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Abstract 

The rheological response of polyisobutylene (PIB) solutions in Decalin and a related 

standard fluid Sl has been charac~~zed in dynamic oscillatory flow, step strain, step-shear 

rate and steady shear using a Rheometrics RDSII rheometer. The time dependence represented 

as a discrete spectrum of relaxation times and the strain dependence characterized as an 

exponential damping function have been presented as a function of PIB concentration. The 

relaxation spectrum was calculated from the dynamic storage modulus and loss modulus. The 

damping function was determined from the non-linear relaxation modulus in a step-strain 

experiment. The Wagner integral viscoelastic model incorporated with the relaxation and the 

damping function has been used to predict the stress growth and the steady-shear behaviour, 

which were compared with the experimental data. A novel extensional rheotester was also used 

in this study to measure the stretching response of polymer solutions. The data gave a near 

single relaxation time for each solution, and this single relaxation time obtained from uniaxial 

extension was correlated to the relaxation spectrum obtained in simple shear. 

Ke~or~: Relaxation spectrum; Damping function; Filament stretching; Wagner integral 

viscoelastic model; Poly~obutylene solutions 

1. Introduction 

There is an increasing awareness that polymer melts in particular and a number 

of other rheological fluids in general can be characterized by considering a separable 
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time dependence and a non-linear strain response. This approach originates from 

work by Wagner [l] and Laun [2], who showed that polyethylene melts could be 

characterized in this way. It is now possible to obtain commercial software where 

the time dependence in terms of a relaxation modulus of a material can be obtained, 

for example, from linear viscoelasticity measured [3-71. In addition, the non-linear 

response often described in terms of a damping function can now be readily 

obtained from step-strain data using controlled-strain mechanical spectrometers 

]2,8,91. 
Polyisobutylene, in the form of both pure melts and solutions, has been exten- 

sively studied, for example, in the field of elongational flow [ 10,111, second normal 

stress difference measurements [ 12- 141, extensional viscosity measurements [ 15- 191 

and entry flow investigations [20-221. As far as polyisobutylene solution is con- 

cerned, a detailed rheological study of two types of solution with different solvents 

has been reported by Quinzani et al. [23]. Rheological behaviour in steady-, 

oscillatory-, and transient-shear flows were measured and modelled with three 

differential constitutive equations (the Oldroyd-B model, the Giesekus model and 

the Bird-DeAguiar model) with four relaxation modes. A recent measurement of 

the extensional viscosity of polyisobutylene solutions has also been carried out 

by Sridhar and co-workers [ 17,181 using a filament stretching technique. Hudson 

and Jones [ 191 have given an overview on the rheology of the Al’ fluid of 

polyisobutylene in decalin both in shear and extension. The integral constitutive 

equation of the K-BKZ type, proposed by Papanastasiou et al. [8], has been used 

to simulate numerically the entry flow of PIB solutions, and the results have been 

compared with experimental data [ 2 1,221 

In this paper, we extend the rheological characterization of PIB solutions in 

simple shear, and show that the approach of separable memory function and 

non-linear response can be successfully applied to a range of these fluids. The 

small-strain time-dependent relaxation spectrum and the non-linear response are 

both functions of the concentration. In addition, we show thae an extensional 

measurement of the rheological response of the material surprisingly yields a near 

single relaxation time which can be correlated to an average relaxation time from 

the measured relaxation spectrum. 

2. Choice of constitutive equation 

A generalized, multiple Maxwell, linear viscoelastic model written in terms of the 

past strain deformation r(t, t’) and the shear stress t(t) is given by 

z(t) = - I, TF e-c’-z’)iay(t, t’) dt’, s I 

where (g,, &) are discrete spectra of modulus and relaxation time, respectively, for 

the material. In order to describe non-linear effects, it is necessary to introduce a 

strain-dependent damping function into the equation. Different forms of damping 

function have been proposed [1,2,8,9,24]. In this work, an exponential damping 
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function, proposed by Wagner [ 11, is chosen because of its effectiveness and 

simplicity. Wagner’s constitutive equation of the K-BKZ type in simple shear is 

then generalized as 

where k is the damping function coefficient. 

The above constitutive equation is factorized in terms of the time and strain 

dependence of the polymer. The present work will check the validity of this 

equation in describing the rheological responses of PIB solutions. In order to apply 

eqn. (2), we obtain relaxation spectra (g,, Ai) from the oscillatory dynamic storage 

modulus and loss modulus by means of Rheometrics software. We determine the 

damping function coefficient from linear and non-linear step-strain experimental 

results. These material parameters are then combined into the equation to predict 

the transient-stress growth and the steady-shear behaviour. The self consistency can 

be identified from a comparison between the predicted and measured data in steady 

shear as well as in oscillatory shear and step strain. 

Rheometric predictions of material functions from eqn. (2) are established in 

terms of the following deformations. 

(1) Oscillatory response: 

(3) 

where G’(w) is the storage modulus, G”(w) is the loss modulus, o is the oscillatory 

frequency, and q*(w) is a complex viscosity defined (G’(w) z + G”(o)~) 1/2/w. 

(2) Step strain: 

G(y,, t) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 gi em”‘,, 

WY, OIG(yo, 0 = e-“lrl, (7) 

where G( y,,, t) is linear relaxation modulus at small strain y. and G(y, t) is the 

non-linear relaxation modulus at large strain y, 

(3) Stress growth: 

~(t, f) = T ( 1 f:ATyj2 { 1 - e-(M+ “‘I)~[ 1 - kjt( 1 + kftli)]}, 

where $ is the step shear rate applied to the sample. 



390 R.F. Liang, M.R. ~a~~~y /J. N~~-New~~ni~ F&id Me&. 52 (1994) 387405 

(4) Steady shear: 

where q,(q) is the apparent viscosity, 9 is the shear rate, and N,(j) is the first 

normal stress difference. 

3. Materials and experimental 

High molecular weight polyisobutylene (Vistanex) was supplied by Exxon Chem- 

ical Ltd., with an average molecular mass of 0.7-3.5 x lo6 kg/km01 and a solid 

density of 920 kg/m3. The solvent used was decahydronaphthalene (Decalin) with 

density 896 kg/m3, viscosity 2.41 mPa s at 25°C and boiling point 190°C. The 

polybutene oil (PBO, HYVIS 10) was supplied by BP Chemicals for the preparation 

of the standard test fluid Sl, with a density of 894 kg/m3 and a viscosity of 

31.3 Pa s. Polyisobutylene solutions were prepared by dispersing small readily 

soluble PIB pieces in Decalin, first without heating while stirring on a magnetic 

stirrer hotplate at 750 r.p.m., until all the PIB had been added, then increasing the 

temperature to 50°C and stirring for 8 h, and cooling to room tem~rature while 

still stirring at 500 r.p.m. for 3 or 4 days. The composition and concentration for 

PIB solutions are summarized in Table 1. The standard test fluid Sl was a 2.5% PIB 

in a mixed solvent of 47.5% Decalin and 50.0% PBO. 

Rheological measurements were mainly carried out on a strain-controlled Rheo- 

metrics RDSII rheometer with 450 mm cone/plate (425 mm cone/plate for sample 

Al00 and Sl) at 25°C. Material functions, as given in eqns. (3) -( 10) for oscillatory, 

step-strain, step-share rate and steady shear were obtained and employed. The 

dynamic oscillatory and steady-shear experiments were also made on a stress-con- 

trolled Rheometrics DSR rheometer for comparison. It was confrmed that for 

polymer solutions, the rheological properties measured on the DSR were the same 

Table 1 

Polyisobutylene solutions tested 
-..-_. 

Sample % (wt) PIB Solvent 

A20 1 

A40 2 

A60 3 

A80 4 

Al00 5 

Sl 2.5 

Decalin 

Decalin 

Decalin 

Decalin 

Decalin 

47.5 ~~in~50.0% PBO 
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Fig. 1, Formation of a filament on the extensional rheotester. 

as those measured on the RDSII, although the data from the DSR are limited to 

the relatively low defo~ation-rate range owing to the torque constraints of the 

inst~ment. 

Experiments were also carried out using an extensional rheotester developed by 

Brazilevsky et al. [25]. The device consists of deforming and stretching the test fluid 

axially, and then following the subsequent diameter change of a thread line formed 

between the separated and subsequently fixed plates. The formation of a filament is 

schematically shown in Fig. 1. The stretching flow in the rheotester after the initial 

defo~ation is driven only by surface tension forces. Data are obtained on the time 

dependence of the thread diameter at a room temperature of 22°C. They are able 

to give the ratio of viscosity to surface tension for a Newtonian viscous fluid or a 

near single relaxation time for Maxwell viscoelastic fluids. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Oscillatory shear $0~ 

In order to obtain me~in~ul oscillatory shear data, it is necessary to carry out 

ex~~ments within the linear strain range. The strain range for linear visc~lasti~ity 

is usually determined through a dynamic strain sweep at a fixed frequency. Figure 

2 is the result of a dynamic strain sweep for all PIB solutions measured at a 

frequency of 20 rad]s. The complex viscosity was plotted against strain. As seen 

from Fig. 2, for all solutions, the complex viscosity remains inde~ndent of the 

strain up to 100°/. This unusually wide linear strain range was also shown in the 

plots of storage and loss moduli against strain. In order to obtain noise-free stress 

data, a strain of 50% was used for all the subsequent linear viscoelasticity measure- 

ments, i.e. dynamic frequency sweeps. 

Linear viscoelasticity measurements were made at 50% strain and in the fre- 

quency range of lo-‘- 10’ rad/s to characterize the time dependence. A typical 

frequency sweep result for sample Al00 is presented in Fig. 3. Complex viscosity, 

storage mod~us and loss modulus are plotted as a function of frequency. Figure 3 

shows that, as expected for polymer solutions, both the viscous modulus and the 
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Fig. 2. Dynamic strain sweeps for all samples at a frequency of 20 rad/s. 
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Fig. 3. Linear viscoelastic response for sample zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAl00 at strain 50%. 

elastic modulus increase with the oscillatory frequency. The viscous modulus 

dominates the response of the low-frequency range while the elastic modulus 

dominates the response of the high-frequency range. There is a crossover point at 

a moderate frequency where tan 6 = G”/G’ = 1. 

The discrete relaxation spectrum can be conveniently calculated from dynamic 

G’(w) and G”(o) data using Rheometrics software. There are three methods 

available for this purpose: least square, regularization, and non-linear. At present, 

only the non-linear method can avoid negative values of the relaxation modulus 

(g,) because there is a positive constraint for this numerical procedure [3,7]. For 

this reason, only the non-linear method was used in the present work. Eleven time 

constants (Ai) were chosen spaced logarithmically and equally over a time scale of 



Fig. 4. Discrete relaxation spectrum (g,, Ai) with 11 time constants for all samples. 

lo-’ to 10 s in order that a good fit could be obtained between the measured and 

the predicted G’(w) and G”(O). The relaxation spectrum (g,, &) obtained for sample 

Al00 is given in Fig. 4 where gj was plotted against 2,. 

Similarly, from the dynamic oscillatory data of other samples we can also 

calculate (gi, 2:) data for each sample. The distribution of relaxation times for other 

PIB solutions studied is also plotted in Fig. 4. The results show that the values of 

the relaxation moduli generally decrease monotonically with increasing time con- 

stant for the range examined. The relaxation spectra increase both in weighting and 

range as the PIB concentration increases; this implies that as the PIB concentration 

increases, the viscoelasticity increases and relaxation processes of longer time scale 

become significant. The relaxation spectrum of the standard fluid Sl is nearly the 

same as that of sample A80. The lines plotted in Fig. 4 represent the approximate 

envelope of behaviour. For reasons that are not clear to us, the moduli of three 

solutions at 1 = 0.02 s appeared to be lower than anticipated from the other data. 

We can combine the relaxation spectrum (g,, &) data with eqns. (3) and (4) to 

check self insistency between the measured G’(o) and ‘G”(w), and the predicted 

G’(a) and G”(o). The comparison is presented in Fig. 5(a) for the viscous modulus 

and in Fig. 5(b) for the elastic modulus for all PIB solutions. From Fig. 5, several 

points can be drawn: first, as the PIB concentration increases, both viscosity and 

elasticity increase significantly; secondly, there exists an excellent agreement be- 

tween the experiment and prediction in the linear viscoelasticity range; thirdly, the 

Sl fluid shows almost the same viscoelastic response as sample A80. 

Step strain 

The damping function, as a non-linear measure, can be determined from step- 

strain experiments. A step-strain test applies a strain within the linear or non-linear 
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Fig. 5. Measured (symbols) and predicted (solid lines) dynamic moduli as functions of 

frequency for all samples at strain 50%. (a) G”(w), (b) G’(w). 

strain range to the sample, and measures the stress or the modulus of decay with 

time. Figure 6 is a step-strain result for sample AlOO. The relaxation modulus, 

G(t) = z(t)/y, is plotted as a function of time for the different applied step strains. 

It is found that the relaxation modulus decreases monotonically with time at a 

given strain. A non-linear effect is observed after a strain of 100%. As the step 

strain increases further, the relaxation modulus decreases with the same time 

dependence, but with the curve shifted vertically downward. This fact shows the 

factorable nature of the relaxation process, i.e. that the time dependence of the 

relaxation is independent of strain. Below 0.1 s on the time scale the relaxation 

modulus data is not separable and we believe this is due to a finite rise time effect 

(rise time is the time required for the instrument to response), which is a limitation 

of the rheometer. 
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Fig. 6. Measured (symbols) and predicted (solid lines) relaxation moduli in step strain as 
functions of time for sample Al00 at different strains. 

From eqn. (7), the shear damping function coefficient k can be dete~ined from 

the data of Fig. 6 and was found to be 0.24 for sample AIOO. From the step-strain 

experiment results of other samples, we can also calculate the damping function 

coefficient for each sample. The change of damping function with PIB concentra- 

tion is shown in Fig. 7. It is found that the damping function coefficient increases 

non-linearly with PIB concentration, which suggests that it may plateau to a 

constant value at high ~on~ntrations. 

It should be mentioned that the k value of the Sl fluid also fits the curve in Fig. 

7. The damping function coefficient is equal to 0.14 for the Sl fluid. Thus, the Sl 

fluid has a smaller k value than that of sample A80 (k = 0.21), although their linear 

viscoelastic responses and relaxation spectrum are similar, as shown in Figs. 5 and 

4, respectively. This fact suggests to us that no&near rheological response mainly 

PIB (wt)% 

Fig. 7. Damping function as a function of PIB concentration. 
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results from the contribution of the high molecular weight polyisobutylene chain 

interaction. The solvent viscosity does not influence non-linearity since the Sl fluid 

is made up of 2.5% (wt) PIB dissolved in the mixture solvent with high viscosity 

(see Table 1). However, the high solvent viscosity indeed enhances the linear 

viscoelasticity. 

The self consistency between the measured and the predicted relaxation moduli is 

checked. For sample AlOO, the predicted relaxation modulus is also plotted in Fig. 

6 for different strains and compared with the experimental data. Excellent agree- 

ment is found for all samples. 

Stress growth 

An experiment to study the transient response of the material to a suddenly 

applied deformation is the step-shear rate test, which applies a constant shear rate 

to the sample and measures the growth stress with time. Figure 8 shows the results 

obtained from a step-shear rate experiment for the Sl fluid. A normalized stress 

(defined as the shear stress divided by the equilibrium stress value) is plotted against 

time. As seen from Fig. 8, the stress overshoot strength depends strongly on the 

shear rate applied. At a shear rate of 1 s-i, the shear stress increases gradually with 

time to a steady equilibrium value and no stress overshoot occurs, implying that the 

material is able to follow the deformation. When the shear rate is 5 s-‘, the shear 

stress first increases to a maximum value and then decreases gradually with time to 

an equilibrium steady value, and a weak stress overshoot peak develops. This 

means that the material can no longer follow the start-up flow deformation, i.e. the 

response time scale of the material is longer than 0.2 s. At a shear rate of 50 s-‘, the 

material shows very marked stress overshoot behaviour. When a high shear rate is 

suddenly applied to the sample, the polymer chains are instantly stretched along the 

1.5 ( 

Shear Rate( l/s) 

Exp. + 1 

Red. - 

0 1 2 3 4 5 6 

Time (s) 

Fig. 8. Measured (symbols) and predicted (solid lines) normalized stress growth curves for 

the Sl fluid at three different shear rates. 



R.F. Liang, M.R. Mackley /J. Non-Newtonian Fluid Mech. 52 (1994) 387-45 391 

shear direction. The stretched polymer chains then gradually relax to an equilib~~ 

steady state. Therefore, stress overshoot occurs. 

The stress growth response, both in shear and extension, is often used to test a 

constitutive equation. The predicted curve for three different shear rates from the 

model using eqn. (8) are plotted in Fig. 8. The stress overshoot peak is successfully 

predicted, for example, in the case of shear rate 50 s-i, although the stress 

overshoot strength is unde~re~cted. Therefore, we can conclude that the model 

appears to predict the stress growth behaviour with reasonable accuracy. 

Steady shear 

Both the linear viscoelastic relaxation spectrum and the non-linear damping 

function can be used to predict the non-linear steady-shear behaviour. The apparent 

viscosity is predicted using eqn. (9). Figure 9 shows the comparison of the apparent 

viscosity between experiment and prediction for all PIB solutions. The apparent 

viscosity is plotted as a function of shear rate. As seen from Fig. 9, the solutions of 

low PIB concentration display very weak shear thinning behaviour. As the PIB 

concentration increases, the non-iinear shear thinning behaviour becomes much 

stronger, corresponding to an increase in the magnitude of the damping function 

coefficient. The zero shear viscosity, i.e. the plateau value of apparent viscosity in 

the range of low shear rate, also increases significantly with concentration, It is 

found that, on a semi-logarithmic plot, the zero-shear viscosity increases linearly 

with the PIB concentration, except that the Sl fluid has the same zero-shear 

viscosity as A80, as seen in Fig. 9. In addition, it can be seen that, as expected from 

the discussion on step strain, sample A80 shows stronger shear thinning behaviour 

than the Sl fluid in spite of having the same zero shear viscosity. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.1 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 

Shear Rate (Us) 

100 1000 

Fig. 9. Measured (symbols) and predicted (solid lines) apparent viscosities as functions of 

shear rate for all samples. 
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Fig. 10. Cox-Merz rule - comparison between the apparent viscosity and the complex 

viscosity for all samples. 

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 also shows that the predicted apparent viscosity agrees very well with 

the measured apparent viscosity for each sample. This fact indicates the validity of 

describing the polymer solutions in terms of the Wagner constitutive equation used 

in this paper. 

The complex viscosity is compared with the apparent viscosity as shown in Fig. 

10 for the studied PIB solutions. Figure 10 shows that the Cox-Merz rule [26] is 

generally obeyed, although from eqns. (5) and (9) there is no reason to suppose that 

the oscillatory complex viscosity has to be equal to the steady-shear apparent 

viscosity when the frequency equals the shear rate. At high shear rates there is in 

fact a divergence in behaviour. For example, in the case of the Sl fluid, the complex 

viscosity and the apparent viscosity diverge at high rates, where they are both 

correctly predicted by the model but do not follow the Cox-Merz rule. 

As a measure of elasticity of the material, the first normal stress difference (N,) 

can also be measured in steady shear. The measured first normal stress difference 

data for the Sl fluid are plotted as a function of shear rate in Fig. 11. IV, is found 

to increase nearly with the square of the shear rate in the range of the shear rate 

used. It is also observed that the ratio of N,/r’ is almost constant, in agreement 

with the literature [ 191, and insensitive to the PIB concentration. The predicted N, 

data from the model based on eqn. ( 10) are represented by the solid line in Fig. 11. 

Reasonable agreement is found between the experiment and the prediction. 

5. Extensional rheotester 

The extensional rheotester is a device that has been developed by Bazilevsky et al. 

[25] at the Moscow Institute for Problems in Mechanics, Russian Academy of 

Sciences. It involves placing a drop of high-viscosity fluid between two discs and 



R.F. Liang, h4.R. Mackley /J. Non-Newtonian Fluid Mech. 52 (1994) 387-405 399 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.01 
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Fig. 11. Measured (circles) and predicted (solid line) first normal stress difference as a 

function of shear rate for the S1 fluid. 

rapidly displacing the plates to a set displacement using a spring mechanism. The 

fluid is stretched between the plates to form a near-uniform thickness thread. This 

thread then thins under the combined action of surface tension and rheological 

forces. The thinning of the thread is followed optically and a filament diameter as 

a function of time is obtained. 

The thinning behaviour of a filament, driven by surface tension, is influenced by 

the fluid rheology. First of all, simple modelling of a Newtonian fluid subjected to 

the deformation of the rheotester can be described as follows. 

Assume an incompressible cylindrical thread which is subjected to a surface 

tension. From a force balance, the total stress o,, in the axial direction and o,., in 

the radial direction are given by 

a,, = --Po + 2YL = 0, (11) 

o,, = -p() + 2qj,, = -201/f), (12) 

where p. is the atmospheric pressure, q is the viscosity, a is the surface tension, D 

is the filament diameter, f, is the strain rate along the axial direction z, and 9,, is 

the strain rate along the radial direction r. 

For uniform uniaxial extensional flow of an incompressible fluid with a strain 

rate <, conservation of mass requires that the diameter of the filament decreases by 

d = -@. (13) 

Define $, = 6, then g,, = -G/2. 
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Eliminating the pressure term from eqns. (11) and (12) yields the elongational 

stress zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

BE = azz - grr = 3~6 = 2~10. 

From eqn. (14) we obtain the strain rate for a Newtonian fluid: 

(14) 

g = 2a/3qD. (15) 

Equation (15) shows that the strain rate will increase as the filament diameter 

decreases. Also, from eqn. (14), we obtain the extensional viscosity, ~a, defined as 

the elongational stress divided by the strain rate: 

t#lE = an/i = 31. (16) 

As we know, the extensional viscosity of a Newtonian fluid is equal to three times 

the shear viscosity, independent of the strain rate. 

Combining eqns. ( 13) and ( 15), and then integrating, yields the diameter of a 

Newtonian fluid thread as a function of time: 

D(t) = D, - ctt/3~, (17) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAD, is the initial diameter. Hence, for a Newtonian fluid, this simple model 

predicts that the diameter of the filament will decrease linearly with time. 

In order to test the device, a high-viscosity Newtonian fluid, polydimethylsiloxane 

(PDMS), was used. The change in diameter with time is plotted in Fig. 12. The 

diameter decreases nearly with time. From the slope and eqn. (17), the ratio of 

viscosity to surface tension, r/o! = 1.18 x lo4 s/m, can be obtained. From the 

2.0 

1.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.0 

0.5 

0.0 

PDMS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 10 20 30 40 50 60 

Time (s) 

Fig. 12. Filament diameter as a function of time for PDMS. The parameters in eqn. (17) are 

fitted to the data: Do = 1.55 mm, q/a = 1.18 x lo4 s m-’ 
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separate viscosity measurement, q = 115 Pa s, which yields u = 9.74 x 10m3 N/m for 

the fluid PDMS. 

Viscoelastic jluids 

The A-series polymer solution and Sl fluid were tested using the extensional 

rheotester and the diameter decay of each sample is shown in Figs. 13(a) and 13(b). 

To a first approximation, the curves fit a single exponential relaxation time defined 

as the rheotester relaxation time I, [25], where 

D(t) = Do exp( -t/31,). (18) 

(4 
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8 l 
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1 .oo 
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!I ._ 
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I I I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

0 2 4 6 8 10 12 14 16 

Time (s) 

2-A40 

3-A60 

(b) Time (s) 

Fig. 13. Filament diameters as functions of time for the PIB solutions: (a) Sl fluid, (b) other 

PIB solutions. The solid lines are data-fit lines from eqn. (18). The parameters of the Sl fluid 

are, for example, DO = 2.44 mm, 1, = 1.12 s. 
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Fig. 14. Rheotester relaxation time as a function of PIB concentration. 

This rheotester relaxation time is plotted in Fig. 14 as a function of PIB 

concentration and, with the exception of the Sl solution, the A- series polymer 

solutions show a monotonic increase in 3LR with increasing concentration. 

We were initially very surprised that the rheotester should give a single relaxation 

time for viscoelastic fluids that give multiple relaxation times in simple shear. 

Modelling the flow using Maxwell-type equations and/or the Wagner integral form 

does not appear to give the experimentally observed response. However, it is 

possible to provide an alternative simple rheological model that gives a consistent 

prediction when compared with the extensional results. 

Following Hinch [27], we assume that when a viscoelastic fluid is used, the tensile 

stress in the fluid is balanced by the elastic properties, and the stresses due to 

viscosity and surface tension are equal, then 

on = 3r& = 2ulD, (19) 

where Gd is the linear viscous ‘dashpot’ strain rate and q is the shear viscosity of the 

dashpot. In addition, we equate the rate of change of stress associated with 

elasticity to the corresponding surface tension stress rate of change, giving 

t.& = g<, = -2&D=, (20) 

where & is the strain rate for the linear elastic ‘spring’ and g is the elastic spring 

modulus. 

We also assume that the strain rate associated with the elastic deformation is the 

same as that associated with the viscous component: 

Gd = i S* 

Combining eqns. ( 19) and (20) with eqn. (21) yields 

(21) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

610 = -g/3r]. (22) 
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Fig. 15. Correlation of the rheotester relaxation time with the mean relaxation time. 
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Integration of this equation yields 

D(t)=D,exp -Kt , 
( ) 31 

(23) 

which is of the required form. Defining AR = u/g yields eqn. (18). Using the mass 

balance equation, eqn. ( 13), yields the overall strain rate for the viscoelastic fluid: 

6 = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2g / 3ty. (24) 

Therefore, the strain rate of a viscoelastic fluid is a constant. 

If we further assume a discrete spectrum of linear viscoelastic elements and 

assume 

CE = 1 (T, = 1 3qi6& = <d c 31,) 

6.E = 1 ei = 1 gigsi = & 1 gi ) 

then 

o(t) = D, exp( -t/3& 

where 

(25) 

(26) 

(27) 

‘=~331i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACgi=C3gi& Cgl. 
i i 

(28) 

In Fig. 15, we plot the rheotester relaxation time in terms of L, the mean relaxation 

time obtained from the simple shear data. There is a near linear relationship 

between the rheotester relaxation time and the mean relaxation time X measured 

from the G’ and G” data, however, the rheotester relaxation time is nearly a factor 

of three greater than x The correlation with the Sl fluid is less satisfactory, for 

which I, = 1.12 s and X= 0.073 s. 
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6. Conclusions 

The present work has rheologically characterized the time and strain dependence 

in simple shear of some PIB solutions, and indicated the factorable nature of the 

shows an excellent self consistency between small-strain oscillatory and step-strain 

data. Rheological responses in step-shear rate and steady shear, as well as in oscillatory 

and step strain, can be modelled with reasonable accuracy using Wagner’s constitutive 

equation combined with a spectrum of relaxation times and an exponential damping 

function. It is found that the relaxation spectrum increases both in weighting and 

range with increasing polyisobutylene concentration. The damping function co- 

efficient, as a measure of non-linear effect, also increases with PIB concentration. 

The measurement of the stretching behaviour of these polymer solutions using an 

extensional rheotester gives a near single relaxation time for each sample. This 

relaxation time for uniaxial extension is also found to increase with PIB concentra- 

tion and correlates to a mean relaxation time determined from the relaxation 

spectrum in simple shear. The fact that the rheotester gives a single exponential 

relaxation time where simple-shear measurements give a broad spectrum is an 

initially surprising result. A modelling of the extensional flow behaviour is given to 

explain the single exponential behaviour. It would appear that the extensional 

behaviour of these solutions follows a different rheological behaviour to simple 

shear, and it is speculated that the free rotation nature of the extensional flow 

modifies the rheology when compared with simple shearing rheology which contains 

a rotational component of flow. 

The S 1 fluid is composed of 2.5% PIB in a mixture solvent of 47.5% Decalin and 

50% PBO, while sample A80 is made up of 4% PIB in Decalin. In simple shear it 

is found that the Sl fluid possesses nearly the same relaxation spectrum as sample 

A80, but a smaller damping function than sample A80. However, the response of 

the Sl fluid in uniaxial extension as measured by the rheotester is different from 

those of other PIB solutions and yields a much longer relaxation time. The presence 

of PBO appears to have a more significant effect on the extensional behaviour than 

on the simple-shear behaviour. The observation that the rheotester relaxation time 

is a factor of three larger than the simple shear relaxation time 5 suggests that 

relaxation process measured by the rheotester originates from stretched polymer 

chains that can exhibit longer relaxation times than unstretched chains (see, for 

example, Hinch [28] and de Gennes [29]). 
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