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Rheological Nonlinearity and Flow Instability in the 
Deforming Bed Mechanism of Ice Stream Motion 

BARCLAY KAMB 

Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena 

Contrary to what has recently been assumed in modeling the proposed deforming bed mechanism for 
the rapid motion of Antarctic ice streams, the rheology of water saturated till is probably highly nonlinear, 
according to information from soil mechanics and preliminary experiments on till from the base of Ice 
Stream B. The equivalent flow law exponent n is probably as high as ---100, and the nonlinearities of the 
shear stress and effective pressure dependences are closely linked. The high nonlinearity has important 
consequences for the deforming bed mechanism. A flow system operating by this mechanism can be 
unstable as a result of feedback from the generation of basal water by shear heating of basal till. The 
short-term feedback effect is analyzed for a perturbation in a model ice stream in which the basal 
meltwater is transported through a distributed system of narrow gap-conduits at the ice-till interface. 
Although the analysis is approximate and some of the system parameters are poorly known, the results 
suggest that the deforming bed mechanism is unstable for n >---20. The apparent lack of such an instability 
in the currently active ice streams implies that their motion is controlled not by the deforming bed 
mechanism but by some other as yet unidentified mechanism. 

INTRODUCTION 

The West Antarctic ice sheet is traversed by about a dozen 

ice streams --50 km wide and --500 km long, in which the ice 

is moving at speeds up to --800 m yr '1, in sharp contrast to 
the motions of--10 m yr -1 in the general mass of the ice sheet 
outside the ice streams [Bentley, 1987]. There is interest in 
these rapid motions as a phenomenon of glacier mechanics 

[Clarke, 1987a] and as a process that may be important in a 

possible collapse of the ice sheet, with worldwide consequences 
[Hughes, 1977, p. 44; Weenman and Birchfield, 1982; van der 
Veen, 1987, p. 8; Lingle and Brown, 1987, p. 279; 
Bindschadler, 1990]. 

To explain the rapid ice stream motions there has been 
developed, on the basis of seismic reflection data [Blankenship 
et al., 1987], a deforming bed model according to which the ice 
moves rapidly by deformation of a layer of soft, water- 

saturated till at its base [Alley et al., 1987a, 1987b; 1989; Alley, 
1989a, 1989b; MacAyeal, 1989]. From boreholes to the 
bottom of Ice Stream B, direct evidence of the basal till and 

of physical conditions suitable for its deformation has been 
obtained [Engelhardt et al., 1990; Kamb, 1990]. Glacier and 

ice sheet movement by soft-bed deformation, instead of by the 
normally considered mechanisms of ice deformation and basal 

sliding, has been advocated as an important new paradigm of 
glaciology [Boulton, 1986] and as the flow mechanism for large 
parts of the ice age North American and Fennoscandian ice 

sheets [Boulton and Jones, 1979; Boulton et al., 1985; Brown 
et al., 1987]. 

Crucial to the deforming bed model are the mechanical 

properties of the basal till, which relate the shear deformation 
of the till to the shear stress at the base of the ice and specify 
how this relation is influenced by basal water pressure [Alley et 
al., 1987b, p. 8937]. In the modeling of the deforming bed 
mechanism that has been done to date, a linear or nearly 

linear theology has been assumed. The present paper 
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undertakes to show that a highly nonlinear relation is much 

more likely and that such a relation has important 
consequences for the stability of ice stream motion if 
controlled by bed deformation. 

CONSTITUTIVE RELATION FOR TILL 

Current View 

In the modeling to date of ice stream motion by the 
deforming bed mechanism, the till flow law relating shear 
strain rate ,• to shear stress ? and effective pressure 
P = Pi-Pw (where PI is overburden pressure and PW is pore 
pressure of water) has been assumed to have the form 

• = C ?n/prn (1) 

where C is a constant (the "softness parameter") and where 
n=l [Alley et al., 1987b; Alley, 1989b; MacAyeal, 1989] or 
n=l.3 [Alley et al., 1989, Figures 3 and 4]. Alley [1989b] and 
Alley et al. [1989] worked with several values of m from 0 to 

5, while MacAyeal [1989] did not include the effect of pore 
water pressure in his model. Lingle and Brown [1987, pp. 266 
and 268] took n=l and m=l in a model that can be 

considered to be based on (1) if the assumed basal sliding law 
is interpreted as resulting from deformation of the postulated 
basal aquifer layer [Lingle and Brown, 1987, p. 251]. 

The assumed flow law was based on results of Boulton and 

Hindmarsh [1987] from field observation of the deformation 

of subglacial till near the terminus of an Icelandic glacier, 
Breidamerkurjokull. The data, seven triplets of values (,•, ?, 
P), fitted a law of the form (1) with n= 1.3 and m= 1.8, thus 
showing only slight rheological nonlinearity. Boulton and 
Hindmarsh [ 1987, p. 9063] also fitted to the data a flow law of 
the form 

ß • = C (.r-?f)n/(P) m (?>_?f) (2) 

where ?f is yield strength, given by 

•f=c +•P (3) 
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the constants c and t• being the cohesion and internal friction; 

for •. < ?f_, • =0. They obtained n =0.6, rn = 1.2, •=0.6, and 
c=0.04 bar, with no improvement in goodness of fit 

(correlation coefficient) over the law of form (1). Since the 

nonlinearity represented by nonzero ?f in (2) tends to be 
compensated by the "sublinear" n < 1, only a slight nonlinearity 
is again indicated by these results. 

Clarke [1987b, p. 9027] postulated for saturated till a law 

of type (2)+(3) with n= 1 (Bingham flow law), m=0, and c a 
somewhat complex function of •. For application to 
landslides, Iverson [ 1985, p. 148] proposed a three dimensional 

generalization of (2)+(3), with m=0; fitting (2) to vertical 

profiles of flow velocity in four landslides gave •.f--0.4 bar 
and n ranging from 0 to 5 [Iverson, 1985, Figui'e 4; 1986, 

Figures 4 and 5]. (The velocity profiles were rather irregular, 
which prevented a close fitting of the flow law.) 

Evidence From Soil Mechanics 

The constitutive relation for till, as a granular material with 
a high content of clay-size particles, should be consistent with 
what is known about such materials in soil mechanics. In the 

geotechnical literature on the creep of clay-rich soils, much of 

the creep data are fitted reasonably well by the Singh-Mitchell 
creep equation [Singh and Mitchell, 1968; Borja and 
Kavazanjian, 1985] based on rate process theory [Mitchell et 
al., 1968; Feda, 1989]: 

• = •o (tl/t)s exp (•?/? f ) (4) 

where t is time starting with t=tl, at stress onset, and where tl, 

•o, s, and • are constants. The yield stress ?f is given by (3), 
normally with c=0, and with g dependent on the porosity of 

the soil. The relationship (4) is considered to apply for ? in 
the ran e 0 37 <?<0 97 [Singh and Mitchell, 1968, p. 30], g .... f 
which is enoug• below the yield stress that the soil does not 
grossly fail and the strain does not increase to large values on 
the time scale of experimental tests. Thus typical values of s 

are in the range 0.75_<s_< 1, so that (4) describes transient, 
decelerating creep. The parameter • in (4) is typically in the 
range 3-7 for this type of creep [Mitchell et al., 1968, Figures 
11 and 12; Singh and Mitchell, 1968, Figures 17 and 21; Borja 
and Kavazanjian, 1985, p. 294; Feda, 1989, Figure 3]. 

The till flow law needed in order to model the deforming 
bed mechanism must describe steady state creep at large 

strains, with the till at failure (?=?f), rather than decelerating 
transient creep at ? well below failure, as (4) does. The 
strength at large strains, called the residual strength, has been 

studied for a variety of clay-rich soils by laboratory testing with 
the ring-shear apparatus and by quantitative evaluation of 
landslides [Bishop et al., 1971; Bolton, 1979, p. 255; Skempton, 
1985; Maksirnovic, 1989]. The flow law is, from the viewpoint 
of soil mechanics, the strain rate dependence of the residual 

strength. This has been investigated for clay-rich soils by 

Skernpton [1985, p. 14], who finds that the residual strength ?r 
increases with the shear rate, but only slightly. The 

dependence follows the form of (4), with ? replaced by ?r, and 
with s=0 (steady state). Solved for ?r, (4) gives the standard 
form for the strain rate dependence of the residual strength •'r: 

?r = 7o (1 + •-1 ln(.•/•o )) ('•-• '•o ) (5) 
Here %, which replaces ? in (4), is the residual strength at a f 
reference strain rate '•o below which •r becomes independent 

of ,• and (5) no longer applies. (5) is given, in different 
symbols, by Feda [1989, equation (9)] and by Prapaharan et al. 
[1989, equation (10)]. The effective-pressure dependence of 
the creep strength in (5) is contained in the dependence of % 
on P analogous to the dependence of •,f on P in (3): 

-- Co*oP (6) 

normally with Co=0 [Feda, 1989, p. 670]. 
In ring-shear tests reaching the residual state the sample 

usually develops a narrow internal shear zone, and it is 

therefore standard practice to replace the ratio •/•o in (5) with 
v/v o where v is slip rate across the shear zone and v o is a 
reference slip rate analogous to •o- 

The form (5) (with ¾/•o-,V/Vo), accompanied by (6), is 
used in the geophysical literature [Tullis, 1988; Biegel et al., 
1989; Scholz, 1990, Figures 2.18 and 2.22] to describe the 
shear rate dependence of the steady state frictional strength of 
fault gouge. Conventionally, a parameter (a-b)/t•o is written 
in place of e-1 in (5). Gouge of course bears a relation to till 
in that both are granular materials produced at least in part by 
mechanical comminution. 

Because of the form of (5), the dependence of residual 
strength on shear rate is commonly expressed in terms of the 

slope S of the curve of ?r plotted against 1og10,•; S is usually 
given as the percentage increase of •'r per decade (or "log 
cycle") increase of •. Thus 

S = 1000In •'r/01og,• (7) 

Data given by Skernpton [1985, p. 14] show S=1.1-3.1% per 
decade, and from residual-strength tests reported by Bishop et 

al. [1971, p. 302], S=1.9% per decade. From other tests on 
the strain rate dependence of soil strength not definitely at the 
residual limit, S is commonly reported in the range 7-13% per 

decade [Borja and Kavazanjian, 1985, Figure 8; Nakase and 
Kamei, 1986; Prapaharan et al., 1989, p. 618; O'Reilly et al., 
1989, Figure 4]. 

A comparison of observed S values with what has been 
assumed in modeling the deforming bed mechanism is 
obtained by finding the equivalent value of n in (1), with 

?"?r; from (5) and (6), 

(8) 

n = 01n•/01n? r = (100In 10)/S = e?r/?o -- e 

(The last step follows because ?r=?o when the medium is 
deforming at failure.) Thus S= 13% per decade corresponds 
to n = 18, and S =2% per decade corresponds to the prodigious 
value n = 115. The extreme nonlinearity represents mechanical 
behavior close to perfect plasticity, for which S=0 or n-,=. It 

contrasts with the relatively mild nonlinearity in the transient 
creep law (4), for which •--3-7 as noted earlier. The increase 

in sensitivity of strain rate to stress as •-,?f is a natural 
expectation [see Mitchell et al., 1968, Figure D_]. 

The mechanical properties of the till under the ice streams 
are doubtless not exactly the same as those of the clay-rich 
soils tested by Bishop [1971] and Skempton [1985]. Because 
of the sand and pebble content of the till [Engelhardt et al., 
1990, Figure 4], its behavior will probably be closer to perfect 
treiboplastic failure than is the case with the clay-rich soils 
tested, so that the equivalent n value for the till flow law will 

probably be even higher than --100. 

In the relation (5) for the steady state strength of fault 
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gouge, from experiments to date •-I is found to be a small 
quantity that increases gradually with the shear rate from 
about -0.007 at v--0.3 mm d '1 to about +0.013 at v=130 m 

d '1 [Blanpied et aL, 1987, Figure 3]. Negative •-1, which is 
found for v< 1.3 m d -1 and is called "velocity weakening," 
constitutes a more extreme rheological nonlinearity than is 
represented by small but positive •-1. The extreme 
nonlinearity in the constitutive relation of gouge cannot be 
expected to apply directly to till, for one reason because the 

stress levels in the gouge experiments 0._•50 bar) are much 
higher than in the till under the ice streams (•_<0.5 bar). But 
the gouge behavior reinforces the view that the dependence of 
residual strength on shear rate is very slight (i.e., • is large) for 
such materials, and they can even show velocity weakening. 

This has its counterpart in the behavior of soils: Lambe and 
l&'hitman [1969, p. 314] have noted an ambivalence between 
slight strengthening and slight weakening in the effect of shear 
rate on soil strength. 

Tests on Till From Ice Stream B 

Freshly cored till from the base of Ice Stream B 

[Engelhardt et al., 1990, p. 59] was tested by the direct-shear 
method [Bolton, 1979, p. 69] in a test cell of diameter 2.5 cm, 
operating in the creep mode (applied shear load held constant 
during the test; shear displacement recorded every 15 s). The 
material tested was packed into the test cell to a total depth of 
3 cm, and rare coarse clasts encountered in the packing 
process were removed. The removed clasts, >-- 10 mm in size, 

constituted less than 2% of the sample volume. Tests were 
carried out in the open air and under a nominal normal stress 
of 0.017 bar. The pore pressure was not controlled, but 
because of the very low hydraulic conductivity of the till 
[Engelhardt et al., 1990, p. 248] and the short test duration the 
tests were essentially undrained and therefore should 

reproduce the mechanical properties under in situ conditions, 

independent of the normal stress or external availability of 
pore water [Bolton, 1979, p. 94; Lambe and Ib'hitman, 1969, p. 
440]. 

The most informative results, from repeated tests on a 
single sample, are shown in Figure 1. Tests were done 
alternately at •=0.018 bar and 0.022 bar. At the lower shear 

stress all tests resulted in decelerating creep; the open circles 

plotted are the initial shear displacement rates (averaged over 
the first 15 s of the test}, and the arrows pointing downward 
indicate rates decreasing steadily to near unobservability in 1 
or 2 min. At the higher stress all tests gave rapid shear 
displacement rates and accelerating creep leading quickly to 
"catastrophic" failure (arbitrarily large displacement, which was 
restrained by stops}; the open circles plotted have the same 
meaning as before, and the small arrows pointing upward 
indicate accelerating slip rates leading to catastrophic failure. 
The large, open, arrows pointing upward are lower limit values 
for initial strain rates in tests in which the creep acceleration 
was so rapid that the moving part of the test cell hit the stops 
before the end of the first 15-s interval. In one experiment at 
•=0.022 bar there was a short early stage of decelerating 
creep, followed by accelerating creep and failure, as arrows in 
Figure 1 indicate. 

The results in Figure 1 show that in these tests the till 

behaved very much like a plastic material with yield stress of 
about 0.02 bar, reproducibly bracketed between the two stress 

levels tested. Decelerating creep was extensively observed at 
stresses below catastrophic yield, as in Figure 1; it corresponds 

1- 

0 0.01 0.02 

SHEAR STRESS (ber) 

Fig. 1. Direct shear test data (shear displacement rate versus shear 
stress) for till from the base of Ice Stream B at Upstream B. Data 
are for a single specimen from a depth of 10 cm below the top of the 
till. The specimen was tested repeatedly, at shear stresses of 0.018 
bar and 0.022 bar, alternately. Open circles are the average shear 
rate during the first 15 s after stress application, and small arrows 
indicate the direction of transient change of the shear rate. In the 
case where arrows point downward, the shear displacement rate 
decreased to <-1 mm d 'l in 2-3 min.; in case where arrows point 
upward, the rate increased to >--2 m d 'l in 15 s or less. Large, open 
arrows are lower limits for the shear rate in tests in which the initial 

shear rate was so high that the moving part of the shear box hit the 
stops before the end of the first 15 s. 

qualitatively to the expectations of (4). Figure 1 cannot be 
used to fix an equivalent n value because steady state creep 
rates were not achieved, either in the decelerating creep below 
the yield stress or in the accelerating creep above; however, 
from the constraints that the data provide it is clear that n 
would have to be very large. 

A second till sample was later tested in a larger direct-shear 
cell (diameter 6.35 cm) operating in the displacement- 
controlled mode (specimen sheared at a controlled slip rate, 
shear force recorded as a function of shear displacement). 
Figure 2 shows the results of 16 tests of this type, done at low, 
intermediate, and high shear rates as indicated in the figure 
caption. The range in shear displacement rates, from 0.09 m 

I 1 
d- to 5.2 m d', brackets the basal motion of Ice Stream B at 

Upstream B, 1.2 m d '1. In all tests an approximately steady 
strength was reached toward the end. The strength varies by 
about _+6% from test to test. The strengths for slow, 
intermediate, and fast shear fall within the same scatter and 

are not clearly resolved from one another. The mean strength 
for the slow tests is 1.6_+0.1 kPa and for the fast tests 1.7_+0.1 

kPa. The indicated value of S is 3_+3% per decade. The 
equivalent n value from (8) is 75, but in relation to the 
standard deviation, S does not differ significantly from 0 (or n 
from •). 

The observed strengths in the second series of tests are 
reasonably compatible with the 0.02 bar strength from the first 
series. (The second sample was tested 8 months later, having 
been stored at + IøC in packaging intended to minimize water 
loss by evaporation.) A later test was run on a sample from 
which all grains larger than 0.4 ram, 20% by volume of the 
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Fig. 2. Results of 16 controlled-strain direct shear tests on second till 
sample from the base of Ice Stream B, at three different shear rates. 
Shear stress is plotted against shear displacement in each test. Three 
tests were carried out at a shear displacement rate of 0.09 m d 'l, 10 
tests at a rate of 0.86 m d 'l, and three at 5.2 m d 'l. Tests at the 
slowest rate give data curves of the most '•jittery" character, and tests 
at the fastest rate give the least "jittery" curves, because the data 
sampling rate was the same for all tests. Data courtesy of H. 
Engelhardt. 

original material, were removed; the strength was 0.018 bar, 
essentially unchanged from that of the original material. This 
makes it quite unlikely that removal of only the coarsest clasts 

(>--10 mm), constituting less than 2% by volume of the till as 
sampled, had more than a small effect on the strength. Drying 
the till and then reconstituting it back to the original water 

content (25% by weight) also had little effect on the strength. 
Since the till was probably undergoing shear deformation in 
situ, before sampling, and since it was necessarily deformed 
somewhat in the sampling process, the further disturbance 

involved in packing it into the test cell is unlikely to have 
altered its strength greatly. Disturbance of clay particle 
alignment that might be present in the residual state in situ 
would increase the strength over that in situ. 

The tests cannot be considered to give a determination of 
S for the residual strength, because the total shear 

displacement was only 8 mm in the tests. On the basis of the 
earlier discussion, S is expected to be reduced in the residual 
state. 

The features of mechanical behavior observed in the tests 

are qualitatively similar to those found in geotechnical testing 
of clay-rich soils at large strains, as described earlier. They are 

very different from what would be expected on the basis of 

flow law (1) with the parameters found by Boulton and 
Hindmarsh [1987]. 

Dependence on Effective Pressure 

Whereas in flow law (1) the dependence of • on •, is 
independent of the dependence on •fi, so that the two can have 
very different nonlinearities, in (5)+(6) the two are coupled 
together. The •b dependence in (5) can be compared with (1) 
by finding the equivalent value of m, from differentiation of 
(5) and (6): 

[O•o• In '•] Tr goJb Tr m:- :•__. , = ct__ = ct (9) 
ln• •r •'o Co+go $' •'o 

The first approximate equality follows in case Co=0 or is small 
compared to go p, as expected for an uncemented material 
[Bolton, 1979, p. 23]. Thus for flow law (5)+(6) the 
equivalent n from (8) is approximately the same as the 

equivalent m from (9). In view of the preceding discussion, 
suggesting •-100 for till or till-like soil, the current choices 
m--0, 1, 2, or even 5 in modeling ice stream motion (as cited 
at the outset) give a greatly inadequate representation of the 
sensitivity of strain rate to effective pressure. 

As long as the approximation c o<(go P in (9) holds, the 
pressure sensitivity as measured by m does not depend, 

ostensibly, on the internal friction go, which seems contrary to 
intuition. However, the viewpoint of gouge mechanics, which 

takes • = g o/(a - b) as noted earlier and considers (a - b) as 
a fundamental parameter, implies that • (and thus the 
equivalent m) does depend on the friction. 

ICE STREAM FLOW STABILITY 

If the till flow law is highly nonlinear, as the foregoing 
discussion suggests, there are important consequences for the 
deforming bed mechanism of ice stream motion. The highly 
nonlinear response to shear stress will lead to glacier flow 
behavior of types akin to those discussed by Nye [1951] for ice 
deforming as a perfectly plastic substance, but with the 

significant complication that the till yield stress is a function of 
the effective pressure. The highly nonlinear reciprocal 
dependence of flow on effective pressure, which according to 

(5)+(6) is directly linked to the nonlinear shear-stress 
dependence, will couple the flow sensitively to the basal water 
pressure. In particular, there is a basal-water-pressure 
feedback mechanism that for sufficiently nonlinear dependence 
results in instability of the flow system. This striking 

consequence of flow law nonlinearity is now considered. The 
instability is entirely separate from the marine ice sheet 
instability that has been much discussed in connection with the 

West Antarctic Ice Sheet [e.g., Thomas et al., 1979; van der 
Veen, 1987]. 

Basab Water-Pressure Feedback Mechanism 

In a glacier or ice stream moving by the deforming bed 
mechanism, the deformability of the subglacial till is made 

possible by high pore water pressure [Alley et al., 1987a; 
Engelhardt et al., 1990]. For an Antarctic ice stream, in which 
the ice is below freezing except at its base, the source of the 
pore water is melting of basal ice, which is due to the frictional 
heat generated by till deformation, plus the geothermal heat 
flux, less the heat flux conducted upward within the 

subfreezing ice mass. The basal water pressure must adjust 

itself so that in a steady state the water produced by basal 

melting does not accumulate progressively but is conducted 

away, ultimately to the ocean at the grounding line, through 

some type of water conduit system. In such a flow system 
there can be a positive feedback mechanism for basal-water- 

pressure perturbations. If the water pressure increases, so that 
the till pore pressure increases, the till deformation rate will 
increase; this will increase the basal melting rate, which will 

result in a further increase in basal water pressure, unless the 

increased pressure causes the conduits to enlarge sufficiently. 
Depending on its physical parameters, the system can be either 

stable or unstable in relation to such water pressure 

perturbations. 
This basic type of feedback effect and the resulting stability 

issue for the deforming bed mechanism has been noted but 



KAMB: DEFORMING BED MECHANISM OF ICE-STREAM MOTION 16,589 

not analyzed byAlley et al. [1987b, p. 8938]. It also arises for 
the basal sliding mechanism of ice stream or polar glacier 

motion, as has been discussed from various different points of 
view, mainly in relation to glacier or ice sheet surging, by 
Weenman [1969], Budd [1975], Budd and Mclnnes [1979], 
Weenman and Birchfield [1982], and Oerlemans and van der 

Veen [1984, pp. 107 and 189]. 
In this paper I investigate the immediate instability that can 

arise from the basal-water-pressure feedback mechanism in a 

Simple ice stream flow model based on the deforming bed 
mechanism. By "immediate" I-mean that which is an 
immediate consequence of the feedback, leaving out of 
consideration the-effects of longer-term responses such as 

changes in ice thickness, till thickness, longitudinal stress 

gradient, or temperature distribution in the ice. These longer- 
term responses tend to provide ultimate damping effects on 
the immediate instability, as suggested by model calculations of 
Oerlemans and van der Veen [1984, p. 191]. 

Flow System with Feedback 

Consider a laterally uniform, constant-width ice stream that 

can be treated as a one-dimensional flow system with 
longitudinal coordinate x, increasing downstream. The ice 
moves by shear of a basal till layer with flow law (5)+(6), 
whose basal-water-pressure dependence can for present 

purposes be written in differential form from (9) as 

av/a(P• -Pw) = -nv/P (•o) 

v(x) is the basal ice velocity, equal to •h, where the (assumed 
uniformly shearing) till thickness is h, which drops out of (10) 
because of the logarithmic form of (9). Pw(x) is the basal 
water pressure, assumed equal to the till pore pressure, P i(x ) 
is the ice overburden pressure, and jb =p I -PW is the effective 
pressure. In view of (8), n is written in place of e in (10), 
because e is so commonly used in the glaciological literature 

for ice surface slope. We consider a perturbation APw(x ) in 
basal water pressure, which results, according to (10), in an ice 
velocity response 

av = (nv/P) AP w (11) 

This response is assumed for simplicity to be immediate, which 
neglects the time delay in equilibration of the till pore pressure 

to the perturbation in basal water pressure. In obtaining (11) 
from (10) it is assumed that over the time period considered, 
in the immediate response following the perturbation 

APw(x), there is insufficient time for appreciable 
readjustment of the ice thickness (hence PI), till thickness h, or 
basal shear stress ?B = ?r, so that the velocity perturbation A v 
is entirely the result of the pressure perturbation AP W. 

A change in v will result in a change in basal melting rate 

A3)/given by 

• = ? B Av/H (12) 

assumption in order to proceed. Candidate model conduit 

systems that have been considered theoretically are the ice 
tunnel model [R•thlisberger, 1972; Bindschadler, 1983], the till 
channel or tunnel valley model [Boulton and Hindmarsh, 1987, 
p. 9077; Alley, 1989a, p. 112], the subglacial aquifer model 
[Lingle and Brown, 1987; Shoemaker, 1986], the water film 
model [Weertman, 1972; Weenman and Birchfield, 1982], and 
the linked cavity model [Humphrey, 1987; Kamb, 1987; 
Lliboutry, 1987]. Applied to Ice Stream B, the tunnel model 

appears to be ruled out because it gives at Upstream B an 
effective pressure P=4 bars [Bindschadler, 1983, p. 10], which 
is much larger than the observed effective pressures of -0.2 to 
1.5 bar [Engelhardt et al., 1990, p. 248; Kamb, 1990, p. 10]. 
Theoretical arguments against applicability of the ice tunnel 
model, the till channel model, and the subglacial aquifer model 
have been given by Alley [1989a], who favors a water film 
model with a nonuniform film of spatially varying thickness. 
Such a model seems to me fundamentally similar to a linked 
cavity model. I will here assume that the water conduit system 
under the model ice stream is of this general type, and I will 
represent it in a simplified form similar to that used by Alley 
[1989a, p. 115; 1989b, p. 119]. 

I thus-make the heuristic assumption that there is a 

discontinuously present water layer of thickness d in a gap 
between the base of the ice and the top of the till, distributed 
in an interconnected manner over an areal fraction • < 1 of the 

glacier sole. The interconnected water layer forms 
throughgoing conduits in which water can be transported along 
the base of the ice, at a local water pressure Pw(x). The ice- 
till interface in places where the water-filled gap is absent 
supports a higher normal stress in the ice, so that the average 
overburden pressure P I >PW is supported. Field evidence 
from two independent experiments at Upstream B suggests 
that d is about 1 mm (H. Engelhardt and B. Kamb, 
unpublished data, 1990), and a thickness of 4 mm at Upstream 
B was calculated theoretically by Alley et al. [1989, Figure 2]. 
The water layer conduit system provides water storage at the 
bed in the amount W=•d per unit area of the bed. In both 
the water film and linked cavity models, both • and d are 

decreasing functions of P. For the former this is shown by 
Alley [1989a, equation (17)] and Alley [1989b, equation (3)], 
and for the latter by Kamb [1987, equations (4), (5), (8), (10), 
(17), (24), and Figures 7-10], if we equate d with the average 
gap width over the area of ice-bed separation (fractional area 
•). I therefore make here the heuristic assumption that the 
water storage W varies with P as 

w- c/Pq (•3) 

which has the expected divergence as P•0 and the ice stream 
goes afloat. The parameter q is a constant and c may vary 
with x. The differential response to a small perturbation is 
then 

AW ~ (qW/P) AP w = t• AP w/og (14) 

where H is the latent heat of melting per unit volume of ice 
(H=0.31 O pa). 

The effect of A•r(x) on the pressure perturbation 
AP w(X) depends on the nature of the conduit system through 
which the basal meltwater is conducted along the ice stream to 
the ungrounding line. Because little is known for a fact about 
this conduit system, it is necessary to make a heuristic 

The conduit response parameter t• = pgqW/P, where p is the 
density of water, is introduced for later convenience. The 

water storage adjustment to pressure change in (14) is for 
simplicity assumed to be instantaneous, although in reality 
some delay in the response must be involved. 

o 

To evaluate the effect of AM on APw, we also need to be 
able to calculate the transport of water by the conduit system. 
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Because the water flow velocities and conduit dimensions are 

small (measured transport velocity is 7 mms '1 at Upstream B: 
H. Engelhardt, unpublished data, 1990), it is reasonable to 
assume a linear relation between the water transport flux (per 

unit width of the ice stream) and the water pressure gradient: 

flux per unit width = •caPw/ax (15) 

where •: is the effective hydraulic conductivity of the basal 
water system. In writing (15) it is assumed for simplicity that 
the bed is level, as it is under Ice Stream B to a reasonable 

approximation for 100 km upstream and downstream from 
Upstream B [Shabtaie et al., 1987, Figure 3; Shabtaie and 
Bentley, 1988, Figure 2]. The results do not depend on this 
simplifying assumption, however. In the water layer conduit 
model the conductivity •: is given by 

•: = • d3/12q (16) 

where rl is the viscosity of water [see, for example, Alley's 
i1989a] equation (25) with the correction q-,q/f in his 
notation]. In (16) the appearance of • as a simple factor 
represents a conduit system with minimal conduit constriction 
consistent with restriction of the conduit gap to an areal 
fraction • of the ice-till interface. The differential variation of 

•: under a perturbation A W is thus 

A•c = (3•c /W) AW (17) 

if for simplicity • is assumed not to vary as the conduit 
thickness d adjusts. (Justification for this simplification as a 
reasonable approximation can be found in the logarithmic 

dependence of • on d given in equation (3) of Alley [1989b]. 
The alternative simplification d=constant would lead to 
removal of the factor 3 in (17), and a full development would 
give a response intermediate between these two cases.) 

The. pressure adjustment AP W to a change in basal melting 
rate AM is determined by the water continuity condition, based 

on (15): 

in which the perturbation operation A is expanded for an 
infinitesimalperturbation, (17) is introduced, and the 

assumption OZPw/Ox 2 =0 is made for a reason given below. 
On the basis of (14) we can make the following expansion 

to evaluate the first term on the right side of (24): 

37 -- 37 aew = 

q[a• _ • aP]apw+q• aaPw pax pax p ax 

av/ax = v/L (21) 

The accuracy of (21) is not crucial, bemuse the n in the 
denominator in (20) tends to suppress the contribution from 
this term. 

The quantities W and •: and the derivatives oho/& and 

aPw/& that appear on the right side of (18) and (!9) are 
to be evaluated for the datum state, from which the 

perturbations AP W and A W depart. Because PW is observed 
to be close to PI in Ice Stream B [Engelhardt et al., 1990, p. 
248], we assume that in the datum state the hydraulic gradient 
is the same as the slope B of the hydraulic grade line for ice 

flotation (0.9 times the surface slope if the bed is level): 

aPw/ax = -pgB (22) 

For simplicity, 13 is taken to be constant, so 02Pw/&2=0 
as stated above. The effective conductMty •: is that which 
provides the required flow of basal meltwater in the datum 
state: 

•:pgB = l?l•/(x) dx ~ V•BL/H (23) 
where F• B is the average of the product v, B over the ice 
stream, of effective length L, above the point x. The 
conductivity in the datum state must increase downstream so 
as to accommodate the basal meltwater generated locally: 

pgsa•/ox = M = ?BV/H (24) 

In writing (23) and (24) we assume for simplicity that the 
geothermal heat flux is approximately in balance with the 
upward heat conduction in the basal ice, so that the basal 
melting is due to basal till deformation. Error in this 

assumption could be corrected by applying correction factors 
to the products m. B and V• B. In what follows we use 
• = V•' B/v ?B and can incorporate the correction factors in 9. 

When (19) is introduced into (18)and substitutions from 

(11), (14), (20), (21), (22), (23), and (24) are made, the 
continuity equation (18) becomes 

OAP w OAP w 02 APw (25) =DAP W -E• +F• 
at ax ax • 

where 

D = HW -1- 

V?B[3Lqs_ 1 } (27) 

(19) V?BL, r = (28) 

The derivative 0P/& in (19) can be obtained from (10): 

oP/Ox = -( P/n v ) av / ax (20) 

The longitudinal strain rate 0v/& could be taken from 
observation, but it seems more appropriate for the model 
treatment here to assume 

HB/t. 

An exact solution of (25) is available if the coefficients D, 
E, and F are constant. A solution of the form 

aP w = 8{aexp[(2,tix/•.)+at] (29) 

(where 8 designates the real part) satisfies (25) if 

a = D- 2,tiE/•.-4,t2F/•. 2 (30) 
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It represents a spatially sinusoidal perturbation, as is commonly 
assumed in stability problems of this type. From (29) the time 
development of the perturbation is 

AP W = aexp ${at cos2•r(x-Et)/•. (31) 

If 8Za > 0, the perturbation grows exponentially and the system 
is unstable. The instability condition is thus 

8ta D 4'2 V•'BIn-U-l-•l 0 (32) -- - F= > 

•.2 HW q 

where 

U = 4 •t 2,Lp (33) 
•.2B og 

The above results are only approximate because D, E, and 
F in (25) vary (slowly) with x as a result of the longitudinal 
increase in basal water flux in the datum state. The effect of 

the x variation of the coefficients on the solutions of (25) is 
considered in the Appendix; although there is a definite effect, 
it does not alter the basic conclusions reached above on the 

basis of the solution for constant coefficients. 

Evaluated for Ice Stream B at Upstream B, with 

parameter values 13--0.1ø, L-- 100 km, P-- 1 bar, W-- 1 mm, 
•'B--0.2 bar, v--400 m yr '1, q•--0.5, for a perturbation 
wavelength X--30 krn, (33) gives U--13, and from (32) we 
obtain 

(34) 

The term -,/n in (32) is neglected in (34) because we expect 
n to be large. Thus we conclude that if n > 13 + q, the system 

is unstable. The value of U (=13 in (34)) is inverse• 
V •' proportional to the square of the perturbation wa elength, •., 

as (33) indicates; thus for •. longer than 30 km, the instability 
sets in for smaller flow nonlinearity n. For large •., with U-,O, 

the system is unstable for n>q. 
There is no observational information on the value of the 

parameter q, but it can be derived theoretically. In the case of 
the linked-step-cavity model [Karnb, 1987], an analysis for 
laminar water flow, analogous to the derivation of equation 

(38a) of Karnb [1987] from equation (2) (for turbulent flow) 
in the same reference, yields q= 1. For the water film model 
of Alley [1989a, b], one can obtain from equation (17) of Alley 
[1989a] and equation (3) of Alley [1989b] the result 
q = 1 + 10• In 10 applicable to the differential relation (14) of 
the present paper; for •-0.5, this gives q-12. In empirical 
sliding laws of a form like (1), rn appears mostly in the range 
0-2 [Bentley, 1987, p. 8855], and one might be tempted, with 
a leap of imagination, to surmise on this remote basis that 
q-rn. Within the wide foregoing range of constraints on q, a 
reasonably conservative conclusion is that the deforming bed 

system is unstable for n>•20 for perturbations of 30 km 
wavelength or n>--5 for 100 krn wavelength. 

From (31), the time scale of the instability (or of a stable 
response) is I8{a1-1, which, from (32), is scaled by the time- 
dimensional factor HW/v• B, equal to the time required to 
generate by basal melting enough water to replace the basal 
water storage in the datum state. For the parameter values 

assumed, l SZal-1 is 14 days divided by the absolute value of 
the quantity in the final parenthesis in (34). This time scale is 

extremely short in relation to typical glacier adjustment time 

scales of years, and the treatment of the instability as 
"immediate" in the sense discussed at the outset is thus 

justified. The time scale of days is of the same order as that 

of glacier minisurges, which occur by adjustments in the basal 
water system [Karnb and Engelhardt, 1987]. 

The perturbation (31) moves as a wave with speed E given 

by (27), which is 3 times the mean speed of water flow in the 

basal conduit system. For the parameters used (for which the 
second term on the right in (27) is negligible), E/3 is 4 cm s'l; 
for W=2.4 mm, E/3 is 1.8 cm s '1 and is equal to the transport 
speed implicit in (15)+(16)+(22), with •=0.5. This speed is 
of the same order of magnitude as the water transport speed 
0.7 cm s '1 measured by injection of salt-water in the basal 
water system of Ice Stream B (H. Engelhardt, unpublished 
data, 1990}. E is the speed of kinematic waves in a conduit 
system of the type modeled. Such waves are an inherent 

feature of the conduit system, independent of the ice stream 
flow instability under examination in this paper. 

DISCUSSION AND CONCLUSIONS 

The results of the last section indicate that above a certain 

degree of nonlinearity in the till flow law the deforming bed 
mechanism of ice stream motion is unstable, because of 

feedback from the generation of basal meltwater by shear 

heating in the basal till. The instability is somewhat akin to 
creep instability by shear heating [Clarke et al., 1977; 
Ocrlemans and van der Veen, 1984, p. 96; Hutter, 1983, pp. 
160-179], but the feedback mechanisms are quite different in 
the two instabilities. 

The type of flow law nonlinearity that affects the deforming 

bed instability considered here is nonlinearity in the inverse 

dependence of shear strain rate or basal slip rate on effective 
pressure at fixed shear stress. This nonlinearity is linked by the 
form of the applicable flow law (5) to the nonlinearity in the 
dependence on shear stress; both have the same effective 
exponent n, as discussed earlier. 

The deforming bed instability depends heavily on the 
relationship (13) that specifies the response sensitivity of the 
basal conduit system to changes in the basal water pressure. 
The assumed relation (13) is valid, with q=l, for a linked 
cavity model of the basal water conduit system [Kamb, 1987], 
and is valid in its differential form (14) for a water film model 
[Alley, 1989a], with q--12. The relationship gives only the 
final, steady state response of water storage to effective 

pressure, omitting the time-varying transient response by which 
the adjustment from the initial state to the final response 
proceeds once a perturbation has been imposed. To this 
extent, and also because of neglect of the transient delay in the 

equilibration of basal water pressure with till pore pressure, the 
time dependence of the perturbation given by (31) is 

incomplete. For an ice tunnel conduit model [R6thlisberger, 
1972], the steady state relationship between W and/' is like 
r• •., •. ,,• .•.. ,.,,• (for laminar water flow, q=-3), 
there is the further complication that the steady state W 
decreases with the water pressure gradient as B -2. Leaving 
aside the effect of the latter complication, the effect of 

negative q in the relation (32) is to make the system unstable 
against short wavelength perturbations in the case of small n, 
and stable for large n. However, it is not certain that the 

steady state would be reached, at least until after a period of 
oscillation, because the initial response of a tunnel to increased 
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water pressure or to increased B is to enlarge, which is a 
response in the opposite direction from the steady state 
response. These complications are not encountered in the 
foregoing treatment because, for reasons given earlier, a water 
layer conduit model was assumed to be appropriate. 

Although the treatment does not include the ice-dynamics- 
mediated adjustments in ice thickness, ice temperature 
distribution, and ice flow velocity that would follow the 
immediate perturbation response considered here and that 
might damp its further development, some insight into the 
effects of ice dynamics can be gained from the work of 
Oerlernans and vans der Veen [1984, pp. 106 and 191], who 
include a feedback effect of basal melting on basal sliding in 
two of their numerical models of ice sheet behavior. For the 

effect of basal melting on ice velocity they assume 

v = b o + b • I•V, with constant b o and b•. It appears from their 
equation (6.4.1), by comparison with (18) above, that they 
implicitly assume l•V=a o + a•Pw (constant a o and a 0. Hence 
they in effect assume v =c o + c •Pw (constant c o and c•), which 
for perturbations in Pw can approximately represent a 
nonlinear relation, as in (11) above. In one model they take 
bo=0 and in the other b o • 0, but since a o is not necessarily 
0, both models may be based in effect on nonlinear v versus 
Pw relations. Not enough information is given to deduce the 
effective n used in either type of model. The b o • 0 model 
shows bounded instability associated with multiple steady 

states, and the b o = 0 model shows oscillatory behavior for 
large enough values of b•, which seems to represent a more 
complex type of bounded instability. The models thus indicate 
that instability can arise from a sensitive enough dependence 
of ice flow on basal water pressure, even when the possibly 
stabilizing effects of ice dynamics are included in the analysis. 
However, the possible influence of nonlinearity of the v versus 
Pw relation on the stability-instability condition cannot be 
determined from the results, for the reason given above. 
Other differences between these models and the treatment 

here further limit the comparison: for example, the effective 
•c is either assumed constant or proportional to •', and the 
water storage calculated in the models is 0.6 to 1.5 m, much 
greater than the I•V--1 mm considered reasonable here. For 
parameters that seem appropriate to these models (W--1 m, 
•B•-0.5 bar, v--10 m y'•), the time constant HW/v•B in (32) is 
---600 years; this makes it possible that the early, accelerating 
part of the oscillations calculated by Oerlernans and van der 
Veen [ 1984, Figure 11.13], which takes place on a comparable 
time scale, is a manifestation of the type of "immediate" 

instability treated here. 

The critical value of n, above which the deforming bed flow 

mechanism is unstable for the water layer conduit model, 

cannot be closely f'•xed, partly because the physical model and 
mathematical treatment are only approximate, but primarily 
because our knowledge of system parameters for the ice 

streams is limited. Particularly uncertain is the parameter q. 

The theoretical q values of 1 and --12 for two well-defined 
models of nonuniform water layer conduits leave a rather wide 

range of uncertainty as to what q value is appropriate to the 
real system, if (13) is applicable. The critical value of n 
depends strongly also on the wavelength of the perturbation 
that initiates the instability, according to (33), but we have no 
firm basis for choosing a value for this wavelength. 

Nevertheless, from the evaluation of the last section it appears 
that for reasonable choices of parameter values, the critical n 

is likely to lie in the range from about 5 to 20. This means 
that it makes a great difference for the functioning of the 
deforming bed mechanism whether basal till has flow 
properties like those assumed in current numerical modeling 
(n _< 1.3 ) or instead like those that appear appropriate from the 
work in soil mechanics discussed in the first section 

(n--15-100). It seems reasonably certain that a deforming bed 
mechanism in which the till theology controls the rate of 

glacier motion is unstable if the till behaves mechanically like 
clay-rich soil at residual strength, with n>--100, and if (13) 
applies. 

Unless a mechanism for preventing perturbations of 
wavelength longer than about 10 km were in operation, a flow 

system subject to the above instability could not persist in its 
unstable steady state over geologic time. Are the fast-moving 
ice streams as we see them today the result of past speed-ups 
promoted by this instability? The form of the instability 

criterion in (32} permits this, because the datum-state ice 
stream velocity v does not affect the condition of stability or 

instability (sign of •), although it does affect the time scale 
of its development. But by the same token, the present-day 
ice streams should still be unstable. Some type of instability in 
ice stream motion may be suggested by the recent stopping of 

Ice Stream C [•'hillans and Bolzan, 1987], but no 
manifestation of instability in terms of rapid increase in ice 

stream velocities is currently observed. 

From the seemingly stabilized motion of the currently 
active ice streams one is thus nudged to the conclusion that 

their motion is not now being controlled by till theology, which, 
as the foregoing considerations indicate, would not provide 
stabilization. The implication is that some other mechanism 
limits the speed of motion. 

An independent indication of the same conclusion is the 
low measured shear strength of the basal till, 0.02 bar from 

Figures 1 and 2, which makes the till an order of magnitude 
too weak to support the basal shear stress of 0.2 bar required 
mechanically as a regional average. 

If an incipient ice stream (or an incipiently surging glacier) 
is subject to the deforming bed instability discussed above and 
begins to speed up rapidly because of it, the motion may 

become limited by some other resisting mechanism(s) at the 
bed before there is time for major adjustments in ice sheet 

configuration of the type modeled by Oerlernans and van der 

Veen [1984]. Such a course of events would be analogous to 
the theory of glacier surging by Lliboutry [1968, p. 51; 1969, p. 
946], in which the sliding rate increases unstably because of 

basal cavitation over short-wavelength roughness elements, but 

the increase is ultimately stabilized by the sliding resistance of 
long-wavelength roughness elements. In the ice streams the 

stabilization could for example be achieved by the sliding 

resistance of scattered "sticky spots" of bedrock protruding 
through the basal till layer. 

If the conclusion that some other mechanism controls the 

ice stream motions is correct, current attempts to model the 

ice stream motions on the assumption that they are controlled 
by the deforming bed mechanism are misdirected. Valid 
modeling of the ice stream motions can of course be done only 
when the mechanism that controls the motion has been 

securely identified and quantitatively formulated. The need 

for further effort in that direction is emphasized by the 
considerations here as to flow law nonlinearity in relation to 
stability/instability of the deforming bed mechanism. 
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APPENDIX 

We consider here the effect of the x variation of the 

coefficients D, E, and F on the solutions of (25). A first 
approximation to the x variation is obtained by expanding the 
coefficients in power series in x, and keeping the constant and 

linear terms. To do this we expand the variations of (26), 
(27), and (28) differentially: 

$D $v $W 
= _ (35) 

D v W 

$E $D $L (36) 
E D L 

$F $E 8/' (37) 
F E p 

The $ here designates differential changes from the values at 

an arbitrary point of interest (here taken at Upstream B), 
which will be designated x=O, so that $L =$x=x. 

The longitudinal variation of v represents longitudinal 

strain rate exx: 

•v •xx Vo-Vu x (38) "•X ~ 

v o v o v o L 

Here v u- 100 m yr -1 is the flow velocity at a point distant L 
-100 km upstream from the origin, where V=Vo; the last form 
of (38) assumes uniform longitudinal strain rate over this 
interval. 

The variation of water storage $W in (35) is linked to the 
variation in conductivity $K by (17) and thence to x by (23) 
and (24): 

$W $K 1 x 
= = (39) 

W 3K 3, L 

The variation of effective pressure AP is linked to AW by (13) 
and thence to x via (39) 

$P 1 $W 1 x 
-•- .... (40) 
p q W 3,qL 

When (38)-(40) are combined in (35)-(37) and numerical 
values ,-0.5 and q-3 introduced (as used in the evaluation 
in the main text}, the variations become 

$D~o ' $E_•, $F_x (41) D E F L 

In (41), the variations have been rounded for simplicity to the 
nearest integral multiple of x/L, but this is not essential in the 
treatment that follows. 

On the basis of (41), the first approximation to the x 
variation is incorporated into (25) as follows: 

0._.• = D11-E( 1 +•x) 0-•--•+F(1 + •x) 0211 (42) 
Ot ox Ox 2 

where for compactness 11 is written for APw, where e= l/L, 
and where D, E, and F are now constants. To solve (42), a 
separation of variables is carried out in the usual way, with 
separation constant a; the result is 

11(x,t ) = eat e• (x) (43) 

d2• -E(1 + •x) d• F(1 + •x)•._• •.•+(D-a)• =0 
(44) 

A differential equation of type (44) can in principle be 
solved exactly with confluent hypergeometric functions 
[Bateman Manuscript Project, 1953, p. 249], but to obtain a 
practical solution I use instead a perturbation method, based 
on the small value of • over an interval of adequate size 
around the point of interest. Let the solution of (44) be 
represented as 

• = 8taeikX(l+•f(x)) (45) 

in which f(x) is an undetermined function and k=2•t/X. 

Introduce .•45) into (44), take a as given in (30), and neglect 
terms in •". The result is 

• [Ff// - (E-2Fki)) d- (Fk 2+Eki)x] = 0 (46) 

where primes denote differentiation. (46) is satisfied by 

f = rx 2 + s x +p (47) 

when the constants r and s are 

2 r = - (Fk 2 +Eki)/(E - 2Fki) (48) 

s = 2rF/(E-2Fki) (49) 

The constant p, which is a solution of the homogeneous 
equation associated with (46), can be chosen so as to minimize 
f(x) in some sense, for example, so as to make f(x) average to 
zero over an interval of interest -1 <x <1: 

f = r x 2 + sx - 1/, r 12 (50) 

In the spirit of seeking a perturbation solution that deviates 

little from the sinusoidal perturbation in (31), we do not 
prescribe rigid initial and boundary conditions; rather, we seek 
to minimize f(x). A second solution of the homogeneous 
equation could be added to (47), but minimization of f(x) is 
best achieved without it. Measures of the departure of f(x) 
from 0 are f( _ 1) = %r 12 +_ s 1. 

From the form of (43), (45), and (50) we see that the x 
variation of the coefficients D, E, and F in (25) affects the x 
dependence of the solution, through nonzero f (x) in (45), while 
leaving unchanged the exponential t dependence in (31) and 
(43), with exponential coefficient a given by (30). Thus an 
initial perturbation APw(x , o ) of the form (45) withf(x) given 
by (48)-(50) will decay or grow exponentially with time, 
depending on the sign of 8a as in (31). 

The perturbation, instead of a simple sinusoid, has the 

form of a sinusoid with amplitude and phase varying slowly 
with x. Measures of the departure of the amplitude from that 
of a simple sinusoid over the interval --l_<x_<l are 

] l+•f(_l)] -1. Evaluated with I=10 km and the 
parameters used in the main text, for which r = 0.0 5 2 -0.27 9i 

km -1, s =0.094 -0.148i (from (48) and (49) with parameter 
values via (26)-(28)), these measures are 0.033 and 0.011, thus 
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about 3% maximum. The assumption, for stability analysis, of 
a sinusoidal perturbation is of course an arbitrary choice 
adapted to the form of the solution (29). It is therefore 
equally reasonable to assume an initial perturbation of the 
form (45), especially when this perturbation differs only slightly 
(3% in amplitude, as shown above) from a sinusoidal 
perturbation over an x interval of length 2/• 4. Thus the form 
of (43) justifies using the instability criterion (32) when D, E, 
and F are slowly varying functions of x. 
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