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SUMMARY 
Continental break-up, which precedes oceanic accretion, probably results from an unstable 
extension of the lithosphere, analogous to necking of metals when they are submitted to 
tension. By reason of complexity of the rheology, no conclusion about lithospheric extension 
stability may be reached by an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAapriori analysis. We thus examine directly the evolution, when 
the lithosphere is stretched, of lateral inhomogeneities, represented in our example by 
small-scale variations of thickness. The rheological model is derived from the hypotheses of 
Brace zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Kohlstedt (1980) and is consistent with the results of rock mechanics. The 
lithosphere consists of three or four layers of varying thicknesses and mechanical properties. 
The brittle upper crust and, eventually, the brittle part of the mantle are assimilated to 
perfectly plastic media and are described, in a state of uniform extension, by a constant 
viscosity. In the lower crust and ductile mantle lithosphere, the effective viscosity is supposed 
to be exponential. The mechanical model relies on a perturbation method developed by 
Fletcher & Hallet (1983), among others. Contrary to previous published results, no unstable 
behaviour of the lithosphere is observed unless the latter is more dense than the 
asthenosphere, in which case a gravitational instability may develop. This discrepancy can be 
explained by differences in assumptions concerning the variation of strength in the 
lithosphere, as yet poorly constrained by the data. We observe a great sensitivity of the 
results to the strength stratification and to the artificial discontinuities of density or viscosity 
implied by the models. 

Key words: boudinage, lithosphere, necking, rheology, strength envelope, stretching 
instabilities 

INTRODUCTION 

There is a general agreement that extension of continental 
lithosphere is one of the principal mechanisms responsible 
for sedimentary-basin and continental-margin formation. In 
the latter case, the deformation leads to continental 
break-up and oceanic accretion. So far, the cause of 
extension and details of the rheological response during 
extension are poorly understood. Most of the proposed 
models (see e.g. Royden & Keen 1980; Cochran 1983), 
derived from the model of McKenzie (1978), give a purely 
geometrical description of the deformation; the others 
suppose that it is uniform throughout the plate and over the 
extending region. According to these models, the ,total 
lithospheric extension should amount to several hundreds of 
per cent to explain the observed subsidence of basins and 
margins (Keen & Barrett 1981; Beaumont, Keen & 
Boutilier 1982; Foucher et al. 1982). 

Several authors (Kusznir & Park, Vink zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. 1984; Sawyer 
1985) have paid particular attention to lithospheric strength 
and have evaluated the average stress required to produce 

significant extensional deformation. Their estimates strongly 
depend on the rheological hypotheses adopted so that, 
because of the uncertainties concerning the exact rheology 
of the lithosphere, it is difficult to reach a firm quantitative 
conclusion. It seems, however, that a continental litho- 
sphere with low surface heat-flow (<60 mW m-') will not 
show any significant deformation through geological time if 
the magnitude of the average stress applied over the 
lithosphere thickness is less than 1 kbar, as it is usually 
thought to be. On the contrary, in continental regions with 
high surface heat-flow (>75 mW m-*), stress arising from 
plate boundary forces or isostatically compensated loads are 
sufficient to cause a lithospheric extension of several 
hundreds of per cent in a few tens of million years, as 
required by the sedimentary basin models (Kusznir & Park 
1982). 

The preceding results were obtained assuming that 
continental lithosphere undergoes uniform extension and 
deforms in a pure shear strain field. Obviously, this is 
essentially a convenient mathematical approximation since 
the deformed region is always of limited extent. The lateral zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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homogeneity of the deformation is particularly difficult to 
justify in the case of continental margins where it leads to 
rupture. 

So far, little attention has been paid to the exact structure 
and geometry of the lithosphere resulting from extension, 
and no dynamical model has been proposed to explain it. 
Yet, a description of the geometry of the deformed region 
should allow determination of the initial vertical movements 
of the lithosphere, which are poorly described by the 
present models (see e.g. Royden zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Keen 1980). Moreover, 
it could give some insight into the conditions in which the 
deformation leads to continental break-up. 

Our limited knowledge of the rheology of the lithosphere 
is clearly one of the major difficulties of any mechanical 
approach. Several authors (Artemjev & Artyushkov 1971; 
Beaumont et al. 1982) have proposed an analogy between 
lithospheric extension .and break-up, and necking of 
materials when submitted to tension. As yet, this idea has 
not been developed in a quantitative way though it is 
interesting in several respects, particularly as far as ’ 

continental margin formation is concerned. When a test 
sample begins to neck, the deformation concentrates in a 
narrow part of the bar where it leads, sooner or later, to 
fracture. Several arguments suggest the existence of the 
same type of instability in the lithosphere before continental 
break-up: first, the limited width of certain margins, like the 
ProvenGal or Corsican ones (50 km after stretching), which 
is difficult to explain within the framework of a uniform 
extension model; second, the observation that continental 
rupture is not necessarily located symmetrically with respect 
to the structure formed during rifting and that rift structures 
are often preserved on only one of the conjugate margins 
(Keen 1981). This last observation suggests that a ‘defect’ or 
an inhomogeniety of the lithosphere (of thickness or 
composition for example) has localized the deformation in a 
zone where it proceeds catastrophically. The total amount of 
extension of the lithosphere before it starts to neck may 
depend on its exact mechanical and structural properties, as 
suggested by the variable width of the margins (between 100 
and 300 km). 

Our initial purpose was to investigate the possibility of 
necking of the lithosphere by comparison with the analyses 
made for other, simpler materials. To this end, we first 
specify the mechanical properties of lithospheric rocks or, 
at least, the model which best accounts for experimental 
results on rock mechanics. Then, we briefly examine how 
the general criteria of stability apply to lithospheric 
extension and show that they are inadequate for our 
discussion. Mindful of the impossibility of reaching a 
conclusion a priori, we try to show evidence for an eventual 
instability of continental stretching by a direct determination 
of the evolution of small lithospheric thickness in- 
homogeneities. Our approach is based on the method 
proposed by Fletcher & Hallet (1983) and Ricard & 
Froidevaux (1986) which has been principally applied to the 
analysis of the basin and range structure. We improve the 
preceding studies through the choice of the mechanical 
parameters: whereas Ricard & Froidevaux (1986) and, to a 
lesser extent, Zuber et al. (1986) fix them in a rather 
arbitrary way, we try to constrain them by our rheological 
model of lithosphere, in the limit of the approximations 
required by the method. Our conclusions differ significantly 
from the previous ones, as we shall see. 

RHEOLOGICAL MODEL. GENERAL 
CONSIDERATIONS ABOUT STABILITY IN 
TENSION 

It is well known that mechanical properties of rocks greatly 
depend on their mineralogy, on temperature and pressure 
conditions, and on the eventual presence of aqueous fluids. 
This variety of mechanical behaviour, associated with the 
lack of constraints about the variation of the parameters 
with depth, explains that any rheological model of the 
lithosphere can only be approximate. This is particularly 
true for continental lithosphere by reason of the 
mineralogical and compositional heterogeneity of the 
continental crust, its complex thermal history, and the lack 
of rheologies for representative crustal rocks (Kirby 1983). 

Goetze & Evans (1979) and Brace & Kohlstedt (1980) 
have summarized the rheological properties of oceanic and 
continental lithosphere, respectively, in a way that is 
consistent with recent results on rock mechanics. In broad 
outline, we shall adopt the variation of rheology with depth 
suggested by these models, with some simplifications that 
allow a much simpler mathematical formulation of the 
dynamical problem while respecting the main features of the 
rheological models. 

Brace & Kohlstedt (1980) assume, as in other studies, that 
the rheology of olivine determines the mechanical properties 
of the upper mantle, whereas that of quartz controls the 
continental crust. While this is probably a reasonable 
assumption for the upper mantle, the use of quartz rheology 
for continental crust is questionable because of its 
mineralogical heterogeneity and will probably represent a 
lower bound to continental-crust strength (Vink et al. 1984; 
Zuber et zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal. 1986). 

Brittle regime 

In the brittle regime, Goetze & Evans (1979) first suggested 
that the behaviour of both the crust and the mantle is 
controlled by the possibility of sliding on pre-existing faults. 
The corresponding Byerlee’s friction law is largely 
insensitive to the strain rate, temperature and nature of the 
material, but is highly sensitive to the effective pressure 
(lithostatic pressure minus pore pressure). If this law is 
recast into a failure-stress versus depth relation, it implies an 
approximately linear increase of failure stress with depth of 
burial (see Appendix B), with a rate of increase depending 
on the fluid pore pressure. Assuming that, in a fractured 
rock, fractures of all orientations exist, once the principal 
stresses reach the values given by Byerlee’s law frictional 
sliding occurs somewhere; if the stresses are less, the 
deformation is purely elastic. Stresses predicted by Byerlee’s 
law therefore represent the maximum permissible stresses in 
the brittle layer. This result can be compared with in situ 

measurements and appears to be consistent with experimen- 
tal observations to about 4 km depth (Brace & Kohlstedt 
1980; Kirby 1983). Extrapolation of this behaviour below 
this depth is more speculative as rocks may not be as 
fractured at depth as they are at the surface, and frictional 
resistance may not be accounted for properly by Byerlee’s 
law. Even assuming that the extrapolation is valid, the 
increase of failure stress with depth is very sensitive to the 
pore-pressure level, which is in turn very poorly 
constrained. 
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This description of the crust-and-mantle brittle regime is 

quite similar to a perfectly plastic behaviour and the analogy 
has been extensively used to study plate flexure, particularly 
at subduction zones (see Kirby (1983) for a review). It 
implicitly assumes that the layer can be considered to 
deform as a continuous medium, which is reasonable if the 
fault spacing is much smaller than the length scale of the 
structures. Of course, this approach of brittle behaviour is a 
very indirect one and can be questioned. It can be viewed as 
an end member of a series of models giving variable 
impdrtance to slip on discrete faults. While the conse- 
quences of this approximation should clearly be tested, we 
felt that the perfectly plastic model was appropriate for our 
first-order general analysis. 

Ductile regime 

The high-temperature ductile regime of olivine (above zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1000 "C) has been fairly well explored by experimental work 
on single crystals and the results of individual analyses 
generally converge. In representative lithospheric conditions 
(stresses between 10 bar and 1 kbar), dislocation creep 
appears to be the dominant deformation mechanism. It 
corresponds to a power-law fluid behaviour and is highly 
temperature-dependent , as are most of the diffusion- 
controlled processes. The relationship between the principal 
stresses crl and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu3 and the strain rate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi has the form: 

i = A ( a ,  - u3)" exp -- [ :TI 

where A,  Q and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn are material properties. For olivine, the 
stress exponent n is close to 3. 

At lower temperatures, appropriate to oceanic or 
sub-cratonic upper mantle, stresses above 1 kbar are 
required to deform olivine crystals. Under these conditions, 
other deformation mechanisms are likely to become 
predominant. In their analysis, Goetze & Evans (1979) 
consider Dorn creep, which is also strongly non-linear and 
temperature dependent, to be the dominant mechanism for 
stresses above 2 kbar. However, this low-temperature 
behaviour of olivine is not well known yet and semi-brittle 
processes may be equally important (Kirby 1983). Because 
of these uncertainties and the generally 'warm' geotherms 
used in our analysis, which make this strong upper mantle 
very thin, we have not considered this low-temperature 
behaviour. As a consequence, the stresses involved in the 
construction of the strength envelope are likely to be 
overestimated whenever they exceed 2 kbar. 

Our current understanding of quartz ductile behaviour is 
far more incomplete and appears to be critically dependent 
on the water content of the rock. Some high-temperature 
steady-state creep laws have been established however, and 
may be used as a first estimate of the exact continental-crust 
rheology. They correspond to a power-law creep behaviour, 
similar to that observed for olivine, with a stress exponent, 
n, of around 3. 

Strength envelope 

Using the hypotheses of Brace & Kohlstedt (1980), the 
minimum deviatoric stress required to extend the litho- 
sphere at a given strain rate presents a variation with depth zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 4 0 -  

Y 
O 

- 
- 
n 

Figure 1. Deviatoric stress required to deform crust and upper 
mantle rocks at a given strain rate (here, s-I) as a function of 
depth. Values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA give pore-pressure level as a fraction of 
lithostatic pressure. Lines labelled BY are from Byerlee's law; lines 
labelled QTZ (quartz) and OL (olivine) are from a ductile-flow law. 
The geothermal gradient is 15"km-I. The inset shows a typical 
strength profile in tension for a continental lithosphere with a 
crustal thickness of 31.25 km (from Sawyer 1985). 

like that illustrated in Fig. 1. Note that this curve is often 
interpreted incorrectly as a strength envelope curve; actually 
it does not represent an absolute strength and it is only valid 
for a given, uniform strain rate. In any case, it approximates 
the continental lithosphere using three or four layers of 
different mechanical behaviour and thickness: the upper 
crust is always in a brittle regime whereas the lower crust 
deforms by steady-state creep. For the conditions assumed 
in Fig. 1, the upper mantle, just below the Moho, undergoes 
brittle deformation but for other values of the parameters 
the whole mantle lithosphere flows. These parameters are 
essentially the crust thickness, the geotherm, the pore 
pressure and its variations with depth, and the strain rate. 

This mechanical structure of the lithosphere suggests 
several points. In particular, it is worth noting that olivine is 
stronger than quartz at similar temperatures and pressures, 
although the magnitude of this discontinuity is expected to 
vary appreciably with temperature and strain rate. As a 
consequence, the Moho corresponds generally to an 
important increase in strength. In addition, the strong 
temperature-dependence of creep laws leads to a sharp 
decrease in strength with depth in the ductile layers (the 
lower crust and the lower part of the mantle lithosphere). In 
addition, in the brittle layers, the strength increases 
progressively with depth and reaches a maximum at the 
brittle-ductile transition. This probably overestimates the 
stress at this rheological interface but, in the absence of 
more precise details about this transition, it is the simplest 
way to localize it. 

Stability of continental lithosphere extension 

Having the above model in mind, we would like to address 
the following questions: Can the lithosphere exhibit a 
necking instability when it is submitted to tension? And, if 
so, how does the deformation proceed in the constricted 
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part before rupture? Only partial answers to these questions 
may be found in previous works, because on the one hand 
theoretical study on necking instabilities is still incomplete 
(Jalinier 1981), and on the other hand it has been developed 
for situations that have very little in common with those of 
the lithosphere. 

Several criteria have been proposed to specify the 
conditions in which a sample submitted to uniaxial stress a 
can extend stably. Each produces slightly different 
conclusions in the most general case. However, for any of 
these criteria, a material characterized by a constitutive law 
of the type: 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(Ya" (1) 

(where t is the strain rate and (Y is a constant) is unstable 
with respect to tension if n 2 3  (Rossard 1966; Hart, 
Campbell 1967); the rate at which the instability grows 
increases with the stress exponent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn. 

To examine what consequences the preceding conditions 
have for stretching of the lithosphere, let us consider the 
different rheologies that we have retained to describe it. For 
the ductile lower crust and mantle, we have adopted a 
power-law behaviour with n = 3; extension of such layers 
should then be unstable but the instability is expected to 
grow slowly. The perfectly plastic rheology that we have 
introduced to describe the brittle layers corresponds to the 
limit case n+m;  according to the above criteria, these 
layers are expected to be very unstable with respect to 
tension and, thus, to play an important role in the present 
discussion. It is important to emphasize that this property 
results from a description of the brittle layers' rheology that 
is not straightforward, as already mentioned. 

Continental lithosphere appears therefore to be made up 
of several layers that are unstable with respect to tension. 
Regardless of the rheological uncertainties themselves, this 
conclusion does not provide much information about the 
behaviour of the lithosphere as a whole. If a layer starts to 
neck, for example, the adjacent layers will respond by 
swelling and the total lithospheric deformation will not be 
obvious. Furthermore, the lithosphere is not submitted to 
uniaxial stress and, in particular, it is subject to the 
gravity-field so that the gravity contrasts at the interfaces 
will act to stabilize or destabilize the flow. 

Taking this complexity into account, there seems to be no 
way other than by a direct determination to make evident 
any eventual instability. We already mentioned that necking 
generally begins in a zone where the sample presents a 
'defect'. In our case, this defect will be a small variation of 
thickness of the layers and we shall examine the evolution of 
these variations when the lithosphere is stretched. 

MODEL OF INHOMOGENEOUS EXTENSION 
OF THE LITHOSPHERE 

We consider a model of lithosphere of infinite horizontal 
extent, consisting of three or four layers. The various 
interfaces, instead of being planar, exhibit an initial 
topography. The purpose of the following study is to 
examine whether these disturbances can be amplified 
through stretching, leading to enhanced thinning of certain 
layers or zones. To this end, the stresses and velocity of 

deformation must be determined in the extending 
lithosphere. The method we used to compute them has been 
proposed by Smith (1977) and assumes that the amplitudes 
of the disturbances remain small with respect to the layer 
thicknesses, so that the modification they introduce may be 
regarded as perturbations from a basic state of uniform 
extension. 

Basic state. Rheological approximations 

Let us suppose for the moment that the lithosphere consists 
of parallel horizontal layers. We asume that this structure 
undergoes plane strain, in the plane zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( O , x ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz) ,  and deforms 
in a pure shear strain field. As a consequence, only the two 
terms exx and Ez, of the strain rate tensor are different from 
zero. Incompressibility of the material requires furthermore 
that: 

Exx + ez, = 0. (2) 

The ductile layers are described by the constitutive laws of 
fluid mechanics, i.e. 

f f . .  = q t . .  11 - p & .  11' (3) 

where ajj is the stress tensor, t ,  the strain rate tensor, p is 
the hydrostatic stress; viscosity 77 is given by: 

211 = B-' exp (Q/RT)Jy-")", zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(4) 

where the constants B, Q and n are material properties and 
5" = $[(axx - a,,)"] + a:, is the second invariant of the 
deviatoric stress. 

In the following sections, all the physical quantities 
relative to the basic state will be denoted by an overbar. For 
a pure shear strain field, it results from (2) and (3) that: 

axx - Bz, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4fjExx (5) 1 Bxz = 0 (6) 

and consequently: 

(7) 
j -4-222 

f j  = ~(2xx)('-")'"B-1/" exp (QInRT), (8) 

f j  = K exp(Q/nRT), (9) 

2 - rl Exx.  

Then 

which may be written in the form: 

where K is a constant for a given layer. This viscosity law 
couples the mechanical and thermal problems, thus 
requiring the use of a numerical method to solve the 
Navier-Stokes equation. However, an analytic solution can 
be obtained without neglecting the very rapid decrease of 
viscosity with increasing depth and temperature by 
assuming, as suggested by Fletcher & Hallet (1983), that: 

1 ( z )  = rlo exp zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(YZL (10) 

where v0 and y are constants. We shall detail in a following 
section how they are chosen for each ductile layer in the 
lithosphere. 

We have already mentioned that brittle layers are 
approximated as ideally plastic materials. To describe their 
behaviour beyond the yield stress, it is equivalent to 
consider them as power-law fluids with a large stress 
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exponent (Fletcher zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hallet 1983), since for such a fluid, as 
for a perfect plastic material obeying Von Mises criterion, 
the second invariant J2 is almost unchanged by a small 
modification of the strain tensor (Bassi 1986). With these 
assumptions, relations (3) to (7) hold in the brittle layers. 
Moreover, the Von Mises criterion requires that: 

J, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT: (11) 

if ty is the yield stress. The effective viscosity is thus related 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAty by: 

tY = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2qZ- (12) 

and should be a linear function of depth according to 
Byerlee's law. We shall neglect this variation of the yield 
stress with depth and consider f j  to be a constant, as the 
Navier-Stokes equation can be solved analytically in this 
case. Of course, this approximation and the preceding ones 
could be avoided by the use of numerical techniques which 
would allow a more precise incorporation of the exact 
depth-dependent rheology in the model. However, we 
preferred the analytic approach which, despite its simplicity, 
is often sufficient in a first-order analysis and is a more 
flexible way to investigate the influence of the various 
parameters. 

Perturbation of the basic state: linearization of the 
constitutive relations 

Let us suppose now that the planar geometry of the 
interfaces is altered and presents small disturbances along 
the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx axis. The strain rate and stress tensors, as well as the 
velocity field, will of course be modified, but the 
modifications can be treated as perturbations of the basic 
state if the interface amplitudes remain small with respect to 
the layer thicknesses. Therefore, we can write all the 
physical quantities of the problem as the sum of a basic state 
value and a perturbation (denoted with a tilde) (Smith 
1977). 

The perturbing strain rate tensor iij cannot be estimated 
independently of 2jj since the constitutive laws (3) and (4) 
are not linear. However, to the first order in iij/Eij it may be 
shown that (Smith 1977; Fletcher & Hallet 1983): 

It is interesting to note that, compared to the basic state, the 
effective viscosity is divided by a factor, n, for normal strain, 
but remains unchanged for shear strain. This result will have 
important consequences in the brittle layers where n is 
supposed to be very large. 

Boundary conditions 

A solution for the perturbing flow is found by requiring that 
the perturbing stresses and strain rates satisfy the 
equilibrium and incompressibility equations, i.e. 

P6=0 (15) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 P * ' r / *  

Figure 2. Geometry of the interface between layers I and 11. 
Velocities and stresses are continuous through the real interface 
located on z = zi + h. 

The approximations introduced in the preceding sections 
allow these equations to be solved analytically in each layer 
of the lithosphere. The integration coefficients are 
determined by writing the boundary conditions at the 
interfaces. Let us consider one of these, separating a layer I 
of density p1 and viscosity ql, from a layer I1 of density p2 
and viscosity qZ, and presenting a disturbance h ( x )  with 
respect to a mean position zi (Fig. 2). The boundary 
conditions require that the velocities u and w, horizontal 
and vertical respectively, and the stress components a,, and 
a,, are continuous on the true interface, i.e. on = zi + h. 
When h is small, these conditions may be expanded to 
first-order with respect to h, and written on the mean 
interface z = zi where they become (Smith 1977) 

These expressions hold for any perturbation h(x)  and are 
linear in h. Therefore, the problem reduces to the treatment 
of each Fourier component of the topography and the 
associated flow. The advantage of this spectral analysis lies 
in the particularly simple determination of velocities and 
stresses for a sinusoidal topography; this determination is 
further developed in Appendix A. 

Evolution of the amplitude of the interfaces through time 

Substitution of the general expressions of velocities and 
stresses into the boundary conditions (17) to (20) yields a set 
of linear equations (see Appendix A) which may be written 
in the form: 

mC = R, (21) 

where, if m is the number of deformable interfaces, M is a 
4m-order square matrix, C is the integration coefficients 
vector, R is a 4m-order vector corresponding to the 
right-hand side of conditions (17) to (20). 

Let hjo be the amplitude of the sinusoidal undulation of 
the interface i, and H the vector of generic term h,. The 
following method, proposed by Ricard & Froidevaux 
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(1986), allows us to compute the evolution of H through 
time. 

Considering A, the wave number, as independent of time 
(since we are limited to the initial stages of the 
deformation), the growth of hi(x)  is hi,cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa x ;  its 
magnitude is equal to the total vertical velocity at the 
interface, i.e. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
B(0, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz,) - Znh,(x). 

Therefore, the vector H satisfies: 

dH/dt = W - .?,,H, 

where W is the vector of generic term wi = B(0, zi). W is a 
linear function of C, let us say: 

W = Q C  

or 

w = Q M - ~ R  

where Q is a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm x (4m)-order matrix. In addition, R is a 
linear function of H since the right-hand side of boundary 
conditions (17) to (20) is proportional to h if h is a sine 
function; then 

R = PH, 

where P is a (4m) x m matrix. Finally, 

dH/dt = (QM-'P - ZJ)H. (22) 

The second term in the right-hand side of this relation 
results from uniform stretching and does not correspond to 
any amplification or attenuation of the topography with 
respect to the layer thicknesses. The contribution of the 
perturbing flow is obtained by solving the reduced system: 

dH/df = QM-lPH, 

which is a first-order differential system with constant 
coefficients. More precisely, the matrix QM-lP depends on 
the mechanical properties and thickness of the layers, and 
on the wave number A;  both may be considered as constant 
in the early stages of the deformation. 

The standard way of solving this system consists in 
computing the eigenvalues qiZn of the matrix QM-lP and 
the associated eigenvectors Vi, which are independent of 
time. The vector H at time t may then be written in the 
form: 

where the constants a,, ( i  = 1, m) are determined from 

The eigenvectors V, are the natural modes of deformation 
of the system. When H(0) is equal to one of these 
vectors, say Vi ,  the vector H(t) remains proportional to 
H(O), with the amplitude of the interfaces being amplified or 
attenuated through time according to the sign of the 
eigenvalue gigu. 

It is important to keep in mind, however, that relation 
(23) is only valid as long as the hi (i = 1, m) remain small 
with respect to the layer thicknesses. 

From equations (22) and (23), it appears that an 
instability of the deformation, that is to say a growth of the 

H(O)- 

topographies, can only be observed if at least one of the 
eigenvalues of the problem is positive and greater than 1. 
The largest eigenvalue (we shall label it q) represents the 
maximum of amplification, and an initial distribution of 
amplitudes corresponding to its eigenvector is the most 
favourable to the development of the instability. For this 
reason, we shall present our results in the form of a curve 
showing the variation of q as a function of wave number A. 

PARAMETER VALUES 

In most of the previous works (e.g. Fletcher & Hallet 1983; 
Zuber ef  al. 1986), the structure of interest was underlain by 
an infinite substrate. We noticed, however, that these 
models lead to infinite velocities in the limiting case A = 0. 
Such divergence problems may be avoided by using 
finite-thickness layers (Bassi 1986). For this reason, we 
assume that the velocities 1z and B vanish at the base of the 
deepest layer, which is taken to be the asthenosphere. 
Theoretically, this layer has the same mechanical behaviour 
as the mantle lithosphere and constitutive relations (3) and 
(4) should hold in it. However, the linearized equations (14) 
explicitly suppose that the layer is submitted to uniform 
extension. They cannot apply to the asthenosphere if it is 
not stretched along with the lithosphere. To avoid any 
further assumption about the basic deformation of the 
asthenosphere, we shall describe it as a Newtonian fluid. 

Even in the simplified approach of Brace & Kohlstedt 
(1980), the model of lithospheric rheology depends on a 
number of parameters which are poorly constrained by the 
data; we recalled them in the preceding section. However, 
previous work on lithospheric strength has demonstrated 
that lithosphere deformation is critically controlled by its 
thermal structure (Kusznir & Park 1984). Hence, we shall 
focus on the influence of the geotherm on the modelling of 
lithospheric rheology, taking the other parameters as 
essentially fixed. In particular, the continental crust is 
assumed to be 35 km thick and its density is taken as 
2.8 g crnp3. When it is ductile, it is characterized by a quartz 
creep law, let us say (Christie et al., cited by Vink et al. 
1984): 

RT 
Zn = 2.4 x lO-'(GXx - a2J3 exp [ - 
if 

In the mantle, we adopt the flow law proposed by Goetze 
& Evans (1979) for dislocation creep of olivine, which has 
been confirmed by more recent experiments (Kirby 1983): 

- aZz is expressed in MPa. 

The mineralogical composition of the asthenosphere does 
not fundamentally differ from that of the mantle 
lithosphere, as already mentioned. However, the former is, 
on average, warmer than the latter so that its mean density 
is less. As a consequence, we took a density of 3.3 g cm-3 
for the mantle lithosphere and 3 . 2 5 g ~ m - ~  for the 
asthenosphere. The base of the lithosphere is defined by the 
1300 "C isotherm, following McKenzie (1978) among others. 

To construct the strength envelope of Brace & Kohlstedt 
(1980), we assume furthermore that there is no fluid 
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pore-pressure (a condition which eventually exaggerates the 
total lithospheric strength) and that the mean rate of 
deformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZXx is or 10-16s-1, these values being 
considered as typical of lithospheric-deformation velocity. 

The various geotherms we investigated were constructed 
foilowing a model proposed by Morgan zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Sass (1984). The 
radiogenic heat production is supposed to be an exponential 
function of depth in the continental crust (with a constant 
thermal conductivity k = 2.5 W m-i K-l) and to vanish in 
the mantle (where k = 3.4 W m-’ K-’). These models 
essentially depend on two parameters H, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq,, which are 
respectively the radiogenic heat production at the surface 
and the heat flow at the base of the crust. They are related 
to the surface heat flow q, by the relation: 

where b is the heat-production decay length, taken as 10 km 
following usual estimations (Morgan & Sass 1984; Turqotte 
& Schubert 1982). According to Morgan & Sass (1984), qm, 
comprises between 30 mW m-* and 50 mW m2 whereas H,, 
which strongly depends on the thermal history of the 
lithosphere, can vary between 0 and 6 ~ W m - ~ .  Of the 
numerous models of a geotherm that these limits allow us to 
construct we retained a few corresponding to a surface 
heat-flow greater than or equal to 50mWm-’. It is 
improbable, as we mentioned before, that continental 
lithosphere may undergo significant deformation through 
geological time if its surface heat-flow is less than this value. 

The strength stratification of the lithosphere that results 
from the above model is summarized in Table 1. The total 
lithospheric thickness depends primarily on the value of qm 
and vanes between 67 (9, = 50 mW m-’, H, = 4 pW m-3) 
and 127 km (qm = 30 mW m-’, H, = 2 pW m-3). The thick- 
ness of the brittle upper crust is of the order of 10 km; this is 
consistent with observations of seismicity under continents 
as the depth of continental intraplate earthquakes is 
generally 15 krn or less. The surface-layer thickness 
increases as expected with decreasing surface heat-flow; it 
also increases with the rate of deformation, in agreement 
with experimental results of rock mechanics (Jaeger & Cook 
1976). The same remarks apply to the mantle brittle layer 
when it exists, which essentially depends on the value of qm. 

In addition to the various thicknesses, the discussion of 
lithospheric extension stability depends on a number of 
dimensionless parameters which are summarized in Fig. 3 
and Table 2. Note that the stress exponent is taken as 
n = lo00 in the upper crust and brittle mantle in order to 
approximate a perfectly plastic rheology (Fletcher & Hallet 
1983). Let us summarize how the values of the other 
parameters are determined for each lithospheric model. 

If h, is the crust thickness, y,h, and ymh, are the inverses 
of viscosity decay lengths, respectively, in the lower crust 
and in the ductile mantle lithosphere. To estimate their 
value, Fletcher & Hallet (1983) constrain the exact viscosity 
curve (equation 4) and the approximate one (equation 10) 
to give the same viscosity and the same rate of change with 
depth at the top of the layer. However, this method leads to 
a very rapid decrease of viscosity with depth and to 
anomalously low values at the base of the layer. For this 
reason, we found it more appropriate to constrain the 
approximate viscosity law to take the exact values at the 
base and the top of the considered layer. These are easily 
computed using equations (4) and (7). 

Aqq, Ar], and Avo are the ratios of strengths respectively 
at the crust brittle-ductile transition, at the Moho, and at the 
eventual brittle-ductile transition of the mantle. Except in 
some specified cases, the viscosity is continuous through the 
base of the lithosphere which is essentially a thermal 
interface. As we have taken into account the decrease of 
viscosity with increasing temperature in the lithosphere, 
there is no particular argument to introduce a discontinuity 
at the lithosphere-asthenosphere transition. 

Estimation of the above ratios requires the definition of 
the brittle-layer equivalent viscosity which, as stated before, 
is a constant related to the yield strength by equation (12). 
If the linear increase of ty with depth has to be 
approximated by a constant, it seems appropriate to choose 
the average value of ty as typical of the layer strength. The 
determination is then straightforward since Byerlee’s law 
allows computation of (axx - aZz) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2s, as a function of 
depth (see Appendix B). 

Finally, gravity is involved through parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,, S, and 
S, which measure the intensity of gravitational stresses 
compared to extensional stresses (Ricard & Froidevaux 
1986). 

Table 1. Influence of the geotherm and the rate of deformation on the thickness of lithospheric layers. q 5  is the surface heat 
flow, q, and H, are defined in the text; r,, tbo r,,, rb, and f,, are the respective thicknesses of the lithosphere, of the brittle 
upper crust, of the ductile lower crust, of the brittle mantle and the ductile mantle lithosphere. L, is the dominant wavelength 
of Figs 4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. 
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50 
40 
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50 
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2 
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4 
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6 
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10-16 
1 0 - l ~  
10-16 
1 0 - l ~  

10-16 

1 0 - l ~  
10-16 
1 0 - l ~  

10-16 
1 0 - l ~  
10-16 
1 0 - l ~  
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127 
93 
93 
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72 
72 
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87 
67 
67 
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81 

12 
14 
10 
12 
10 
11 
9 

10 
8 

10 
7 
8 
7 
8 

23 
21 
25 
23 
25 
24 
26 
25 
27 
25 
28 
27 
28 
27 

16 
20 
2 
4 
9 

13 
0 
0 
0 
0 
0 
0 
0 
0 
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72 
56 
54 
76 
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37 
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52 
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32 
32 
46 
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-Moho zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

h 3 b l  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n,,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 

- / - h4kx) base of the 
*ithosphere 

na = 1 

’a 

- 
n a  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn a  

base of the 
asthenosphere 

base of the 
asthenosphere za 

Figure 3. Model of three-layer (A) and four-layer (B) lithosphere 
under extension. Discontinuities of density or viscosity occur at 
each interface except, for the density, at the brittle-ductile 
transition and, for the viscosity, at the lithosphere-asthenosphere 
boundary. No velocity is assumed at the base of the asthenosphere. 

The resulting parameter values are reported in Table 3 for 
each lithospheric model. Let us remark, first, that Aq4 and 
Ar], are always greater than 1; this means that the brittle 
layers are, on average, easier to deform than the 
immediately underlying medium, This particular configura- 
tion will have important consequences for the results, as we 
shall see below. 

Previous discussions about stability of non-Newtonian 
fluids with respect to tension (Smith 1977; Fletcher & Hallet 
1983) have led to the conclusion that large values of the 
stress exponent n are required for the development of an 
instability. Furthermore, the growth rate factor q, which 
measures the rate of increase of the topography, increases 
with n. This is in good agreement with the general criteria of 

Table 2. Dimensionless parameters required for the determina- 
tion of the perturbing flow (h,  is the crust thickness; the other 
notations are defined in Fig. 3). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(a)  Three -layer Zilhosphere : 

k = Ah, 

n,,  n,, n, 

zs, ztq, zrn, 2 s  

~ c h c ,  Yrnhc 

(b )  Four-layer lithosphere: 

In addition to the above parameters, it is necessary to 
define: 

112 

stability we have mentioned above and confirms that the 
brittle layers, the upper crust and in some cases the upper 
part of the mantle, will play an important role in the 
discussion. 

Fletcher & Hallet (1983) have considered the case of a 
strong surface layer of uniform strength zy overlying a 
ductile substrate with exponentially varying strength. By 
hypothesis, there is no discontinuity of density or strength 
between the two layers. Introducing the parameter 

where h is the surface-layer thickness, they have shown that, 
with a favourable value of the stress exponent of the surface 
layer, 

r h  > S, (27) 

where yh is the inverse of the viscosity decay length, is a 
necessary condition for an unstable growth of the surface 
topography. As S describes the effect of gravity which is 
stabilizing if the density increases with depth, this parameter 
should be small enough to allow the development of an 
instability. On the contrary, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyh is related to the viscosity 
contrast between the unstable layer and the surrounding 
medium, and ought to be as great as possible. When these 
two parameters are chosen according to (27), the 
mechanical effect dominates the gravity effect. 

How does this condition apply in our case? As far as the 
surface layer is concerned, we notice that S, is comparable 
to ych,, or even greater; according to relation (27), a growth 
of topography is unlikely in this context. 

The mantle brittle layer is surrounded by two different 
media and the application of the above condition is not 
straightforward. However, since there is strong increase of 
viscosity at the Moho (Fig. l), it is probable that the lower 
crust will have a negligible effect on the behaviour of the 
mantle. Let us therefore compare ymhc and: 
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10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 .  

Table 3. Parameter values for the models of lithosphere of Table 1. 

- 

30 
30 
40 
40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
30 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
50 
50 
40 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
40 
50 
50 
40 
40 

2 
2 
2 
2 
4 
4 
2 
2 
4 
4 
4 
4 
6 
6 

7.4 4.5 
6.9 4.4 
8.1 5.9 
7.5 5.7 
7.0 4.5 
6.7 4.3 
8.4 6.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8.0 6.5 
8.0 5.6 
7.2 5.6 
8.5 6.1 
8.0 6.1 
7.7 5.2 
7.2 5.2 

where ty2 refers to the strength of the mantle brittle layer. 
As ty2 > tyl, S h  < S,. Then, it appears from Table 3 that 

The appropriate coefficients satisfy relation (27) so that it 
would be possible to observe a mechanical instability if Ar], 
was 1 or less, as assumed in Fletcher & Hallet (1983). Since 
this condition is not fulfilled, their analysis cannot be used to 
speculate about the growth of a stretching instability in the 
mantle brittle layer. 

RESULTS 

For all the situations we have considered, i.e. for the 
lithospheric models of Tables 1 and 3 and a mean rate of 
deformation of s-', the evolution of the growth rate 
factor q as a function of dimensionless wave number k = Ah, 
is similar (Figs 4 and 5); q increases rapidly with k,  reaches 
a maximum and then slowly decreases. The maximum value 
comprises between 14 and 20 and the corresponding 
wavelength L is of the order of 50 km; the small variations 
of L seem weli correlated with the lithosphere thickness or 
with its mantle-part thickness (Table 1). 

Reducing the rate of deformation Zxx does not modify the 
form of the curve or the dominant wavelength (Fig. 6 )  but 
the associated maximum increases: for a lithosphere with a 
surface heat-flow of 80 mW m-2, the maximum reaches 33 
when ZXx = s- ' ,  instead of 15 for Zxx = ~ O - ' ' S - ~ .  This 
effect of the rate of deformation is rather surprising. As 
noted by Ricard 81 Froidevaux (1986), the interface relief is 
the result of two competing factors: gravity, which generally 
tends to damp the topography, and stretching instabilities 
which tend to enhance it. As a consequence, when the 
deformation is driven by large deviatoric stresses, i.e. large 
values of En (equation S), the effect of gravity should be 
negligible and the growth-rate factor should increase. This is 
opposite to our results and suggests that the instability we 
observe does not come from stretching. 

The mode of deformation associated with the eigenvalue 
q (Figs 4 and 5) ,  independently of wave number and 
lithospheric model, corresponds to a situation where all the 
interfaces, except the lithosphere-asthenosphere boundary, 
remain planar. Now, this interface is the only one which is 
characterized by an inversion of density and therefore where 

s, 
7.3 
6.2 
8.7 
7.3 
8.7 
7.9 
9.7 
8.7 

10.9 
8.7 

12.5 
10.9 
12.5 
10.9 

SM 

1.3 
1.1 
1.6 
1.3 
1.6 
1.4 
1.7 
1.6 
1.9 
1.6 
2.2 
1.9 
2.2 
1.9 

SL 

-0.13 
-0.11 
-0.16 
-0.13 
-0.16 
-0.14 
-0.17 
-0.16 
-0.19 
-0.16 
-0.22 
-0.19 
-0.22 
-0.19 

4 
1.8 
1.7 
1.6 
1.2 
1.3 
1.7 
1.2 
1.4 
1.9 
1.1 
1.9 
1.9 
1.4 
1.5 

4 M  4 0  

253 2.5 
124 2.1 
806 1.5 
396 1.8 
458 2.2 
219 2.0 
240 
240 
680 
680 
99 
99 

246 
246 

- 
- 
- 
- 
- 
- 
- 
- 

gravity has a destabilizing effect. One may wonder whether 
the instability for which we have evidence was not simply 
gravitational in origin. This may easily be verified by 
changing the asthenosphere density; if this quantity is 3.35 
rather than 3.25 g ~ m - ~ ,  only the sign of S, is modified. 
With this new density value, and for a three-layer 
lithosphere, the growth rate factor is negative for all the 
wave numbers of interest (Fig. 7). This result is not too 

'I 
L*= 4 1 h rn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m- 

c) qm=50 m W . m - 2 ,  H,=2 pW.m+ d) qm=.40 m W . m - ? ,  H,=6 u W . m - 3  

Figure 4. Growth rate factor q as a function of dimensionless wave 
number k = Ahc for models of three-layer lithosphere. Each model 
corresponds to a given geotherm and is characterized by the value 
of qm, the heat flow at the base of the crust, and H, the radiogenic 
heat production at the surface. The mean rate of extension gxx is 
10-15 s-l L, refers to the wavelength for which q is maximum. 
Schematically represented on each curve is the mode of 
deformation associated with q which is approximately independent 
of k. 
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15 

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 -  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Ld= 6 1  krn  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- 

- 

8 10 k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2 4 6 

a)  q, = 30 mW.rn-' , H= = 4 pw.ni3 b) q, = 30 mW.m- ' ,  Hs = 2 pW.m3 

-3 
c )  qm = 40 mW.rn-' , H~ = 2 p w . m  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Figure 5. Same plot as in Fig. 4 but for models of lithosphere consisting of four layers. Note that all the situations considered in this figure and 
the preceding one give very similar results. 

Ld=48 km 

- 
0 2 4 6 8 10 

k = A h ,  

Figure 6. Effect of the rate of extension on the growth-rate factor. 
This curve, constructed for gXx = s-', should be compared 
with Fig. 4(a) which corresponds to the same model of the 
lithosphere. Neither L, nor the deformation pattern is modified, 
but the maximum value of q is increased. 

surprising since the only unstable layer, the upper crust, is 
placed in conditions which are not favourable to the growth 
of a stretching instability, as noted earlier. 

When the mantle lithosphere is not entirely ductile (Fig. 
8), q is positive in a narrow range of wave numbers; these 
positive values correspond to boudinage or buckling of the 
brittle part of the mantle. However, the maximum value of 
q is always less than 1 so that, if uniform stretching is taken 
into account, the topography will not be amplified but rather 
attenuated through time (equation 22). In this latter case 
also, the results are consistent with our previous comments: 
even if ymh, is greater than Sh, the increase of equivalent 
viscosity at the brittle-ductile transition in the mantle 
inhibits the development of an instability. 

We can therefore conclude that the results obtained for an 
asthenospheric density of 3.25 g cm-3 simply represent the 
gravitational instability of the asthenosphere with respect to 
the cooler lithosphere. The influence of the rate of 
deformation ZS is easy to interpret in this context: whereas 
in the case of mechanical instabilities, stretching is the 
driving mechanism and gravity the limiting one, the 
situation is reversed here: if the deformation is driven by 
large extensional stresses, they may inhibit the gravitational 
deformation of the lithosphere-asthenosphere boundary. 
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W zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a 
v) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 
I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
_I 
k 

k = A h ,  

4 6 8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 
.I - 

- nl=lOOO p,=2.8 g .  
15 km q 

15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAkm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq / l O O  nc=3  pc=2 .8  g.cm- l  

30 km q 3 n = 3  pm=3.3 g . cm- 

- 

- 

Figure 7. Effect of the density contrast at the lithosphere- 
asthenosphere boundary on the curve q(k ) .  The parameter values 
are those of Fig. 4(a) (qm=40mWm-’, H , = ~ P W ~ - ~ ,  
& = s-l) except that the asthenosphere density is 3.35 
instead of 3.25gcmP3. Note that q is never positive in the wave 
number range under consideration, i.e. for wavelengths greater 
than 20 km. 

150. 

100. 

a )  qm=40 m W . m - ’ ,  H,=2 ~ w . m - ~  b! q,=30 m W . m - ’ ,  H S = 4  u W . m - ’  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

c )  q , =  30 r n w . m - ’ .  ti,,. 7 I J W . I ~ - ] .  

Figure 8. Same change of asthenosphere density as in Fig. 7, but 
for the models of lithosphere of Fig. 5. The growth-rate factor is 
positive in a restricted range of wave numbers (case b and c) and 
corresponds to buckling or boudinage of the brittle layer of the 
mantle; but q is always less than 1 so that no amplification of initial 
disturbances will be observed if uniform extension is taken in 
account. 

DISCUSSION 

According to the above model, and with parameter values 
which are closely related to the description of lithospheric 
rheology proposed by Brace & Kohlstedt (1980), this 
structure is stable with respect to necking and presents a 
gravitational instability if the asthenosphere is less dense 
than the overlying lithosphere. This conclusion disagrees 
with those of Ricard & Froidevaux (1986) and Zuber et al. 
(1986). It is interesting to establish whether some 
parameters, more than others, are responsible for this 
discrepancy. 

Figure 9 corresponds to a typical set of parameter values 
used by Ricard & Froidevaux (1986). Their model consists 
of three constant viscosity layers (Fig. 9, upper part), chosen 
in such a way that: 

Ar], = 0.01 

AqM = 100 

Ar]= = 0.01. 

These values rest on the assumption that the lithosphere 
consists of a strong upper crust and upper mantle, separated 
by a weak lower crust, and overlying a weak asthenosphere. 
Such a structure presents in the wave-number range of 
interest a well-defined instability (Fig. 9, lower part). The 
plot of growth-rate factor exhibits three distinct peaks 
corresponding respectively to 270, 47 and 21 km wave- 
lengths. The first is associated with a boudinage-like 

- 
q / l O O  n,=l p,=3.25 g . ~ r n - ~  

L =  
q 4  

1 m 

I-- 

i ~- 

L = 4 7  km 

k=,kh, 

Figure 9. Model of lithosphere with constant-viscosity layers which 
is highly unstable with respect to tension. Parameter values are very 
close to those considered by Ricard & Froidevaux (1986). The 
growth-rate factor reaches 150 and the deformation pattern 
corresponds to buckling or boudinage of the upper competent layer. 
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8 7  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI - q1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 . 8  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10” P a s  

7 7  ~ Asq-1.15 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
bq,-680 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 2  I -  

A 

Gc = 6 . 2  10” Pa s 

Aq,=2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 

B 

Figure 10. Comparison of exponential-viscosity and constant-viscosity models. Model A is the same as in Fig. 4(a) (qm = 40 mW m-*, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H, = 4 pW m-3, Ezx = 10-’5s-’) with an exponentially decreasing viscosity in the ductile layers. In model B, viscosities are constant and are 
obtained by replacing the exponential viscosities by their average value in the layer. 

instability of the upper crust, while the deepest layers The style of deformation is clearly very different from the 
passively follow the deformation. A similar pinch and swell one we observe. The comparison of the parameter values, 
deformation is observed for the second peak, with however, is not straightforward since the mechanical model 
practically no deformation of the underlying layers. Finally, is not the same: here the fluids are considered as 
the last maximum corresponds to the formation of ‘folds’ in nowNewtonian (n # l), but viscosity in the basic state of 
the upper crust without deformation at depth. uniform stretching is supposed to be constant. 

Eigenvector associated to q and corresponding deformation pattern : 

k - 0 . 6  k - 2.4 k - 6 . 9  k - 8 . 7  k - 4.2 

v - v 
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfi -A 

- . - / - - - -  

A 
Figure 11. Growth-rate factor and modes of deformation for the model of lithosphere illustrated in Fig. 10(B). The present results should be 
compared with Fig. 4(a). The change of viscosity law not only affects the value of q, but modifies the associated deformation pattern which 
depends now on the wave number. For intermediate values of k (and, in particular, for k = 4.2 for which q is maximized) an unstable 
behaviour of the upper crust is observed. 
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et al. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1986) do not look for a real correspondence between 
the continuous and jump models being compared. The 
parameters describing both of them are chosen independ- 
ently and are favourable to the growth of an instability. As 
it is well established, by these authors in particular, that the 
dominant wavelengths are primarily determined by the layer 
thicknesses, the small influence of the model observed by 
Zuber et al. (1986) is not really surprising. 

An exponential viscosity law seems more appropriate to 
approximate the strength in the ductile part of the 
lithosphere and the results obtained with it should be more 
reliable than those which correspond to constant viscosities. 
But it cannot be ruled out that other assumptions have a 
determining importance, like for example the choice of the 
equivalent viscosity in the brittle layers. 

Beyond this problem of modelling the lithosphere, it is 
interesting to notice that, in our case, the brittle layers are 
not stronger than the immediately underlying medium, 
contrary to what is assumed by other authors. As a 
consequence, the values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, and S, are high and the ratios 
Aqq and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAr], are greater than 1. Let us imagine that the 
strength of the brittle layers is 10 times greater than the 
value we assumed. Given the uncertainties about the exact 
lithospheric rheology such an error is quite possible. This 
test has been performed for a three-layer lithosphere (Fig. 
12) and a four-layer one (Fig. 13). The maximum value of q 
significantly increases and corresponds to an instability of 
the upper crust. This result is consistent with the conditions 
of instability proposed by Fletcher zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA& Hallet (1983), since 

Our first question concerns the influence of the viscosity 
law. The two models presented in Fig. 10 are different 
approximations of the same physical structure, that is a 
lithosphere with a 80mWm-* surface heat-flow and a 
strength stratification derived from the model of Brace & 
Kohlstedt (1980). The first approximation is the one we 
have used until now, with exponential viscosity laws in the 
ductile layers; in the second, these laws have been replaced 
by constants, equal to the average of the exponential 
viscosities within the layer where they apply. The evolution 
of growth rate factor q for this second situation (Fig. 11) 
differs significantly from the first one (Fig. 4). The 
amplification is less efficient, since q is smaller, but a 
mechanical instability of boudinage-type is observed for the 
upper crust at intermediate wave numbers, whereas it was 
only gravitational, at any wavelength, for exponential 
viscosity laws. 

It seems therefore that the rheological approximations 
used in the models to describe a given structure may greatly 
influence the results. Zuber et al. (1986), making a similar 
test, do not reach the same conclusion. These workers 
compare two models in which the strength of the substratum 
beneath a single strong layer (1) either decreases 
exponentially with depth (C model), or (2) decreases 
discontinuously to a lower uniform value at the bottom of 
the layer (J model). They conclude that these two 
approximations predict similar physical behaviour for wave 
numbers of interest, and similar dominant wavelengths. 
However, unlike the test illustrated in Figs 10 and 11, Zuber zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Eigenvector associated to q and corresponding deformation pattern : 

k - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 . 2  k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.7 k = 4 . 5  k = 6 . 9  

I -0 .2  I 
Figure 12. Same plot as in Fig. 11 but for a model of lithosphere where the strength of the upper crust has been multiplied by a factor of 10 
with respect to the value of Fig. 4(a) so that Aq, = 0.1, S, = 0.8, S, = 0.1 and S,= -0.01, the other features being unchanged. For these 
values, the lithosphere is unstable with respect to tension, and boudinage-like instabilities of the upper crust can develop at any considered 
wave number, with a maximum rate of growth for k = 4.5. 
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I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 a 10 k 

Eigenvector associated to q and corresponding deformation pattern : 

k - 0 . 6  k = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 . 4  4 < k < 8 . 8  k < 8.8 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
v zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu 

-----.- v A x * v A 
Figure U. Same test as in Fig. 12 but for a four-layer model of lithosphere. The parameter values correspond to qm=30mWm-*, 
HS=4pWm-', tn= 10~'5s- '  (see Fig. Sa), but the strength of the brittle layers is 10 times greater, so that Aqq=0.2, A q ~ = 2 1 %  
Avo = 0.2, S, = 0.8, S, = 0.1 and S, = -0.01. As in Fig. 12, stretching instabilities can grow with these new parameter values. 

this new choice of strength changes the value of S, and Aqq 
so that: 

and 

Ar], < 1. 

The preceding discussion is by no means exhaustive since 
we did not investigate systematically the influence of the 
various parameters. This has been done by Zuber et al. 
(1986) and Ricard & Froidevaux (1986) for a wide range of 
parameter values, all favourable to an unstable extension of 
the lithosphere. But these values are not unique; our study 
demonstrates that other estimates, best constrained by 
experimental results on rock mechanics, lead to slightly 
different conclusions. The above test however shows that 
the strengths of the various layers are determining factors, 
as yet insufficiently constrained by the data. 

NON-SINUSOIDAL PERTURBATION OF 
THE INTERFACES 

The spectral analysis presented above illustrates that the 
eventual amplification of an initial small-scale topography is 
selective, the dominant wavelengths being more or less 
simply determined by the layer thicknesses. Furthermore, 
the preferential mode of deformation (which is associated 

with the growth rate factor q )  depends on the wavelength. If 
the preceding model could apply to continuing evolution (it 
is actually limited to the initial stages of the deformation), 
the affected interfaces would show, after a certain time, a 
sinusoidal undulation with a wavelength Ld corresponding 
to the maximum of the curve q(L) .  In addition, the 
respective amplitudes of the interfaces would be propor- 
tional to the eigenvector associated with q(Ld). However, 
the method does not allow us to compute final deformation 
and therefore to predict a priori the long term evolution of 
an initial, non-sinusoidal, relief of the interfaces. As far as 
the early evolution is concerned, the resulting geometry will 
depend on, among other things, the initial spectral content, 
the differences between the eigenvalues, and the interface 
(or interfaces) which is initially deformed. 

For our model of lithospheric structure and behaviour, 
however, we showed that the only positive eigenvalue is 
associated with an instability of the lithosphere- 
asthenosphere boundary, at any wavelength. Then, it is 
probable that, whatever the exact shape of this interface, it 
will be amplified when the lithosphere is stretched. As an 
example, let us examine the early evolution of an initially 
Gaussian topography of the form: 

h(x) = ho exp ( -x2/2D2). 

We have chosen this function because of its simple 
spectrum, but also in order to approximate a local 
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constriction. Since the problem has been linearized for the 
first stages of the deformation, the evolution of vector H 
through time can be computed without particular difficulty if 
all the interfaces exhibit a Gaussian relief, characterized by 
the same parameter D (see Appendix C). Note that the 
spectrum of this topography includes the zero frequency: for 
this limit value, it has been shown (Bassi 1986) that all the 
eigenvalues vanish. This means that the average of the 
topography is independent of time and probably results 
from the incompressibility hypothesis. 

Let us suppose then that the lithosphere-asthenosphere 
boundary shows a small-scale upwelling represented by a 
Gaussian function of parameter D zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 35 km. For this value of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
D, the amplitude of the interface is reduced by a factor 100 
for a distance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx = 106 km, that is to say a global extent of 
the perturbation of approximately 200 km. Fig. 14 shows the 
position of the various interfaces through time for a model 
of lithosphere with a surface heat-flow of 80 mW m-* and a 
mean rate of deformation equal to s-'. After a global 
deformation Exxt of 15 per cent (which is supposed to 
produce little modification of lithospheric structure), the 
central upwelling is amplified by a factor of seven whereas 
the other interfaces remain approximately flat, as expected. 
The base of the lithosphere presents alternate highs and 
lows, the amplitude of which rapidly decreases away from 
the central uplift. 

This behaviour, however, is not very encouraging as far as 
sedimentary-basin formation is concerned, since it does not 
introduce any modification of the crust thickness and 
consequently does not lead to subsidence. A model of the 
lithosphere described by the parameter values of Fig. 12, 
obtained by increasing the strength of the upper crust, is 
more interesting from this point of view as the lithosphere 
exhibits modes of deformation in which the crust presents 
local constrictions. Let us examine the behaviour of such a 
structure, for example when the upper brittle crust shows a 
weak initial neck of approximately 100 km extent (D = 

t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABrittle-ductile 
transition 

t 

It 

Surface 

17.5 km). The results are presented on Fig. 15. The 
structure appears to be highly unstable with respect to 
tension since, for a global deformation of only 3 per cent, 
the position of the brittle-ductile transition in the crust is 
amplified by a factor of 20. This interface shows an 
oscillation which progressively decays; its wavelength, close 
to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 km, corresponds to the maximum of the curve q ( k )  
(Fig. 12). The upper crust is characterized by a series of 
constrictions, the principal (for x = 0) being greatly 
amplified with respect to its initial form. In addition, it is 
narrower than it was initially. The crust as a whole is 
thinned at the centre of the initial neck: the Moho has the 
form of an upward bulge, centred on x = 0, and with a 
lateral extent equal to the initial width of the neck. 

These two examples illustrate the consequences of the 
above spectral analysis results on the early evolution of a 
more 'realistic' (actually, still theoretical. . .) initial 
topography. Of course, these results are essentially 
qualitative and will probably depend on the exact frequency 
spectrum of the topography, e.g. on the parameter D. 
Nevertheless, they could have some interesting develop- 
ments if the upper crust is regarded as a competent layer 
with respect to the lower crust. In any case, it is important 
to keep in mind the limits of the method which is supposed 
to give initial tendencies rather than final deformations. 

CONCLUSION 

Our study, when compared with the previous, similar 
studies by Zuber et al. (1986) and Ricard & Froidevaux 
(1986), clearly shows the extent to which certain rheological 
hypotheses are central for the results of geodynamical 
models. It will be difficult to draw any definite con- 
clusions concerning the lithosphere's ability to deform until 
its rheology is better known. The model used by us is a 
compromise between the complexity of continental litho- 
sphere rheology, as described by Brace & Kohlstedt (1980) 

Base of the 
lithosphere 

Moho 

2i 
1 2 3 4 "h, 

0 

Figure 14. Position of the interfaces of a stretched lithosphere through time when, initially, the lithosphere-asthenosphere boundary shows a 
Gaussian upwelling of parameter D = h, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA35 km, the other interfaces being flat. The model of lithosphere corresponds to qm = 40 mW m-', 
H, = 4 pW m-3, eXX = s-'. The time interval between the curves corresponds to a mean deformation FxxAt = 0.03. 
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500 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBABassi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAand J .  Bonnin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 0 .  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
10- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Base of the 
lithosphere zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

20. 

10. 

Brittle-ductile 
transition 

Surface Moho 

- lo t  -1°1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Fimre zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA15. Same plot as in Fig. 14, but for the parameter values of Fig. 12. The surface layer is supposed to show an initial neck which is 
schematically represented by a Gaussian perturbation of the surface 
corresponds to a mean deformation exxAt = 0.01. 

among others and the approximations required for an 
analytic study of non-uniform extension. On the basis of our 
model, we cannot conclude that the lithosphere is unstable 
with respect to necking; the only instability for which we 
have evidence results from the gravitational instability of the 
asthenosphere with respect to the cooler mantle lithosphere. 
The model, however, is highly sensitive to the parameter 
values and, particularly, to the strength stratification. If an 
order-of-magnitude error is made in the evaluation of the 
brittle layer strengths, the conclusions are quite different 
and extension becomes unstable. 

In connection with this, it is important to emphasize the 
fundamental role played by the brittle layers in this 
discussion of mechanical instability, essentially because they 
are approximated by power-law fluids with very large stress 
exponents. This result is questionable since the preceding 
mechanical description relies on a number of assumptions. 
In addition, it contradicts the common idea that the 
mechanical importance of the brittle upper crust is only 
minor and that the crust passively follows the extension of 
the ductile lithosphere. It would be interesting, therefore, to 
test further the influence of this mechanical approximation 
on the results, and to evaluate the exact role of the crust in 
the deformation. 

Laboratory experiments have demonstrated that the 
conditions of growth of a necking instability depend on the 
details of geometry and structure of the sample. A similar 
characteristic may be observed in our theoretical analysis, 
since it appears that slight changes in the assumptions not 
only affect the precision of the results but modify them 
fundamentally. It is therefore necessary to define a 
formalism which will take into account the progressive 
evolution of the parameters with depth, and avoid, as far as 
possible, the artificial discontinuities of strength or density. 

Finally, the perturbation method does not allow the 
working out of the long-term evolution of an initial 
configuration. As the deformation proceeds there is 
certainly a wavelength selection, as our spectral analysis 

and the brittle-ductile transition: The time interval between the curves 

suggests. However, the thermal, and therefore rheological, 
modifications introduced by an important stretching will 
change the dominant wavelengths through time, so that the 
final effect is not obvious. The problem of long-term 
deformation is mathematically much more complicated than 
the analysis we have presented, as it is non-linear and 
coupled with a thermal problem; it has to be addressed with 
numerical methods, such as finite-element methods. 
However, this complexity is probably difficult to avoid in 
attempting a closer understanding of lithospheric 
deformation. 
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APPENDIX A 

Solution of the perturbing flow problem 

We want to solve the Navier-Stokes equations for the plane 
perturbing flow (equation 15), in a medium described by the 
constitutive equations (14). The viscosity in the basic state 
of uniform extension, +j, is either exponential or constant. 
Except in the asthenosphere, the stress exponent n # 1. 

Let 6 and + be the horizontal and vertical components of 
the velocity. The incompressibility condition (16) is satisfied 
by the separable solution: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
+(x,  z )  = W(z) cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAx, ii(x, z )  = -W'(z)(sin A x I A ) .  

(Al) 

where y is the inverse of the viscosity decay length. A 
general solution of this equation is: 

sin pAz exp (cu'Az) 
W(z) = A, cos pAz exp ( a ' l z )  + A, - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

P A  
sin pAz + A, cos pAz exp (a%) + A, - exp (a''Az) (A3) 

P A  

with 

In the preceding expression, W(z) is developed on a basis 
of the solutions of (A2), which is slightly different from the 
one proposed by Fletcher & Hallet (1983). We had better 
choose a family of independent solutions which is 
continuous for I - ,  0, since the limit value ?, = 0 may intrude 
in the case of a non-sinusoidal perturbation of the interfaces 
(see Appendix C). 

The general expressions for 6, +, cixz and cizz are derived 
from W ( z )  and the constitutive equations (14), and are as 
follows: 

sin PAz 
A, cos DAz exp (a' Az) + A, - exp (a' Az) 

PA 

exp ( a"Az) cos Ax 
sin ~ A z  + A, cos PAz exp ( ~ " A z )  + A, - 

P A  1 

+[$-@Al] sin ' PAz ) exp ( a ' l z )  

- ([ a'%, + $1 cos pkz 

+ [ % - PA,] sin PA=) exp (d'Az) sin Ax zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 
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Cx2(x, z )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= -i jA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAsin zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAx 

2a' 
x [ ([ (1 + a'2 - @')A, + TA. ]  cos pAz 

(1 + ar2 - 
P A  

2 a" + ([ (1 + arr2 - p2)A3 + n A,] cos /3Az 

(1 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAaff2 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
DA 

+ ( [ M ~ A , + @ A '  M4 I c o s p ~ z  

- M A sin gAz exp (a"Az) 

(A71 

4 3 1  

where: 

1 - 2a'm + (p2 - 3 d 2 )  

and M3 and M4 are evaluated by replacing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa' by a" in M, 
and M,, respectively. 

2 Constant viscosity qo 

The differential equation (A2) regularly depends on the 
parameter y,  so that a general solution for the constant 
viscosity case may be directly obtained by setting y = O  in 
the above relations. It is more convenient however, for 
numerical reasons, to develop W ( z )  on the basis of solutions 
which are continuous in the limit process A+ 0, e.g. 

sin PIAz 

P la 
W ( z )  = B, cos P1Az cosh a,Az + B2- cosh a,Az 

sinBIAz . 3 + B,----- sinh a,Az - B4 - @V,Bd2 a,A3 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa1 . BIAz sinh a,Az --sin BIAz cosh a,Az , 
B1 

where 

= nP-1'2 and B1 = (1 - l/n)1'2. 

the form: 

sin /?,A2 
B, cos @,At cosh a,Az + B2 - cosh a,Az 

B l A  

sin BIAz 3 
"1B1A2 a1A3 

+ B3 ~ sinh a,Az - B4 - 

a1 . cos PIAz sinh alAz - -sin B,Az cosh a lAz ] )  cos Ax 
B1 

k(x,  z )  = -sin Ax - cos BIAz cosh a,Az (: 
cos B,Az sinh aIAz 

sinB,Az cosh a,Az 

sin PIAz sinh a,Az) (A10) I 
2B31 A 

2 

n1 
Cx2(x, z )  = -qo( [ - ABl + - cos B,Az cosh aIAz 

+ 2a,B2 cos BIAz sinh alAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 sin plAz sinh a,Az 

and finally 

2B3 . 

B l A  
+-sin BIAz cosh alAz 

+ 2Aa, B, cos PIAz sinh a,Az 

6B4 ] sin P,Az sinh alAz 

3 Newtonian fluid 

This case corresponds to the particular value n = 1 with 
respect to the preceding examples. Since (A2) regularly 
depends on n, the solutions are obtained by setting n = 1, 
and hence /3, = 0, in relations (A9) to (A12). Consequently, 

@(x,  t )  = cos Ax Cl cosh Az + C2 cosh Az t [ 
1 sinh Az 3 

A a3 + C3z - - - C,(sinh Az - Az cosh Az)  

The velocity and stress components may then be written in 
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c2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ - cosh zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAz 
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

&(x,  z )  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-qo sin Ax 

+ 2C3z sinh Az + 2C2 sinh Az 

+ [ a  2AC2 + s]z cosh A,) 

eZz(x, z) = qocos Ax 2C3z cosh Az + 2AC1 sinh Az ( 
coshAz + 6C4 

A2 
-- 

If m is the number of layers of the problem, the final 
solution for the perturbing flow requires the determination 
of 4m integration constants. Boundary conditions (17) to 
(20) provide 4(m - 1) relations. At the free surface, the 
normal and shear stresses vanish, thus providing two 
supplementary conditions. Finally, the assumption of no slip 
at the base of the asthenosphere (z2 = 0, @ = 0) completes 
the set of required equations. All these conditions are linear 
with respect to the integration coefficients, so that the 
problem reduces to the solution of a 4m-order linear 
system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
APPENDIX B 

Lithospheric strength versus depth for a given rate of 
deformation 

We explain here the construction of the typical strength 
profile illustrated on Fig. 1. This variation of stress with 
depth is a consequence of a few principles suggested by 
Goetze & Evans (1979), or Brace & Kohlstedt (1980) for 
the continental case, referred to in the text. The deviatoric 
stress (axx - a,,) is directly computed into the ductile parts 
of the lithosphere when a characteristic flow-law for the 
crust and the mantle, a model of geotherm, and a rate of 
deformation have been defined. The brittle case is 
somewhat more complicated: the recasting of Byerlee’s law 
in a strength versus depth relation relies on some implicit 
assumptions that we wish to emphasize. 

Let us assume, for example, that there is no fluid 
pore-pressure. In terms of principal stresses, B yerlee’s law 
is: 

if T3<110MPa 
[: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI ::T3 + 210 if & > 110 MPa (B1) 

where & and are the principal maximum and minimum 
stresses, respectively. It is important to stress that the 
preceding law uses the rock mechanics sign convention 
which considers compression as positive. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBATi is the total 
stress tensor, let us say: 

where p o  is the hydrostatic stress due to the gravity field, 
and uij is the tectonic stress. 

If plane strain is assumed, with no deformation along the 
y axis, qy is the intermediate principal stress. In addition, 
when the structure is submitted to tension along the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx axis: 

TI = Tzz 033) 

if T,, is supposed to be a principal stress (this is rigourously 
true if the deformation is of pure shear type). Then: 

T3 = T,. (B4) 

As T3 is negative when the structure is stretched, it is always 
less than 110 MPa, and consequently: 

(B5) 
uz, -uxx=T --=‘T TI - 4  

1 5 1 -  5Tzr 

Assuming that the vertical stress T,, does not differ much 
from the gravitational stress p o ,  relation (B5) may be 
written in the form: 

a,, - a,, = sppo = %gd, 

where d is the depth of burial (counted positively 
downwards, from the surface). With the usual sign 
convention of solid mechanics, the deviatoric stress is 
finally: 

(B6) 4 

- Bzz = :pgd 037) 

With a density of 2.8 g cm-3 for the crust and 3.3 g cm-3 for 
the mantle, this law becomes: 

Bxx - Bzz = 22.4d. (B8) 

in the crust, with d in km and Cu - C,, in MPa, and in the 
mantle: 

Bxx - a,, = 22.4dC + 26.4(d - d,) 

if d, is the depth of Moho discontinuity. 
One can thus define a strength versus depth relation for 

each typical mode of deformation in the lithosphere. The 
stress profile and associated rheological stratification of Fig. 
1 results from these relations and from the assumption that 
the mechanism that requires the least stress is dominant at 
each depth. 

APPENDIX C 

Evolution of the amplitude vector H through time for a 
Gaussian perturbation of the interfaces 

Let hi(x), the topography of the ith interface, be a Gaussian 
function of parameter D, i.e. 

hi(x) = hi, exp - (x2/2D2). (C1) 

Taking into account the reciprocity of the Fourier 
transformation, hi(x) may be developed as a function of its 
Fourier transform, and satisfies: 

hi(x) = hio(a)l’ZD [exp (- T) D2A2 cos Ax dA. 

Let us now assume that all the interfaces of the problem 
present a Gaussian disturbance with respect to a planar 
geometry, and that these functions only differ by their 
amplitude hjo. Then, the amplitude vector H may then be 
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written in the form: 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1/2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H(x, t zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 0) = (-) n D p e x p  (- F ) H o ( t  = 0) cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAn zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdA. 

0 

(C3) 

The evolution of & through time has been determined in 
the text for each wave number I; according to equation 
(23): zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

m 

~ , ( t )  = E a o j ( A )  ~ X P  ( q j i ( A ) z u t ) v j ( A )  (C4) 
j = l  

where q j ( A ) Z ,  and Vj(A) are the eigenvalues and 
eigenvectors corresponding to A, and the constants aoj are 
the coefficients of the decomposition of Ho on the 
eigenvector basis. 

Since the problem has been linearized, the vector H at 
time t satisfies: 

If the eigenvalues, eigenvectors and the decomposition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
H, on this basis have been determined for each wave 
number A, the preceding formula allows us to compute H 
for a set of values of x and t. Note that, in the limiting case 
A = 0, qj(I) = 0 (Bassi 1986), so that 

H,(t) = &(t = 0). D
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