is

not as effective as our two-stream model. Although it can

achieve good performance for RGB-RGB Re-ID as reported

in [26], it is inferior for dealing with the much more chal-

lenging RGB-IR cross-modality Re-ID problem.

Deep Zero-Padding v.s. Domain Indicator. As illustrat-

ed in Section 3, one-stream network may be able to work

as two-stream network with existence of domain indicator.

So we padded two additional channels to the input images

as domain indicators. For an RGB image, the first channel

was padded with all pixels equal to 255, and the second with

0, while for an IR image the first channel was padded with

0 and the second was padded with 255. This padding proce-

dure explicitly provided domain indicators to the network.

The performance comparison is shown in Table 4.

Table 4 shows that our proposed deep zero-padding

method achieved the best performance. Input with domain

indicator only achieved comparable performance as original

one-stream network. This result indicates that deep zero-

padding can exploit domain information more effectively.

6. Summary

To our best knowledge, this work is the first to identify

the RGB-IR cross-modality Re-ID problem and introduce

a new multi-modality Re-ID dataset named SYSU-MM01.

The great difference between RGB and IR images makes

RGB-IR cross-modality Re-ID formed as a very challeng-

ing problem. We have discussed and evaluated three com-

mon network structures for cross-domain tasks including

one-stream structure, two-stream structure and asymmetric

FC layer structure. We have analysed the connection be-

tween one-stream and two-stream structure and found that

one-stream network can learn and evolve domain-specific

structure implicitly if there exist domain-specific and shared

nodes. We propose deep zero-padding to help one-stream

network more likely evolve domain-specific nodes automat-

ically so as to make the implicit network structure more suit-

able for the task, and this is an alternative and flexible way

for cross-modality modelling as compared to the manually

designed fixed structure of two-stream network. The exper-

iments have shown that the one-stream network trained by

deep zero-padding achieved the best performance.
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