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Abstract This paper studies several topics related with the  concept  of  “frac-  tional”  that  are  not  directly  related  with  Fractional  Calculus,  but  can  help 

the reader in pursuit new research directions. We introduce the concept of 

non-integer  positional  number  systems,  fractional  sums,  fractional  powers 

of a square  matrix,  tolerant  computing  and  FracSets,  negative  probabil- 

ities, fractional delay discrete-time linear systems, and fractional Fourier 

transform. 
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1. Introduction 

Fractional  Calculus has  been receiving  a considerable  attention  during the last years. In fact, the concepts of “fractional” embedded in the integro- differential operator allow a remarkable and fruitful generalization of the operators of classical Calculus. The success of this  “new”  tool  in  applied 
sciences somehow outshines other possible mathematical generalizations involving the concept of “fractional”. The leitmotif  of  this  paper  is  to  

highlight several topics that may be useful for researchers, not only in the  

scope of each area, but also as possible avenues    for future progress. 
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Bearing these ideas in mind, the manuscript is organized  as  follows. 

Section 2 focuses the concept of non-integer positional number  systems. 

Section  3 studies  fractional  sums.  Section  4 discusses  the  fractional  pow- 

ers  of  a  square  matrix.  Section  5  draws  attention  to  tolerant  computing 

and FracSets. Section 6 introduces the concept  of  negative  probabilities. 

Section 7 addresses the case  of  fractional  delay  discrete-time  linear  sys- 

tems. Finally, section 8 analyzes the fundamentals of the fractional Fourier 

transform. 

 
2. Non-integer  Positional  Number Systems 

A positional number system (PNS) is a method of representing num- 

bers where the same symbol, or digit, can be associated to different orders of magnitude (i.e., it can assume different “weighs”).  The Hindu-Arabic 

base  10 PNS is nowadays the most widely used system. In a PNS the base, 

or radix, usually corresponds to the number of unique symbols (including 

the zero digit) that are adopted to represent the numbers.  For  example,    

in base  10 we use the symbols   0, 1, 2, ..., 9  .  To represent fractions and 

the numeric expansions of real numbers, the PNS notation is extended by the use of a radix decimal point.  The first known PNS was  the Babylo-   

nian base 60, which is still used for representing time and angles.  The 

base 2 system was introduced with the advent of computers and machine- 

based calculations, while other earlier PNS, as base 20 or base 12, have 

nowadays small relevance. 

All  mentioned  PNS  have  a  common  characteristic,  meaning  that  they 

use a positive integer base, b.  In general, numbers in base b are expressed     

as: 

 (anan−1...a1a0.a−1a−2a−3...)b =  
  

 

where bk are the weights of the digits and ak are non-negative integers less  

than b.  The position  k is  the logarithm  of  the corresponding weight,  which  

is given  by  k = logb b
k. 

Positive  integer  base  PNS  have  been  commonly  used,  but  other  bases 

are possible for representing numbers, namely negative integer [27, 40], im- 

proper fractional [34], irrational [9, 3, 61], transcendental [27] and complex 

bases. Negative integer bases have the advantage  that  no  minus  sign  is needed to represent negative numbers. Negative bases were first considered 
by  V.  Grünwald  in  1885  [25]  and  later  rediscovered  by  A.J.  Kempner  in 

1936 [34] and Z. Pawlak  &  A.  Wakulicz  in  1959  [52].  Improper  fractional bases were first addressed by A.J. Kempner in 1936 [34]. In this PNS most 

integer  numbers have  an infinite representation.   An irrational  base    PNS 
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was proposed by G. Bergman in 1957 [9], known as the τ  system, and based on the “golden ratio”. A generalization was proposed by A. Stakhov 

[61] by means of the “golden” p proportions.  In transcendental bases, in-  

tegers  greater  than  the base have  infinite digits in  its representation,  while 
it has been shown that base e (Napier’s constant) is theoretically the most efficient base [27]. Different complex bases  for  PNS  were  proposed  by  D. 

Knuth in 1955 [36], S. Khmelnik in 1964 and W.F. Penney in 1965 [55]. 

Similarly to expression  (2.1),  in  a  non-integer  base  PNS,  denoting  the 

base by  β > 1,  we have: 

 

 

 

  

where βk are the weights of the digits and ak are non-negative integers less 
than β. It is worth noting that equation (2.2) is a β − expansion [59, 51] 

and every real number, x, has at least one (possibly infinite)  β−expansion. 

Usually, a greedy algorithm is used to choose the canonical β−expansion of 

x [24].  First we denote by ×x∗ the floor operator (i.e., the greatest integer  less 

than or equal to x) and by {x} = x − ×x∗ the fractional part of x. Sec - 
 

 
 

and  rk =      x    .  Third,  for  k − 1 ≥ j  > −∞,  we  choose  aj = ×βrj+1∗ and   rj 
= {βrj+1}.  This means that the canonical β−expansion of x is obtained 

starting by choosing the largest ak such that βkak ≤ x, then choosing the 

largest ak−1 such that βkak + βk−1ak−1 x, and adopting the same scheme 

for the remaining indices. 
In  the  sequel  we  describe  in  more  detail  the  Bergman’s  τ system 

[9, 61].  This PNS  uses the  irrational  base  τ =  1+
√

5 , which  is known  as ‘golden ratio”, “golden proportion” or “golden mean”. A given real number, 
x, is represented by: 

  

where ai 0, 1 is  the  ith binary  digit  (i = 0, 1, 2, 3, ...)  and τ 
represents the base or  radix of the   PNS. The “golden  ratio”  is  the positive  root of  the algebraic equation: 

  which is known as “golden section problem” and from which the following 

identity results: 

  

ond, as it exists an integer k such that βk ≤ β < βk+1, we make ak  = 
x 

βk 
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Using expression (2.3) we  have  the “golden” representation of  number 

x. This means that x is expressed in a binary code consisting of two parts 

separated  by  a  decimal  point.  The first  part  anan−1...a1a0 corresponds to 
the weights  with positive powers τn, τn−1, ..., τ 1, τ 0 and the     second  part 

a−1a−2...a−m corresponds to the weights with negative powers τ−1, τ−2, ..., 
τ−m. The weights τi (i = 0, ±1, ±2, ±3, ...) are given by (2.5). 

The τ − system has the following properties [61]: 

(1) Certain irrational  numbers  (e.g.,  the  powers  of  the  golden  ratio  τ i 

and their sums) can be represented by  a  finite  numbers  of  digits, 
which is not possible in classical number systems (e.g., decimal, 

binary); 

(2) The “golden” representations of natural numbers  are  in  fact  frac- tional numbers, consisting of a finite number of   digits; 

(3) All non-zero real numbers have various “golden”  representations, 
which can be obtained from another by  means  of  two  transforma- tions: “devolution” and “convolution”.  These  transformations  are 
based  on  equation  (2.5).    The  “devolution”  applies  to  any   three neighboring digits of the initial “golden” representation and corre- 
sponds to the transformation 100 → 011. The “convolution” is the 
back transformation and is given by 011 →  100. 

If we perform all possible “devolution” operations on a given “golden” 
representation of a number, x, then we get the “maximal  form”  of  the  
number.  On the contrary,  performing all possible “convolutions” we obtain   the  “minimal  form”  representation.   The  “minimal”  and  “maximal”  forms are the extreme “golden” representations of x.  In the “minimal form” there   are  no  contiguous  1’s  and  in  the  “maximal”  form  there  are  no  contiguous 0’s  in the binary code. 

Let  now  consider  some  important  properties  of  natural  numbers  [61]. 

If N  is a natural number, then in the  τ    system we  can write the  τ    code   
of  N : 

  

 Applying Binet’s formula [67]: 

 

 

   

where, Fi and Li represent the Fibonacci and Lucas numbers, respectively, 

we get: 

  

 

Equation (2.8) shows that the natural even number 2N  is given by the s√um 
of an integer and the product of other integer by the   irrational number 5. 
On the other hand, it is worth  noting  that  the  identity  (2.8)  is  true for 

every natural number, N , if the following condition is met: 
 

  

 



 

± ± ± 

± ± ± 

2 

taking into account equation (2.9) we can observe that the sum  of  Lucas 

numbers in (2.8) is always  even. 

Properties of natural numbers [61]: 

(1)  

(2) Z − property – for any  natural number, N ,  expressed using  the 

τ − code,  if  we  replace  all  powers  of  the  golden  ratio  τi (i  = 

0, 1, 2, 3,  ... with  the  corresponding  Fibonacci numbers Fi, 
then the sum obtained equals to   0; 

(3) D − property – for any  natural number, N ,  expressed using the 

τ − code,  if  we  replace  all  powers  of  the  golden  ratio  τi (i  = 

0, 1, 2, 3, ... with  the  corresponding Lucas  numbers Li, then 
the sum obtained is an even  number equal to   2N . 

Taking  into  account the Z − property, equation  (2.8) yields: 

 

 

 

 

 

 

where Fi+1 = Li+Fi . Equation (2.11) represents the F − code of N . The 

binary digits in the τ − code and F − code coincide, which means that the 

F − code can be obtained from the τ − code by substituting the golden ratio 

powers τi for the Fibonacci numbers Fi+1 (i = 0, ±1, ±2, ±3, ...). 

If we rewrite equations (2.10) and (2.11), we can   obtain: 
 

  

 

 

this means that we  can also obtain  a L − code by  substituting the    golden 

ratio powers for  the Lucas  numbers Li+1. About  Bergman’s  mathematical  discovery,  Alexey  Stakhov  [62]  said  

that “...  can be considered as the major mathematical  discovery  in the field   
of number systems (following the Babylonian discovery of the positional 

principle of number representation and also decimal and binary  systems)”. 



 

  

 

3. Fractional Sums x 

  

 
 
 
 
 
 
 
 
 
 

follow closely the presentation in [44] based on 6  axioms. 

 

3.1. The axioms 
 

Assume that we are working in the context of complex functions defined   
in C. 

(1) Continued Summation 

 

 

 

This is exactly what happens with the normal integer order  sum- 

mation. 

(2) Translation  Invariance 

 

 

 

(3) Linearity 

 

For  arbitrary constants  α, β ∈ C, 

 
   
 

(4) Consistency  with  Classical Definition 
 

We  are going  to do a brief description of the theory involved.       We  will 
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(5) Monomials 

For  every  n ∈ N, the mapping 

 

 

is holomorphic on C.  This axiom  covers  the classic  cases:  sums  of 

integer powers. 

(6) Right  Shift Continuity 
If    lim 

n−→∞ f (z + n) = 0 pointwise for every z C, then 
y 

 

 

In [44] a more general format of this theorem is presented by considering 

the uniform approximation of f (x) by a sequence of   polynomials. 

In some applications it may be interesting to consider the Left Shift 
Contiuity that  can  be stated as: 

If    lim 
n−→∞ f (z − n) = 0 pointwise for every z ∈ C, then 

 
 
 

 

  

 

 

 

 

 

 

 

It is not  difficult  to  see  that  this  definition  is  conform  with  the  above  ax- 

ioms  [44].   In  the  computation  of  the  fractional  sums,  we  must  be  aware 

of the computational direction as we will  see.  This  means  that  we  must 

modify the summation symbol to include the  direction.  In  [42,  43,  44]  an 

arrow overstrikes the summation symbol. Any way in most applications the 

direction of summation is clear.  So, we will avoid  such change of    notation. 

3.2. The summation formula 

In agreement with the above subsection we are going to obtain a general 

summation  formula  using  the  axioms.   Let  x,  y  be  any  complex  numbers 

and n a positive integer; also assume that  f (x)  is  a  function  that  verifies 
Axiom  (6).  We  have successively: 



 

  

 

• The  Axiom  (1) gives 
  
  

 

 
and also 

 

 

 
Then 

 
 
 

 

• Also 

 

 

 

• By Axiom (2) 

 

 

 The first sum on the right-hand side involves an integer number of 

terms that can be evaluated  classically.  Now  let  n go to    infinity. 
   
 

 
 

• Using Axiom  (6)  we obtain 
  

  

 

 

that is  the  fundamental  summation  formula.  Although  it  is  not  

valid with enough generality the procedure above described can be 

used to treat other  cases. 

3.3. Examples 

• The geometric sequence summation.  
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• The binomial series 

 

 

 

 

 

 

 

and so, 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

4. Fractional Powers of a Square Matrix 

The calculation  of  the pth power of  a square n    n real  matrix  A,  where  

p is a real or complex value, arises in  applications  such  us  Markov  chain models in finance and healthcare [16, 32], fractional differential equations, 
nonlinear matrix equations and in computation [23,  10]. 

Many  authors  have  investigated  methods  for  computing  the  pth  power 

of matrices. In [29] are presented the Schur, Newton and Inverse Newton 

methods.  The Schur-Newton and Schur-Padé algorithms are also discussed    in 

[30].  Some of these methods impose additional conditions for matrix   A. 

In this  section  a reliable  method for computing  Ap,    p 
the eigenvalue decomposition, is presented. 

, based on 

Given a real square n × n matrix A, with the eigenvalues  λi and   the 
corresponding eigenvectors vi ,  1 i n, vi 0, there is the well know 
relation 

 

Is easily show  that 

Avi = λivi. (4.1) 

 
Anvi = λnvi (4.2) 

for all  positive  integers  n.  Thus,  we  have  one economical  substitution of 

a power of the scalar λi for the more complex computed power An of the 

given matrix. 

 

It is normal to consider the generalization of (4.2) to non-integer   values 

of  the  n.    For  a  nonsingular  matrix  A  if  we   have    n  = 1 it produces 
the  multiplicative  inverse  matrix  A−1  by  a  somewhat  circuitous  way   of 
computing it.  All other n negative-integer  values  are, of course, powers   of 
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A−1, [13, 14, 6]. 
 

 
 
 
  

 

 

 

 

 

 

 

 

 

 

  

 

Take,  for example,  the 3 × 3 following matrix  A and p =  3, 

  

 

The spectrum  of A, is λ1 = 3, λ2 = 2, λ3 = 1.  The set of eigenvectors     
is v1 = [−x1, −x1, x1], v2 = [−2x2, −x2, x2], v3 = [−9x3, −x3, 3x3], respec- 

tively. Considering, for example, x1 = x2 = x3 = 1 the set of eigenvectors 
results v1 = [−1, −1, 1], v2 = [−2, −1, 1], v3 = [−9, −1, 3]. 

To calculate  the desired  p root  of  A as  B = A p  we  need  to  find the 
real or complex elements a, b, c, d, e, f, g, h, i, we have 

  
 

 



 

 

 

 

 

 

 

 
so the desired cubic root matrix   is 

⎧

  

 

 

 

as a check, since we should have B3 =  A. 

Obviously, different sort of eigenvalues may produce distinct results.  In   

the example  we  analyzed  a  case  with  distinct  positive  eigenvalues.  If  we 

have  negative eigenvalues,  the p root matrix have  complex entries. 

Naturally the same process applies to larger order square matrices. The main limitation  is  to calculate  the matrix’s  spectrum. 
To  compute  noninteger  powers  in  general,  as  they  only  involve  rais- 

ing an eigenvalue to the appropriated power and following the procedure 

presented. 
 

 

 

5. On Tolerant Computing and FracSets 

Tolerant  computing is the ability to compute coping with missing data    and it is becoming increasingly important in  today’s  computer  dependent 
world.  Hence  there  are  plenty  of  strategies  for  incorporating  missing  data 

in  a  computing  process.   A  recent  practical  list  can  be  found  in  [33].   By  

a tolerant operation we mean an operation still defined and  closed  (in  the 
abstract algebra sense) when some operand value is missing.  Following 

Allouche  and Shallit  we  consider  the notion  of symbol  well  known  and do not define it  further [1].  As  it  is  customary  in  telecommunications  a  symbol 

is the communicational atomic token. In order to perform a  computation 

symbols must be received by the computing apparatus and sometimes  it 

receives nothing. For a general purpose computing system designed to deal 

with any  symbol missing data is a   no-symbol. 

When there is the need  to  refer  just  to  the  symbol  itself  without  any 

other meaning, just to its suitable glyph, it will be written between ' (single 



 

{∅} 

θ. 

 

straight  quotes).  As  an  example  we  can  refer  the  Greek  letter  'π'.  When 

used without the surrounding straight quotes this letter can stand for  a 

number, for a plane, for a partition or for any other meaning deemed  ap- 

propriate by an author. Another example stems from the usual convention of 

representing the blank by 'b/ '.  By this convention,  abc  xyz and abcb/ xyz 

represent the same. 

For the no-symbol we need  a  similar  convention.  The  no-symbol  is defined as symbol absence and some glyphed representation is needed for it.   

To  stand  for  symbol  absence,  we  introduce  the  glyph  '∅ '.   When  used without the surrounding straight quotes this symbol sole meaning is   “here there  is  no  symbol”.   We   equate ∅  with  the  empty  bunch  in  the Hehner 

sense [28].  As an example of its use we can write the empty set as {} or  as 
  

. 

On the notation: We define the comparison equal as = . The production equal as =: . The 
equivalent  equal  as  ≡.   The set  of  the  finite  natural numbers with  zero 
as N0 ≡ N ∪ {0}.   The bilogic  value  of an expression expr as (:   expr  :). 
The trilogic value of an expression expr as  .

.  
expr .

.
).  The tolerant version 

(. . 

of  an  entity  θ as  
 

 TT  as  the  abbreviation  of  “tolerant”.   NTT  as the abbreviation  of “non-tolerant”. 
On the appropriate logic for the tolerant  equal : The first question. As  in  Codd  [17],  we  start  by  asking:  What  is  the  logic 

value  of ∅ = ∅ ?  This  question  can  formally  be rephrased  as:  what  is the 

value  produced  by  (:  ∅ =    ∅ :)?      As  stated  in  the  introduction,  this   is 

the same as asking for the logic value of an isolated comparison equal sign 
(: = :). 

 
Assertion 1.  The logic value of an equal sign, (:  = :), is not F or  T. 

P  r  o  o  f.  As  (:   (: ∅  
= ∅  

:) =: F :) =: F and  (:   (:∅  
= ∅  

:) =: T :) =: F ✷ 

This leads us into  the need for a logic  with more than just    two  values. 

 

A review of symbolic logic: This section is intended to  provide  a  brief 

overview of symbolic logic and to introduce some terminology and notation 

since  we  assume  that  the  reader  is  familiar  with  its  fundamentals.  Mind 

that in order to fully deal with tolerant operations a 3-valued  (tri-valued) 

symbolic logic framework is needed, see [56]. 
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Two-valued logic: Classical logic, or bilogic, has only two values. These values  

are  T̈  and  ̈F.   Usually,  as  bilogic  is  assumed  to  be  the  only  logic  in use, these 

values are written in a simplified way  as T and    F. 

Tri-valued logic: ...Tr..i.-value.d.. logic,  or  trilogic,  has  three  independent 
logic values wich are 0 , 1 , and 2 with no order whatsoever defined between 

any pair of them, albeit shown by their preferred presentation order. These 
values have neither any connection with the integers 0, 1, 2, nor with the bi-

logic  values  T̈ and  F̈ . 

Sema.n..tics of .s.y. mbolic logic:    We use T̈ and F̈ for bilogic True and False. 
We  use    T    and  F  for  tr.i.l.ogic  True  and  False.   N..o.  semantic  connection..i.s 

set  up  for  now  between    T    and  ̈T and  between    F    and  F̈.  We  equate    T 
... ... ...   

with and with . We postulate the remaining trilogic value to be ∅ . 

Introducing the tolerant equal: As the expression (: ∅ = ∅ :) produces neither  a  

F̈ nor  a  T̈ we  define 

  

 

This is most  inelegant,  since  this  forces  (:  expr :)  not  to  be  closed  in  the 

sense of always producing a valid bilogic value. Closure in the above sense is  

natural  in  a  trilogic  framework  where  (
..∅   

=  ∅ ..    =:  ∅ .   For  this  reason 

from now on when working in a TT environment we will do so in a trilogic 

framework. 

In  order  to  be able  to  compare ∅  we  define the tolerant  equal,  with 

symbol = , with the following characteristic property: 

  

A TT variable can assume the ∅ value.  A NTT variable can never assume  

the ∅ value. 

5.1. Tolerant operations and FracSets 

A tolerant operation is a generalization of a non tolerant one. So, the definition of the two-set tolerant Cartesian product must be made upfront. The formal definition of the Cartesian product stems from the definition of 
ordered pair. The most common definition of ordered pairs, the Kuratowski definition,  is (x, y) x   x y   .   This definition  is not suitable  for our 

purposes as 

 
and 
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Minding  that  an  urelement  is  an  isolated  set  element  that  is  not  a  set in itself, an elementary bunch, we define the urset as a finite set that when 
written in extension all symbols are either braces or stand for urelements. From this definition we can  conclude  that  the  empty  set  is  an  urset.  For 
ursets these are the tolerant ordered pairs [57]: 
{{a} b} the  strict dituple 

{{a} a} the dituple with both components  equal 
{{} a} the dituple with null first component . 
{{a}} the dituple with null second  component 

{{}} the null dituple With these dituples it is possible to define the tolerant Cartesian prod-    

uct or urcartesian  product of two ursets as the urset of all possible   dituples. 

The urcartesian symbol is . A tolerant operation is defined by its urcarte- sian. This definition is strictly for ursets and an urset is a finite set. In this text we don’t address the question of tolerant operations on any set. 
 

5.1.1. FracSets.   Using  tolerance  it  is  possible  to  define  a  certain  kind  of 
set,  neither  fuzzy  nor  crisp, the FracSet. 

Tolerant   belonging:    Let  us  consider  the  “belongs  to”,   ∈,   symbol.    It  
is used in expressions like  a  ∈ {a b c}.   We  introduce  now  the tolerant 
belonging  with  symbol    .   The  empty  set,  ∅,  can  be written  as  {} or 

∈ 
. . 

 
... 

equivalently  as {∅}.   We  cannot say  that ∅ ∈ { } since (.. ∅ ∈ { } ..)  =:    F 
but we  can say  that ∅ {} since we define 

 



 

∈ 

  

{|  • |  • |  •} 

  

 

5.1.2. FracSets  and  FracOmegas.  An  UrSet  is  written  in  ket  notation  if  

every of its elements and ∅ are depicted as ket labels. As an illustrative 

example the expression {|∅ • |a• |b•} depicts the UrSet {a b} in ket notation.   A 

FracSet  is an UrSet where each element and ∅ is associated with a z     C.    Let  

us  use  a  ket  notation  for  this  association.   Without  loss  of  generality we 

will depict FracSet elements as an ordered sequence of not necessarily 

contiguous integers with the zs themselves as the ket labels.  An UrSet  with 

N  ∈ N0 elements  will  have  N + 1  zs. The  zero  index  is  reserved  for  the 

z  associated  with  the  |∅ • ket.   As  an  illustrative  example  the  UrSet  {1 3} 

originates  the  FracSet      z0       z1       z3  . 

The zs can be function of parameters, like t or τ . In this situation we 
will  have  {|z0(t)•   |z1(t)•   |z3(t)•}. 

A FracOmega  is FracSet,  where 
 
 

 

 

A rule for mixing the zs when joining or intersecting two FracSets:  Let        

A and B be not necessarily distinct FracSets.  When joining or intersecting 
A with B the common zs modules (phases) must be added and the result 

divided by two. 

 

5.2. Potentialities:  Tolerant probabilities We  call  Potentialities  to tolerant  probabilities.  Let Ω be a   FracOmega. 
 

5.2.1. Classic axioms of probabilities. The classic axioms are [58]: P (A) ≥ 0, 
∀A ⊆ Ω  ;  P (Ω) = 1  and  A1 ∩ A2 = ∅ ⇒ P (A1 ∪ A2) = P (A1) + P (A2). In a 

FracOmega where z0 = 0 the (z|z•s can be seen as the probabilities. 

5.2.2. Axioms  of potentialities. 
 

 

 

 

 

 

 

 

 

 

 

       

 

In a FracOmega the (z|z•s can be seen as the potentialities. When P (∅) = 0  

potentialities are equal to  probabilities. 
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5.2.3. The  probe  set  operation.   The  probe  set  operation,  with  symbol    
00 

can  be applied  to  UrSets.  It  shows  at  most  a  member  of  the  probed  UrSet 

in  a  non  deterministic  fashion.   If  the  original  UrSet  is  a  FracOmega,  this 
is related to potentialities  by 

 

 

5.2.4. The  unstuff  set  operation.   The  unstuff  set  operation,  with symbol 
 -- 

can be applied to FracSets. It extracts, in the sense that shows like the 

probe but also reduces its z to zero, at most a member of the original Frac-     

Set  in  a  non  deterministic  fashion.  If  the  original  FracSet  is  a  FracOmega, 

this is is related to potentialities because the element extraction    obeys 

  

 

 

These are the tools to work with elements    and FracSets. 

 
6. Negative Probabilities 

The concept of probability emerged in 1654 with the correspondence 

between Fermat and Pascal and the modern theory paradigm is  usually credited to Kolmogorov  (1931).  The first axiom says  that the     probability 

of  an  event   X  is  a  non-negative  real  number,  that  is,   P (X)        R   and 

P (X)     0.    Therefore,  the  concept  of  Negative  probability  (NP),  or  of  

some other value outside the interval between zero and one,    is excluded. 

Paul Dirac [19], in the scope of quantum mechanics, introduced the con- 

cepts of negative energies and NP. He wrote “Negative energies and prob- 

abilities should not be considered as nonsense since they are well-defined 
concepts mathematically, like a negative of money”. Later Richard Feyn- 

man [21, 22] discussed also NP. He observed that we adopt negative num- bers in calculations,  but that “minus three apples” is not a valid  concept    in the real world. Nevertheless, the first efforts towards a formal definition 
of  NP  should  be  credited  to  M.  Bartlett  [7].  More  recently,  Gábor  Székely 
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.  If we flip two half coins it yields a complete coin, since then the sum of the outcomes is either “0” or “1”, having probability  1 , similarly to what happens when flipping a fair coin. The Taylor expansion of (6.1) reveals that “half-coins” have  an infinite number of sides and that some exhibit   

NP.  In fact, it results: 

 

 

 

 

 

 

 

 

 

 A  formulation  for  NP  relaxes  the  first axiom  of  standard  probabilities. NP are defined in  the  scope  of  quasiprobability  distributions,  that  share some of the common features of probabilities, but that violate the first and 
third axioms of classical probability   theory. 

NP  have  been  discussed  and  applied  in  physics  [8,  41,  38,  35,  31,  54], but  the  topic  emerged  only  recently  in  finance,  economy  [26,  66,  12].   In the scope of control the concepts were also extended to “anti-flipping half coins”, [39]. 
 

7. Fractional Delay Discrete-Time Linear Systems 

Consider a discrete-time signal, xn n and its discrete-time Fourier  

transform 
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Using the expression of the Fourier transform, we obtain the interesting 

relation: 

 

 

where the symbol ∗ means discrete convolution. So, there is a linear system 

with impulse response, hn, that produces a fractional  delay.  It  is  not  very difficult to conclude that [37,  46] 
 
 
 

 
 
 

 
 
 

 
  

 In the last years some effort has been done to find FIR (finite  impulse  
response) implementations for hn [65, 20] With this delay we are  led  to 

consider systems with the general format 
  

 
  

with  aN  =  1.   The  orders  N  and  M  are  any  given  positive  integers  and 

the parameters ak and bk are real numbers.  We represented  the  delay 

operator by a D in similarity with the differential systems [47].  The   delays 
αk,  βk,k ∈  are  real  numbers that  can  be considered  as  having  absolute 

value  less  than or  equal to  one:  |αk| ≤ 1,  |βk| ≤ 1.  This means  that we 

made Dαkyn = yα .  It can  be shown [46] that,  contrarily  to  the  current 

(integer)  delay  operator,  the relation  Dαkzn =  z−αkzn is  only valid  for 

z  = 1.   This  means  that  we  cannot  use  the   -transform  in  studying  this 

kind of systems. For z =  eiω  we  obtain  the  frequency  response  of  the 

system, 

 

 

 

As  we  cannot  use  directly  the     -transform,  we  have  to  use  other  tools  to 

get the transfer functions, corresponding to causal and anti-causal systems; 

such tools are the Cauchy integrals that are used for projecting G(z) above defined defined on the unit circle to the spaces outside and inside it. The general case is difficult to  deal  because  it  is  not  easy  to  find  the 
poles.  The simpler commensurate case 

  
  

  

  



 

 

can be easily treated [46]. If M < N we obtain a system that is very similar 

to the continuous-time case. In fact we have: 

(1) Consider the  function  G(w),  by  substitution of  w for zα. 

(2) The polynomial denominator G(w) is the indicial polynomial or 

characteristic pseudo-polynomial.  Perform  the  expansion  of  G(w) 

into partial fractions  like: 
  

 

 

where we represented by p a generic root of the indicial polynomial 

(pole). 

(3) Substitute back zα for w to obtain G(z) expanded as a linear com- 

bination of fractions  like: 

 

 

 
 

(4) Compute the Impulse Responses corresponding to each partial frac- 

tion. 

(5) Add  the  Impulse Responses. 
 
 

 

 

 

that is formally  similar  to the Mittag-Leffler   function. 
These systems are interesting because they allow us to  relate  signals defined on different time scales. 

 

8. Fractional  Fourier Transform 

The fractional Fourier transform (FrFT)  is a generalization  of the clas-  

sical Fourier transform (FT). With the development  of  the  FrFT  it  was  verified that the ordinary frequency domain is merely a special case of a 

continuum of fractional Fourier domains, that are related to time-frequency  

(or  space-frequency)  representations. 

The FrFT has been found to play an  important  role  in  the  study  of  

optical systems, known as Fourier optics, and with applications in optical 

information processing, allowing a  reformulation  of  this  area  in  a  much 

more  general  way.  It  also  generalized  the  notion  of  the  frequency  domain 

and extended our understanding of the time-frequency plane, two central 

concepts  in  signal  analysis  and  signal  processing.  FrFT   is  expected  to   

have an impact in the form of deeper understanding or new applications in 

every area in which the FT plays a significant role, and to take its place 
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among the standard mathematical tools of physics and engineering, see e.g. 

[45, 11, 15]. 

Like in the case of the FT, the FrFT can be  applied  to  problems  in  different fields. Some gain can be expected in most applications because the 

advantage of the additional degree of freedom associated with the fractional 

order parameter  (α)  of  the FrFT.  Typical  applications  of  FrFT  are the  areas of linear partial differential equations of fractional order, signal and image 
processing, communications and wave  propagation. 

FrFT,  in the  form  of  fractional  powers  of  the  Fourier  operator,  appears 

in  the  mathematical  literature  as  early  as  1929  [18].  Later  on  it  was  used 

in quantum mechanics  and signal processing [49, 64, 2], but it was  mainly    

the  optical  interpretation  and  the  applications  in  optics  that  gave  a  burst 

of publications since the nineties that culminated in the publication of the  

book of Ozaktas  et al.  [50]. 

The FT of a function can be considered as a linear differential operator 
acting on that function, while the FrFT generalizes this differential operator    
by  letting  it depend on a continuous  parameter α. 

Several FrFT definitions  are  found  in  the  literature.  Among  them  the 
most commonly used, the αth order of FrFT of function s(t) is  a  linear  operation defined by: 

 

   

where  α  indicates  the  rotation  angle  in  the  time-frequency  plane,  Kα(u, t) 
is the kernel function 

 
 

 α = 2nπ ± π 
 

 

 

 

 

The FrFT has the following special cases: 

 

 

 

 

 

The time domain consists of the FrFT domain with α = 2nπ, while the 

frequency domain is the FrFT domain with α = 2nπ + π . Since the FrFT is 
periodic with the period of 2π, α can be limited to the interval [−π, π] [64]. 
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The problem of the existence of the FrFT has been widely investigated [50]   

and it was concluded that the FrFT of a signal s(t) exists under the similar 

conditions in which the classical  FT   exists. 

Considering  FrFT (α)  as  an  operator  corresponding  to  the  FrFT  of α 
angle, some important properties are  listed: 

(1) Identity: FrFT (0)  is  the  identity  operator.   The  FrFT (α) [s (t)] 

with α = 0 is the input signal s(t) itself.  The FrFT (α) [s (t)]  with 

α = 2π corresponds to the successive application of the classical   
FT four times,  and acts as the identity  operator, i.e.      FrFT (0) = 

( π ) 

FrFT 2  =  1.   This property follows  from the definition of     the 
kernel (8.2) with α = 0.  

( π ) 
 

 

(2) Fourier  transform  operator :   FrFT  2   is  the  Fourier  transform op- 
erator.  The FrFT (α) [s (t)] with α =  π gives de classical  Fourier 

 

2 π 

transform of the input signal, i.e. FrFT ( 2 
) [s (t)] = FT [s (t)]. This 

property can be proved by expanding the kernel (8.2) with α = π . 
(3) Successive application: Successive applications of FrFT are equiva- 

lent to a single application of FrFT whose order is the sum of indi- 

vidual orders, i.e.  FrFT (α)   FrFT (β) [s (t)] = FrFT (α+β) [s (t)]. 

This property follows from the convolution  property  of  the  kernel 

(8.2). 

(4) Inverse:  The FrFT of order (−α) is the inverse of FrFT of order   α 

property follows as a consequence of of properties (2) and  (3). 

(5) Parseval’s  theorem:  The  well-know  Parseval’s  theorem  for  classical 

FT  can  be extended  to  the  FrFT  by  the equation: 

  
 

where ∗ denotes complex conjugation. 

One conclusion  that  can  be obtained  from  these  properties is that the 

signal  s(t)  and  corresponding FrFT  of  order  α (FrFt(α)) form  a  transform 

pair related by 

  

 

 The flexibility  and efficiency  of FrFT  permits new solutions to a variety    

of problems that involve Fourier analysis. In many cases, the resulting 

algorithms are faster  than the conventional  methods.  We  have  limited  our 

since FrFT (−α)
 FrFT (α)

 = FrFT (−α+α) = FrFT (0) = 1. This since FrFT (−α)
 FrFT (α)

 = FrFT (−α+α) = FrFT (0) = 1. This 



 

 

presentation to real values of α. Complex ordered transforms also have 

potential applications, so  that  it  might  be  of  interest  to  explore  the  FrFT 

with a  complex  order.  This  transform  can  be  considered  as  a  particular 

case of the more general linear canonical transformation. There are several 

attempts to obtain discrete-time versions of this   transform. 
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