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Abstract
It may be assumed that the steady-state kinematics of viscoelastic contraction flows depends on the time-independent 
rheological properties only. This idea is supported by the large number of references explaining steady simulation results 
by considering only steady-state material functions. Even with numerical simulations, it would be difficult to prove such a 
statement wrong. However, using the Bautista-Manero-Puig class of models allows to obtain the same steady rheological 
response but with different transient evolution. Here, we considered two fluids, one displaying a monotonic trend towards the 
steady-state and the other with at least one visible overshoot in the material functions. Our results show that for the transient 
evolution with the overshoot fluid, a significant increase in the steady pressure drop is gathered. In addition, vortex response 
is quite different for the two fluids. This research gives evidence that the transient evolution in rheometrical functions has 
great impact on steady-state flow behavior.

Keywords Transient rheology · BMP models · Contraction flows · Pressure-drop · Vortex dynamics

Introduction

The flow through contraction geometries has generated great 
scientific interest over the years. It has been studied from 
experimental, numerical, and theoretical viewpoints. This 
type of flow is complex due to the simultaneous presence of 
shear and elongative strain near the entrance of the reduction 
in area. In industry, flows through contractions are impor-
tant in polymer processing operations such as extrusion or 
mold injection, inkjet printing (Lee et al. 2014), and more 
recently in the field of additive manufacturing (Petrie 1995), 
where the performance of the manufacturing process greatly 

depends on the material rheology to improve the flow reli-
ability and the performance of the deposition (Van Wael-
eghem et al. 2022). According to Owens and Phillips (2002), 
the first experimental work on contraction geometries was 
reported by Tordella (1957), who studied the instability of 
extruded polymers through capillaries. In general, experi-
mental studies have concentrated on visualizing vortex 
dynamics, and measuring pressure drop, particle trajectories, 
and centerline velocity (Owens and Phillips 2002). Since the 
work of Nguyen and Boger (1979), who used highly elas-
tic fluids with nearly constant shear viscosity, allowing any 
shear-thinning effect to be removed experimentally, a large 
part of this research has been focused on the so-called Boger 
fluids (see, e.g., references) (Boger et al. 1986; Boger 1987; 
Yesilata et al. 1999; Rothstein and McKinley 2001; Nigen 
and Walters 2002; Pérez-Camacho et al. 2015).

Considering shear-thinning viscoelastic fluids in con-
traction flows, White and Kondo (1977) concluded after 
evaluating a vast collection of experimental data that, for 
polymer melts to exhibit vortices, a rapid rise in extensional 
viscosity is needed. Besides vortex growth, the appearance 
of lip vortices, and thus their evolution, has generated con-
siderable research interest, for example, Evans and Walters 
(1989) performed experiments to visualize vortex dynamics 
in planar contractions for shear-thinning viscoelastic fluids 
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(polyacrylamide aqueous solutions). From their experiments, 
they concluded that for abrupt 2:1 and 4:1 contraction ratios, 
the salient corner vortex growth was the dominant phenom-
enon, in contrast to the lip vortex; however, for their less vis-
cous fluids, lip vortex was observed, for which it is assumed 
that inertia is responsible to keep the salient and lip vortices 
apart. Excellent reviews on the subject, regarding Boger and 
shear-thinning fluids, can be found in the works of White 
et al. (1987) and Owens and Phillips (2002). The research in 
this area has continued, for example, Lee et al. (2014) stud-
ied the flow in 3D rectangular contractions of viscoelastic 
liquids showing moderate shear thinning. According to their 
results, as the elasticity number increases, the vortex evolves 
from lip to corner vortex, then a divergent flow occurs fol-
lowed by vortex growth where the dynamics depend on the 
aspect ratio. In addition, Pérez-Camacho et al. (2015) con-
ducted an experimental study for an axisymmetric contrac-
tion–expansion, analyzing Boger and elastic shear-thinning 
fluids. According to these authors, fluids showing similar N1 
will exhibit comparable vortex sizes.

It is clear that the relationship between fluid rheology and 
vortex dynamics is complex. In this context, our results will 
show that transient rheology may be necessary to achieve 
a better understanding of the phenomenon. This seems to 
agree with White et al. (1987), who express the idea that 
vortex growth is controlled by the transient extensional vis-
cosity of the fluids.

In the literature, contraction flows have also been studied 
from numerical and theoretical perspectives. Obtaining ana-
lytical solutions to study complex flows has been the subject 
of several researchers, for example, pulsatile flow (Fernández 
et al. 2021), electroosmotic flow (Goswami and Chakraborty 
2011), and uniform potential flow (Crowdy 2006), to mention 
a few. Therefore, as the flow that is evaluated in this work is 
a mixture of shear and elongational deformations, there are 
several analytical approximations that can be used to rep-
resent such a complex flow. As example, Cogswell (1972) 
derived an approximation to the flow through dies, he might 
be the first to acknowledge the relevance of extensional vis-
cosity in contractions and separate shear and extensional 
deformations for the analysis. Years later, Binding (1988; 
1991) presented an improved approximation that was used to 
estimate the extensional viscosity of some polymer solutions. 
Lubansky and Matthews (2015) tackled the case for Boger 
fluids in contractions, obtaining good qualitative agreement 
in vortex lengths and in pressure-drop calculations. More 
recently, Pérez-Salas et al. (2019, 2021) obtained approxima-
tions of the flow in hyperbolic contractions using the simpli-
fied Phan-Thien/Tanner model, with satisfying results when 
compared to simulations.

From the numerical point of view, the 4:1 contraction 
has been often used as a benchmark problem (Owens and 
Phillips 2002; Alves et  al. 2021). Several authors have 

contributed to this subject matter. For instance, Debbaut 
and Crochet (1988) showed that extensional effects are 
responsible of vortex growth in 4:1 circular contractions. 
Aboubacar et al. (2002) simulated the flow of Oldroyd-
B and Phan-Thien/Tanner models across 4:1, sharp and 
rounded, contractions. By analyzing an Oldroyd-B fluid, 
Sato and Richardson (1994) captured the presence of a lip-
vortex which disappears as the simulation moves forward 
in time. López-Aguilar and Tamaddon-Jahromi (2020) also 
simulated the flow of Boger fluids to reproduce experimental 
streamlines reported in literature for abrupt axisymmetric 
geometries. Reviews on this topic can be found in (White 
et al. 1987; Owens and Phillips 2002; Alves et al. 2021). 
As mentioned before, contraction flows together with the 
Oldroyd-B model, which is an option to represent Boger 
fluids, have been frequently used for benchmarking numeri-
cal methods and their implementation. This is due to chal-
lenges produced by the sharp corner and to the unbounded 
extensional viscosity of the selected rheological equation. 
In their review of numerical methods for viscoelastic flows, 
Alves et al. (2021) showed the existing level of discrepancy 
between various numerical algorithms when computing vor-
tex lengths considering data before 2003; however, recent 
comparisons of some numerical implementations shows a 
much larger level of agreement.

Concerning wormlike micellar (WLM) solutions, Hashi-
moto et al. (2006) studied the behavior of wormlike micel-
lar solutions in a 11:1 axisymmetric contraction geometry 
using flow visualization. They concluded that the flow can 
be classified into four regions: The first one is obtained at a 
low flow rate in which there is a Newtonian response of the 
fluid; in the second, time independent vortices appear which 
increase in size as the flow rate increases; in the third region, 
the vortices are unsteady, they present fluctuations, and in 
the last one, the flow becomes turbulent. Lutz-Bueno et al. 
(2015) studied the flow of WLM solutions made of cetyl 
trimethylammonium bromide (CTAB) and sodium salicy-
late (NaSal) in abrupt contraction geometries. They followed 
the micelles alignment using small angle neutron scattering 
(SANS). They found that vortex formation of these solutions 
depends on the fluid elasticity, which in turn depends on 
concentration. At low flow rates, shear deformation is domi-
nant, and the flow increases; extension becomes more impor-
tant, which is reflected in the flow pattern, and in micelles 
deformation. In another study, Hwang et al. (2017) investi-
gated the flow of these WLM solutions (linear and branched 
chains) around a sharp microfluidic band by visualization; 
they observed the flow behavior as the Weissenberg number 
(We) increased. From their experiments, no vortices were 
observed at low flow rates, however, as the We increases a 
critical value is reached around We = 6 to 8 . At this stage, 
stable lip vortex formation is observed; these vortices remain 
time independent up to a value of We = 20 . Values higher 
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than We = 20 and up to 41 , the lip vortex becomes unsteady 
and changes its length with time. Jafari Nodoushan et al. 
(2021) conducted a study of flow stability of WLM solu-
tions. They tested three concentrated solutions of CTAB 
and NaSal in a rectangular 8:1 contraction geometry. They 
found that for the least concentrated fluid, vortices appear 
only as function of elasticity, while for the other two, more 
concentrated solutions, vortex dynamics, and their stability 
depend on the shear-banding phenomena of these solutions.

Regarding transient effects, Webster et al. (2004) tested 
the influence of the type of inlet boundary conditions, time-
dependent and static, for the Oldroyd-B fluid in contraction 
geometries. They found a large impact in the evolution of 
vortex patterns; however, once the simulations in both sce-
narios reach the steady state, the results were exactly the 
same. From experimental observations, Boger et al. (1986) 
concluded that steady and dynamic shear data are insuffi-
cient to explain the evolution of vortices, in consequence, 
extensional viscosity needs to be taken into account. When 
evaluating experimental data to find the origin of vortices 
in planar and axisymmetric flows, a similar conclusion was 
obtained by White et al. (1987). These authors concluded 
that elasticity based on shear properties is less significant 
and transient extensional viscosity is more important in 
explaining vortex dynamics. Recently, Davoodi et al. (2022) 
compared the response of the simplified linear Phan-Thien/
Tanner and the FENE-P models. For such a comparison, the 
steady rheological behavior of both models was matched by 
making the sPTT extension controlling parameter � equal to 
1∕L2 , where L2 is the extensibility parameter of the FENE 
fluid. In this matching procedure, they obtained the same 
shear, both �s and N1 , and the same extensional viscosity, 
�e . For the transient rheological behavior, �+

e
 follows very 

similar values for both models, this with respect to time and 
for all Weissenberg ( We ) numbers considered. Nevertheless, 
some differences (less than 7% in �∕�0 ) were found in the 
transient shear viscosity �+

s
 , where for a value of We = 5 , the 

FENE-P model predicts a small overshoot for �̇�t ∼ 7 units. 
Clearly, as We increases, the overshoot increases consider-
ably and shifted to larger �̇�t values. In opposite, both models 
give the same results for values of We ≤ 2 . Also, the sPTT 
transient shear viscosity shows a very small overshoot for 
values of We ≥ 20 . In their analysis, Davoodi et al. (2022) 
obtained just some slight differences between steady-state 
results for vortex length and the streamlines near the re-
entrant corner.

In this research, we obtain very different vortex trends 
and pressure drops by simulating the flow of the enhanced 
BMP model. Two sets of parameters were chosen to obtain 
exactly the same steady state response but following very 
different paths for transient rheological functions. One set of 
parameters shows at least one overshoot in shear and exten-
sional viscosities, and in the first normal stress differences, 

while the second set of parameters produces a monotonic 
increase from rest to the steady values.

Rheological model

To represent the rheological behavior of viscoelastic micel-
lar solutions, Bautista et al. (1999) were the first that intro-
duced the Bautista-Manero-Puig (BMP) model. Later, Boek 
et al. (2005) presented an enhanced version, where an insta-
bility in the extensional viscosity is removed. For this work, 
since the transient response in a viscoelastic flow through 
an abrupt contraction is analyzed, the enhanced version of 
the BMP model is implemented using RheoTool, which is 
an opensource software based on OpenFOAM®. In this 
case, the version of the existing model in the software was 
updated following the model proposed by Boek et al. (2005); 
in addition, the following assumptions and limits of study 
are considered to build the numerical analysis.

1) The study domain (mesh) is mainly represented by two 
sections, one that precedes the contraction and the other 
after it. For the first case, Lin represents the distance 
required to avoid any effect of the contraction on the 
flow, with which a developed flow can be assumed for 
the initial point of study. Similarly, Lout is the length that 
allows the flow to reach the condition of fully developed 
flow after the contraction (see Fig. 1). It is worth men-
tioning that the first section is greater than Lin for the 
computational mesh; this is because the software needs 
an extra length to generate a developed flow at the start-
ing point of the analysis. This procedure has already 
been used and validated in previous works (Pérez-Salas 
et al. 2019, 2021; Bishko et al. 1999).

2) Two geometries were built for the study, with contrac-
tion ratios of 4:1 and 8:1 between the two cross sec-
tions ( Hmax∕Hmin ). Furthermore, three different mesh 
densities were evaluated: a low density with about 8000 
cells (M1), an intermediate one with approximately 
60,000 cells (M2), and a high density one where close 
to 150,000 cells (M3) were used. After evaluating the 
results obtained, it was determined that the intermedi-
ate mesh (M2) is the most appropriate to carry out the 
numerical evaluations (see Fig. 2). As an additional 
test of the quality of the selected working mesh (M2), 
Fig. 3 presents quite similar lip vortices comparted to 
the observed for the most refined mesh (M3), showing 
in turn that these types of vortices are not a numerical/
computational mesh refinement phenomenon in the pre-
sent work.

3) Non-slip conditions and nonpermeable surfaces in 
the entire contraction contour were assumed ( u = 0 ). 
Moreover, the outlet pressure in the contraction is the 
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atmospheric pressure ( p|x=Lin+Lout = Pout ), and the inlet 
pressure ( p|x=0 = Pin) is calculated after proposing the 
characteristic velocity ( uc ). The above follows the theo-
retical formulation reported in Pérez-Salas et al. (2019, 
2021), where the value of uc is employed to define the 

corresponding value of the Weissenberg number ( We) , 
relationship that is explained in detail later.

Fig. 1  Schematic representa-
tion of one of the contractions 
built for the study. Here, the 
main physical characteristics of 
the flow and the chosen mesh 
density (for the contraction 8:1) 
are shown. The mesh is uniform 
and grid-like

a) 4:1 b) 8:1

Fig. 2  Analysis of mesh independence in terms of dimensionless pressure drop along the contractions. a In the case of 4:1 contraction, three 
meshes with different densities were evaluated, and b in the case of 8:1 contraction, two meshes were evaluated

Fig. 3  Analysis of mesh inde-
pendence in terms of lip-vortex 
behavior, for the 4:1 contrac-
tion, We = 2 . Monotonic fluid. a 
Medium (M2) mesh and b most 
refined (M3) mesh
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Here, we consider the enhanced version of the BMP 
model (Boek et al. 2005), which consists of an Oldroyd-B 
equation for the polymeric stress evolution coupled with an 
equation that accounts for the fluidity (inverse of viscos-
ity), in terms of the formation and destruction of micellar 
structures.

To express the model equations in dimensionless form, 
H,Uc and H∕Uc are the characteristic length, velocity, and 
time, respectively. Stress is dimensionless by Uc

(�0H)
 ; and the 

fluidity is � = �T∕�p . Then, the dimensionless equations for 
the rheological model are expressed as follows:

For the case of the polymeric stress evolution:

where the fluidity � and the upper-convected Maxwell deriv-
ative of the polymeric stress tensor, 

∇
�
p
 , are given by the 

following expressions:

and

respectively. In addition, the Newtonian solvent contribu-
tion ( �

solv
 ) is defined as follows:

Therefore, the total stress tensor ( � ) is determined by the 
following:

In previous equations, d represents the strain tensor and 
u is the velocity vector. Also, the zero shear-rate fluidity and 
high shear-rates fluidity, together with the kinetic parameters 
for structure construction and for the destruction of micellar 
structures, and the dynamic viscosities of the polymer and 
Newtonian solvent are defined by �0 , �∞ , � , k , �p , and �solv , 
respectively. In addition, G0 is the relaxation modulus, 

.

� is 
the extensional rate, and 

.

� is shear rate.
By expressing the equations in dimensionless terms, the 

following numbers were defined:

In these definitions, We is the Weissenberg number; � 
and � represent the dimensionless terms for construction and 

(1)��
p
+ W e

∇
�
p
= ∇v +

[
∇v

]T
,

(2)
��

�t
+ v ⋅ ∇� =

1

�

(
�0 − �

)
+ ��

p
∶ d;

(3)
∇
�
p
=

�

�t
(�

p
) + u ⋅ ∇�

p
−
[
∇u

]T
⋅ �

p
− �

p
⋅

[
∇u

]
,

(4)�
solv

=
2

�solv

d,

(5)� = �
solv

+ �
p
.

We =
�TUc

G0H
,� = �s

Uc

H
, � = k�T

2
Uc

H
, and �solv =

�T

�solv

destruction of micelles, respectively; and �solv corresponds 
to the Newtonian viscosity contribution. Note that in all 
these equations �0 and �∞ are dimensionless.

On the other hand, after considering a 2D Cartesian coor-
dinate system in the contraction ( x, y ), as illustrated in Fig. 1, 
the equations for time-evolving material functions are for a 
simple shear flow:

And for elongational flow:

In these expressions, �+
s

 , N+
1

 , and  �+
e

 are the transient 
shear viscosity, the transient first normal stress difference, 
and the transient extensional viscosity, respectively.

As was mentioned previously, two sets of model param-
eters are used to conduct the transient response analysis (see 
Table 1). Here, the names of the cases are according to their 
transient rheological response, namely, monotonic or over-
shoot. However, as can be observed when comparing both 
cases, the product of the structural kinetic parameters ( �� ) 
is the same ( ≈ 0.2808 ), which ensures the same steady-state 
rheology for both fluids.

In Fig.  4, the steady and dynamic responses of the 
enhanced BMP model used in the present work are shown. 
As mentioned before, the steady response is identical for 
both fluids; therefore, only one case is plotted. We can see 
that the fluids exhibit a moderate extension-hardening fol-
lowed by an extension-softening behavior. The shear viscos-
ity presents the first and second Newtonian plateaus and a 
shear-thinning zone (see Fig. 4a). For the case of the first 
normal stress difference, it rises to an asymptotic value for 
𝜆relax�̇� ≥ 8 (see Fig. 4b), where �relax = �p∕G0 represents the 
relaxation time. Besides, for the transient functions, we can 

(6)

d�pxx

dt
= −

1

We
�pxx

+ 2
.

� �pxy
,

d�xy

dt
=

1

We

( .

� −��pxy

)
,

d�

dt
=

1

�

(
�0 − �

)
+ �

.

� �pxy
,

�shear
+ =

�pxy
.

�
+

1

�solv

,

N1
+ = �pxx

.

(7)

d�pxx

dt
= −

(
1

We
� − 2

.

�

)
�pxx

+
2

We

.

�,

d�pyy

dt
= −

(
1

We
�+

.

�

)
�pyy

,

d�

dt
=

1

�

(
�0 − �

)
+ �

.

�

(
�pxx

− �pyy

)
,

�ext
+ =

�pxx
−�pyy
.

�
+

3

�solv

.

Table 1  Enhanced BMP non-dimensional model parameters

Fluid �0 �
solv

�∕We �∕We

Monotonic 1.0145 69.773 7.8910 × 10
−3 35.588

Overshoot 1.0145 69.773 1.4226 0.19741
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see that shear properties exhibit the overshoot for 𝜆relax�̇� > 1 
(see Fig. 4 c and d), while for the extensional viscosity, the 
overshoot is not only present at �relax

.

�= 1 , but also the 
peaks are of larger magnitude than those observed for shear 
properties.

Results

As previously detailed in the basic aspects of mesh con-
struction, the simulations start from rest with a flat velocity 
profile. Similar to Pérez-Salas et al. (2019, 2021) and Bishko 
et al. (1999), the entrance channel is large enough to let the 
velocity profile evolves to a fully developed condition before 
interacting with the contraction (start point of the study).

To corroborate the good performance of the numerical 
scheme solution, a mesh independence test was carried out 
successfully. Similarly, the implemented model was tested 
with an analytical solution for the Poiseuille flow between 
parallel plates (Aguayo-Vallejo 2006). Assuming a value of 
We = 2.0 , where it is defined as We = Uc�relax∕Hmax 22,23, the 
velocity profile from the analytical procedure and from the 
model in RheoTool is presented in Fig. 5. From this figure, 
we can infer that the rheological model was well encoded. 
Furthermore, the results show that both sets of parameters 
produce the same steady-state values for Poiseuille flow, in 
which the flow area is constant; therefore, no Lagrangian 
effects appear, as occurs in a contraction flow.

From the most relevant results obtained in the numerical 
evaluations, the pressure-drop ( ΔP = p − Pout ) computations 

Fig. 4  Rheometric functions 
of the enhanced BMP model: 
a steady shear and extensional 
viscosities, b steady first normal 
stress difference, c transient 
shear viscosity, d transient First 
normal stress difference, and e 
transient extensional viscos-
ity. Symbols and dotted lines 
correspond to the overshoot and 
monotonic fluids, respectively
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are shown in Fig. 6. In this figure, the resulting values were 
made non-dimensional using the pressure-drop of a Newto-
nian fluid ( ΔPNewt ) computed at the lowest flow rate (char-
acteristic velocity, uc ) analyzed here. It can be gathered from 

these results that for increasing We values, the pressure drops 
( ΔP ) recorded by the cases of monotonic and overshoot 
fluids are different. In all evaluations, the overshoot fluid 
exhibits larger pressure values than those from the mono-
tonic fluid.

In addition, another observation that can be gathered from 
Fig. 6 is that the dimensionless pressure is larger for the 4:1 
contraction than those displayed by the 8:1 geometry. The 
fact that ΔP∕ΔPNewt is larger for the 4:1 contraction can be 
explained by considering that for the 8:1 case, the shear-rate 
would reach higher values compared to the 4:1 situation; 
this higher deformation-rate means a higher degree of vis-
cosity reduction of the fluid; therefore, the pressure-drops 
decreases.

To simplify the comparison of the pressure-drop 
result, Fig.  7 shows the normalized pressure-drop 
( ΔPmax∕ΔPNewt = (Pin − Pout)∕ΔPNewt ) at different elastic-
ity levels. Here, we can notice that for larger values of We , 
increasing differences between the monotonic and the over-
shoot fluids are obtained. The fluid with the overshoots in 
the rheometrical functions seems to dissipate more energy.

In the same context, the differences in the steady state 
of the two fluids are more noticeable when the vortex pat-
terns are compared, as is illustrated in Fig. 8, for the 4:1 
contraction and in Fig. 9 for the 8:1 geometry. For the 4:1 

Fig. 5  Velocity profile for the Poiseuille flow; comparison between 
the analytical solution and the implemented model considering a 
value of We = 2.0 , both monotonic and overshoot cases

Fig. 6  Non-dimensional 
pressure-drops: a 4:1 contrac-
tion and b 8:1 contraction

Fig. 7  Normalized pressure-
drop ΔP

max
∕ΔP

Newt
 at different 

We : a 4:1 contraction and b 8:1 
contraction
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contraction, the overshoot fluid presents much larger vorti-
ces compared to those of the monotonic fluid. No lip vor-
tex can be gathered for the overshoot case, and the corner 
vortex becomes larger at increasing Weissenberg. Quite a 
different trend is observable for the monotonic scenario for 
which the corner vortices tend to disappear for the simu-
lated We increments. In addition, for this monotonic case, 
a lip vortex seems to emerge at We = 1.5 , and it becomes 
more noticeable at We = 2. The same behavior is obtained 

in the 8:1 geometry for the overshoot liquid but amplified. 
For this case, the corner vortices are quite large, while for 
the monotonic scenario, the corner vortex seems very small, 
and the lip vortex appears at We = 0.5 and becomes larger 
with elasticity. As an additional comment, it is to note that 
for the largest Weissenberg number simulated here ( We = 2 ), 
the monotonic fluid required approximately half of the time 
to reach the steady flow.

Fig. 8  Vortex behavior with 
respect to We , for the 4:1 con-
traction

We Overshoot Monotonic

0.1

0.5

1.0

1.5

2.0
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Conclusions

As mentioned before, Davoodi et al. (2022) simulated two 
different constitutive models (sPTT and FENE-P) with the 
same steady properties, very similar shear transient values 
at least for We < 20 , and for the time evolving extensional 
viscosity, both models follow a monotonic increase in this 
property where the FENE-P fluid reaches the steady state 
some small time before the sPTT. As consequence of such 
similarities, Davoodi et al. (2022) reported very similar vor-
tex size values between both models. Here, due to the much 
more significant variations in transient rheology of the two 

selected set of parameters of the enhanced BMP model, we 
report visible differences in pressure-drop and most signifi-
cant differences in vortex dynamics.

By observing the material functions time evolution 
(Fig. 4), it can be argued that even with the differences 
in �+

s
 and in N+

1
 between the monotonic and the overshoot 

cases, these differences may seem somehow small to cause 
distinct patterns in the vortex dynamics, as those obtained 
in this work. Therefore, our observations let us to infer, as 
White et al. (1987) mentioned, that the dominant effect in 
vortex evolution is the extensional deformation, because 
it is in �+

e
 where the separation in the two fluids is more 

Fig. 9  Vortex behavior with 
respect to We , for the 8:1 con-
traction
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significant; in fact, for some instances, there is an order of 
magnitude of difference. In addition, the results exposed 
here seem to agree with the remark of White and Kondo 
(1977) that a rapid rise in extensional viscosity is needed 
for polymer melts to exhibit vortices. Here, both fluids pre-
sented vortices, but the overshoot fluid, where the exten-
sional viscosity grows much faster, is the fluid exhibiting 
larger vortices.

This research shows significant differences in steady-
state simulations results for fluids exhibiting exactly the 
same steady rheology but with separate trends in transient 
response. The fluid with the overshoot in dynamic material 
functions presents larger pressure drops and large corner 
vortices, while, for the monotonic fluid, corner vortices are 
small and lip vortices may become significant when increas-
ing elasticity.
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