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ABSTRACT: We investigate the steady and transient shear and extensional rheological properties of a series of
model hydrophobically modified ethoxylate-urethane (HEUR) polymers with varying degrees of hydrophobicity.
A new nonlinear two-species network model for these telechelic polymers is described which incorporates
appropriate molecular mechanisms for the creation and destruction of elastically active chains. Like other recent
models we incorporate the contributions of both the bridging chains (those between micelles) and the dangling
chains to the final stress tensor. This gives rise to two distinct relaxation time scales: a short Rouse time for the
relaxing chains and a longer network time scale that depends on the aggregation number and strength of the
micellar junctions. The evolution equations for the fraction of elastically active chains and for the conformation
tensors of each species are solved to obtain the total stress arising from imposed deformations. The model contains
a single adjustable nonlinear parameter and incorporates the nonlinear chain extension, the shear-induced
enhancement of associations, and the stretch-induced dissociation of hydrophobic chains. In contrast to earlier
closed-form models, we are able to obtain quantitative agreement between experimental measurements and the
model predictions for three different series of telechelic polymers over a range of concentrations. The scaling of
both the zero shear viscosity and the effective network relaxation time shows good agreement with those measured
in experiments. The model also quantitatively captures both the shear thickening and subsequent shear thinning
observed in the rheology at high deformation rates and predicts transient extensional stress growth curves in
close agreement with those measured using a filament stretching rheometer.

1. Introduction

Hydrophobically modified, water-soluble polymers or “as-
sociative polymers” are a class of complex and partially ordered
systems that have attracted a great deal of interest in recent years.
These materials are aqueous soluble block copolymers that
contain both water-soluble (hydrophilic) and water-insoluble
components of varying levels of hydrophobicity. As a result of
the amphiphilic character of the molecules, they may act, even
at low concentration, as effective rheological modifiers. They
can therefore be used for various industrial applications in which
careful control of the rheology of the solution is required, e.g.,
paints, foods, and pharmaceuticals. Examples of these triblock
or telechelic polymers include hydrophobically ethoxylated
urethanes (HEURs) with hydrophobic end groups consisting of
aliphatic alcohols, alkylphenols or fluorocarbons, and hydro-
phobically modified alkali-soluble ethoxylates (HASE) with
hydrophobic macromonomers distributed along the polymer
backbone. The driving force for the association process is the
interaction between the hydrophobic segments that arises in
order to minimize their exposure to water. The resulting micellar
associations give rise to both intra- and intermolecular temporary
domains or junctions. The network is temporary in the sense
that the junctions that hold the network together break and re-
form continuously due to thermal fluctuations. Numerous
research groups have investigated the association and rheology
of these associative polymer systems. The review by Winnik

and Yekta1 and the text of Larson2 provide a detailed survey of
this literature.

In the present study we focus on the behavior of a set of
model telechelic HEUR polymers. These linear triblock systems
are ostensibly the simplest of the many associative polymer
materials available. There have been many experimental studies
of the viscoelastic properties of these aqueous solutions and
also a number of theoretical models based on transient network
theory that appear to capture, at least qualitatively, the experi-
mental observations. However, there are few studies that
quantitatively compare rheological measurements with constitu-
tive predictions. This is the focus of the present work.

In a pair of recent papers, Pellens et al.3,4 identify at least
five signature features of rheological nonlinearity in associative
polymer networks that must be captured by any theoretical
model. They also demonstrated that although these features may
be captured qualitatively by existing constitutive equations,
quantitative discrepancies with experimental measurements that
may be of an order of magnitude or more typically persist.

Depending on the relative locations of the two hydrophobic
end groups of the telechelic polymer chain, different scenarios
can be visualized.5 Loops are formed if the end groups of the
polymer are present in the same micelle. On the other hand, it
is possible that the hydrophobic end groups are located in
different micelles, and in this case, a bridge is established
between two micelles. These bridging chains may be referred
to as elastically active since they form part of the temporary
elastic network. Depending upon the hydrophobicity of the end
group and the polymer concentration, one or both ends can also
temporarily exist without any association. These molecules form
dangling chains which can relax before being reincorporated
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into the micellar network. The complex rheological response
of telechelic polymers originates from the dynamical interchange
of these loops, bridges, and dangling chains as a function of
the deformation imposed on the network. The structure and
dynamics of these telechelic chains depends on numerous
parameters such as polymer concentration, molecular weight,
hydrophobe size and characteristics, degree of hydrophobicity,
temperature, and the imposed shear deformation. Hence, the
relationship between structure and the rheological response of
associative polymers is quite complex.1

In this discussion we have inherently adopted a polymeric
network view of telechelic systems, in contrast to the colloidal
particle approach adopted elsewhere.6-10 The elastic chains in
telechelic networks are typically quite long and are expected to
play an important role in governing the rheology and dynamics
of the material. However, we do incorporate essential features
of colloidal models in our description of the aggregation number
and hydrophobic association/dissociation rates of the flowerlike
micelles that form the junction points in the temporary network.

Examples of the complex rheological behavior exhibited by
these polymeric networks include the ability to form highly
viscous solutions at low to moderate concentrations, a linear
viscoelastic response that closely resembles that of a perfect
Maxwell fluid with a single relaxation time,5,11,12shear thicken-
ing at moderate shear rates in steady shear flow followed by
marked shear thinning at high shear rate,13-19 an Arrhenius-
like temperature dependence of the zero-shear rate viscosity,5,20

and a decrease in the critical shear rate at which onset of shear
thickening occurs as the association strength or concentration
increases or temperature decreases.21 Recently, Ng et al.20

disputed the assertion of a single relaxation time suggested by
Annable et al.5 and demonstrated that HEUR polymers in fact
possesses a dual relaxation behavior. These authors supported
their claim by performing relaxation spectra analysis and by
fitting a two-mode Maxwell model to their experimental data.
The short time relaxation process is ascribed to the lifetime of
hydrophobic junctions,22 whereas the long time process is
ascribed to the network relaxation. Recently, Berret and co-
workers23-25 performed startup of steady shear flow and stress
relaxation experiments to study the strain hardening and shear
thinning behavior of HEUR polymers. On the basis of their
results, the authors suggested breakdown or rupture of the
network as possible mechanisms of shear thinning behavior.
The authors also interpreted strain hardening in terms of
nonlinear stretching of the elastically active chains.

Finally, it should be noted that the tensile or extensional
properties of the associative polymer network remain virtually
unexplored even though the extensional rheology plays an
important role in many commercial applications of associative
polymers such as spray formation and paint applications.
Recently, Sadeghy and James26 measured the apparent exten-
sional viscosityηE using a converging channel rheometer. Tan
et al.27 also measured extensional properties of HASE solutions
using an opposed jet device. The complex kinematics that arise
in these devices, due to distribution of strains and strain rates
experienced by individual fluid elements, make it difficult to
interpret the extensional data unambiguously. However, the
apparent extensional viscosity was found to increase roughly
exponentially with the hydrophobicity and concentration of the
polymers.

Several constitutive models have been developed to describe
the rheological behavior of associative polymers. In a series of
papers, Tanaka and Edwards28-31 developed a temporary-
network kinetic model for telechelic polymers, by applying

ideas originally formulated by Green and Tobolsky32 and
Yamamoto.33 The main mechanism of stress relaxation (and
shear thinning) in these models is the rate of chain detachment
from the elastically active network which is activated by the
elastic force in the chain. Tanaka and Edwards assumed that
the chains obey Gaussian statistics and relax rapidly into their
equilibrium state through Rouse dynamics upon detachment
from each network point. This theory accurately captures basic
observations such as a single relaxation time. However, this
theory does not explain the shear thickening phenomenon at
intermediate rates, and several modifications have been offered
in the literature.13,34,35However, these modifications appear to
be inadequate for explaining the shear thickening behavior
observed in telechelic solutions.

Annable et al.5 presented a detailed experimental study of
telechelic polymer solutions and compared the results with the
predictions of Monte Carlo simulations of network topology.
Retaining end-capping efficiency as a parameter, these authors
showed that the concentration-dependent relaxation time scales
as λ ∼ f (cxMw). Here,c denotes polymer concentration and
Mw denotes the molecular weight of the chain. This scaling was
found to be consistent with the experimental data and quanti-
tatively captured many of the linear viscoelastic properties of
the fluids. The complex nature of the model prevents the
development of a closed form model suitable for analytic or
numerical evaluation or for assessing the response in other
modes of deformation such as uniaxial extension. Marrucci et
al.36 took finite extensibility and partial relaxation of the
dangling segments into account in order to qualitatively explain
the shear thickening behavior observed in telechelic polymers.
These authors also put forward important scaling arguments for
the dependence of rheological quantities (such as the viscosity
and relaxation time) on the concentration and molecular weight
of the telechelic polymer chains. Ahn and Osaki37 studied a
wide range of possible shear thinning and shear thickening
behavior using a network model with strain-dependent bridge
formation and loss rates. Van den Brule and Hoogerbrugge38

performed Brownian dynamics simulation of a complete network
of telechelic chains in shear flows and analyzed their results in
terms of transient network theory. These simulations showed
that even in systems with Gaussian chains and fixed association
and dissociation rates, shear thickening could occur. They
attributed shear thickening to incomplete relaxation of a
dissociating chain and also found that its probability of
reattachment to the network increased linearly with the length
of the chain. Hernandez-Cifre et al.39 extended these ideas to
incorporate finite extensibility of the chains and nonaffine
motion of the network. Vaccaro and Marrucci40 derived a simple
constitutive model inspired partially by the simulation results
of Van den Brule and Hoogerbrugge.38 They formulated the
evolution equations for both bridging chains and temporary
dangling chains by choosing simple kinetics of detachment and
reattachment processes. The resulting set of nonlinear equations
predicts shear thickening at moderate shear rates followed by
shear thinning at much higher shear rates. This model was also
used4 for quantitative comparison with experimental measure-
ments of the shear rheology for two different HEUR polymers.
Although the model captures all the key signature effects of
nonlinearity,3 it failed to capture the characteristic range of
deformation rates at which shear thickening and shear thinning
were observed experimentally. The authors suggest that a
nonaffine motion of the elastically active chains with a negative
slip coefficient (i.e., “superaffine” deformation) might capture
the experimentally observed trends.
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Although the studies described above furnish various possible
mechanisms for qualitatively explaining the experimentally
observed nonlinear rheological phenomena, a quantitative
comparison of theoretical predictions with steady shear, oscil-
latory shear, and transient extensional rheology data is still
lacking. In this paper, we first propose a modified nonlinear
constitutive model for the telechelic associative polymers, which
incorporates the most important underlying molecular mecha-
nisms. The model incorporates earlier work38,39 in which both
elastically active bridging chains (those between micelles) and
temporary dangling chains contribute to the final stress tensor.
In contrast to full Brownian dynamics simulations of the
stochastic differential equations,39 we simplify the evolution
equations by ensemble averaging. The resulting ordinary dif-
ferential equations for conformations and stresses carried by
the two species can be solved numerically or analytically (in
the limit of small shear rates). We incorporate the finite
extensibility of bridging chains and the nonlinear rate of
incorporation of the dangling chains into the elastic network.
We then compare the model predictions with a systematic
experimental study of the linear viscoelastic, steady shear, and
transient extensional properties of a series of well-characterized
model hydrophobically modified ethoxylate-urethane (HEUR)
polymers possessing varying degrees of hydrophobicity.

2. Model Development

2.1. Molecular Architecture. We seek to understand the
behavior of associative polymers in aqueous solution by studying
model polymers of well-defined structures. Consider a hydro-
philic flexible chain of molecular weightMw consisting ofN
statistically independent segments each of lengthb (the “Kuhn
length”). The number of segments and the “Kuhn length” in
the equivalent freely jointed Kuhn chain are computed as

where C∞ () 4 for poly(ethylene oxide) chains) is the
characteristic ratio,l () 0.154 nm) is the carbon-carbon bond
length,M0 () 44 g/mol) is the molecular mass of the repeat
unit, andθ () 54.5°) is the half-angle between carbon-carbon
bonds in a polymer chain. The root-mean-square end-to-end

distance of the equivalent Kuhn length is〈R2〉1/2 ) xNb2. The
hydrophilic chain is also end-capped with small chains ofnc

(nc , N) hydrophobic units. This leads to so-called telechelic
polymers. We then study an aqueous solution of such polymer
chains of narrow molecular weight distribution with a concen-
trationc per unit volume. The number density of the chains is
computed asn ) cNA/Mw, whereNA is Avogadro’s number.
The synthesis procedure and characterization of the polydis-
persity of the molecules are described elsewhere.12,27

Research to date has established that such polymers form
micelles in dilute solutions above a rather low critical micelle
concentration (ccmc , 0.1 wt %)12 which depends on the
backbone molecular weightMw and the hydrophobe lengthnc.
The telechelic polymers undergo simultaneous formation of
intramolecular micelles with a dense core of hydrophobic groups
and interchain micellar cross-links. Thermodynamic studies have
shown that at moderately dilute concentrations perfectly end-
capped telechelic polymers may also phase separate7-9 into a
viscous gel phase and an aqueous phase. This tendency for phase
separation is suppressed by further increases in concentration
so that the elastically active PEO chains overlap and also by
imperfect end-capping of the telechelic polymers.1 In the present

study we focus on sufficiently high concentrations and molecular
weights that no phase separation is observed. Thus, depending
upon the thermodynamics of the association process, a single
phase solution of telechelic chains contains several types of
possible chain structures: “bridges”, “loops”, “danglers”, and
“free chains”. A chain connecting two different micelles is called
a “bridge” chain. “Loops” are formed if the end groups of the
polymer are present in the same micelle. Similarly, “danglers”
or “free chains” are formed when one or both ends temporarily
exist without any association. At low concentrations, the loops
dominate, but with an increase in the polymer concentration,
the number of micelles interconnected through bridging chains
increases rapidly. We specifically focus our attention in the
nonentangled regime in which the number of monomers,N, in
a polymer chain is smaller than the entanglement number,Ne,
i.e., the number of monomers required for the chains to become
entangled. Annable and co-workers5 also discuss the possible
existence of shear-induced creation of more complex multiply-
bridged structures; however, these are beyond the scope of the
present work.

In aqueous solutions, the hydrophobic ends associate into
micelles that form junction points in a polymeric network. The
depth of the free energy well∆G, characterizing the junction
points, depends on a number of molecular parameters such as
the aggregation number10 Nagg, the hydrophobe length as
measured bync (the number of-CH2- moieties15), the length
of the polymer chainMw, and the solvent quality.8 Owing to
ambient thermal noise (∼kBT), there is a finite probability that
a micellar hydrophobe acquires sufficient energy to overcome
the activation barrier∆G and detach spontaneously. Following
the model of Bell41 and Tanaka and Edwards,31 the exit rate,
1/τE, is estimated as the product of a natural thermal vibration
frequency,Ω (∼108-1010 Hz), of the hydrophobic association
in a micelle and the quasi-equilibrium likelihood of reaching a
transition state with an energy barrier exp(-∆G/kBT). Hence,
we expect

where the association energy is estimated to be∼0.98 kBT
per -CH2- unit for an alkane hydrophobe5,8 so that
∆G ≈ 0.98nckBT. Theoretically, the thermal vibration frequency
is expected to be inversely proportional to the local friction
constant for micellar motion in the viscous solvent. For
∆G/kBT . 1, it is increasing unlikely for hydrophobes to exist
outside the micellar core, and the solution is devoid of any
completely unassociated free chains or permanent danglers.
Hence, for associative polymer solutions, with hydrophobic end
groups of 10 or more methylene units, bridges and temporarily
ejected chains with single dangling ends are likely to carry most
of stress in the solutions. The number of elastically active chains
ν (i.e., those in aggregates) is then defined31 as

with ν = n for ∆G/kBT . 1.
The aggregate number of hydrophobic unitsNagg contained

in a single micelle depends on the molecular structure of the
hydrophobe. More specifically, it is related to the volume of
each hydrophobic moiety and the area of the micelle surface
required to accommodate each hydrophobe within the micelle.
Using fluorescence decay studies, Yekta and co-workers15,16

have deduced a micelle aggregation number ofNagg ≈ 18-28

N )
3Mw sin2 θ

M0C∞
and b )

C∞l

sin θ
(1)

1
τE

) Ω exp(- ∆G
kBT) (2)

ν ) n( e∆G/kBT

1 + e∆G/kBT) (3)
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hydrophobes per micelle. Fluorescence studies detect no change
in micellar size from dilute concentrations up to 7 wt %. This
supports the notion that increasing the concentration above the
critical micelle concentrationccmcprimarily increases the number
of micelles at a fixed value ofNagg, much as for low molecular
weight surfactant systems. As the number of micelles increases,
the average distance between aggregates, denoted as〈a〉,
decreases. Since, on average, a single aggregate/micelle occupies
a volume of 4π〈a〉3/3, the average spatial distance〈a〉 is related
to the number of active chainsn ) cNA/Mw, of which carries
two hydrophobic ends by the expression

This lattice-based definition relates physical properties of the
individual polymer to the resulting micellar solution structure.
Marrucci et al.36 adopted the lattice approach to estimate the
effect of partial relaxation of the detached chains. These authors
argued that the mean distance traveled by a detached hydrophobe
depends on the ratio of the radius of gyration of the chain

lc ) xNb2/3 and the lattice spacing〈a〉. Hence, if〈a〉2 < lc2, a
detached chain generally rejoins the network before it can
completely relax its original deformation, and the “effective”
relaxation time of the chain, due to presence of a partially
deformed network, becomes

SubstitutingN ∼ Mw and 〈a〉2 ∼ (Mw/c)2/3, we find that the
effective relaxation time scales nonlinearly with both concentra-
tion and the molecular weight asτeff ∼ (cxMw)2/3. This result
is consistent with the experimental findings of Annable.5 Since
τeff is the relaxation time of the network, the zero-shear viscosity
can be expressed as32

where GN
0 is the plateau modulus of the physical network.

From eq 6 we then find the zero-shear-rate viscosity is
proportional toc5/3Mw

-2/3. Consideration of the lattice spacing
thus predicts an augmented dependence on concentration, which
is in good agreement with the experimental findings of Annable
et al.5

2.2. Constitutive Equation. Following Van den Brule and
Hoogerbrugge,38 we focus on two species of chains (elastically
active polymer chains) which carry most of the stress in a
telechelic polymer system: the bridges and the temporarily
dangling chains with single dangling ends. The looped chains
contribute to the stress only inasmuch as they are polymer

molecules of radius of gyrationx〈Rg
2〉 ) xNb2 which can be

deformed by the flow. Although our model can easily be
extended to account explicitly for the exchange between loops
and dangling chains, at this stage, we assume that the loops
play no additional role in the total stress tensor. The telechelic
polymer solution is assumed to remain in a single phase and
the network junctions (i.e., the micelles) move affinely. Each
telechelic polymer molecule is modeled as a Gaussian chain,
and we take the chains to be freely jointed, bead-spring
chains,42 in which the end-to-end distance is represented
generically by a vectorQ. Because we consider two species,
when considering bridging chains, we explicitly denote the end-
to-end vectorQA and for dangling chains we use the notation

QB. To specify the orientation of the bridge, we introduce the
distribution functionsΨA(Q,t), normalized to the number of
bridge chains per unit volumeνA, as νAψA(Q,t) and the
distribution function ΨB(Q,t) for the temporarily detached
dangling chains, normalized as (ν - νA)ψB(Q,t) with ν the total
number of elastically active chains per unit volume. Hence, the
distribution functionsψA, ψB satisfy∫ψA dV ) ∫ψB dV ) 1,
where dV is a volume element in configuration space.

Following standard methods,38,42 we then perform balances
in configuration space for the evolution of the distribution
function for the bridging chains to obtain

whereK ) ∇vT denotes the transpose of the velocity gradient
tensor,L(Q,t) denotes the probability rate of creation of the
bridging chains of lengthQA, andM(Q,t) denotes the probability
rate of destruction of the bridging chains of lengthQA. Equation
7 assumes affinely deforming bridging chains although it is
straightforward to incorporate nonaffine motion.4 Similarly, we
can write the convection equation38 that determines the distribu-
tion function of the temporally ejected dangling chains as

where ú is the friction coefficient andF(c) is the spring or
connector force. The two additional terms on the right-hand side
represent contributions due to thermal diffusion of free hydro-
phobic ends through the solvent and the elasticity of the
connecting chain. Once the chain is free at one end, it can relax
its stress through its Rouse modes. Hence, eq 8 describes
nonaffine motion of temporarily dangling chain. Following
dumbbell theory,42 we write the connector force law as

whereH ) 3kBT/Nb2 is a spring constant andf ≡ 1/(1 - Q2/
Qmax

2) is the nonlinear Warner spring factor accounting for the
finite extensibility of the polymer chain. Finally, for a given
deformation tensorK, we need to solve eqs 7-9 for ΨA(Q,t)
and ΨB(Q,t) and then calculate the resulting stress fieldσ as

where the angle brackets denote ensemble averages over
conformation space with respect to the corresponding distribu-
tion functions. Note that we have neglected terms accounting
for the looped chains and the solvent contribution to the total
stress.

To compute the stress fieldσ as a function of a given
deformation fieldK + KΤ, the number density of bridging
polymers, νA, and the distribution functionsψA(Q,t) and
ψB(Q,t) need to be obtained from the coupled nonlinear partial
differential eqs 7 and 8. We also need to specify the exact forms
of L(Q,t) (i.e., the probability rate of creation of the bridging
chains of lengthQA and M(Q,t) (i.e., the probability rate of
destruction of the bridging chains). Although the above set of
equations can be converted to the equivalent stochastic dif-
ferential equation and then solved directly using techniques such
as Brownian dynamics,38,43we seek to develop a simple closed-
form model by making suitable approximations without losing
too much of the essential physics. Hence, we replaceQ by the

∂ΨA

∂t
) - ∂

∂Q
‚[K‚QΨA] + L(Q,t)ΨB - M(Q,t)ΨA (7)

∂ΨB

∂t
) - ∂

∂Q
‚[K‚QΨB -

kBT

ú
∂

∂Q
ln ΨB - 1

ú
F(c)] -

L(Q,t)ΨB + M(Q,t)ΨA (8)

F(c) ) HQf (Q) (9)

σ ) νA〈FA
(c)QA〉 + (ν - νA)〈FB

(c)QB〉 (10)

〈a〉 ) (3Nagg

8πn )1/3

(4)

τeff ∼ Nb2/3

〈a〉2
τE (5)

η0 = GN
0τeff = nkBTτeff (6)
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preaveraged quantityQ ) x〈Q2〉 in (i) the expression for finite
extensibility factor44,45 f, (ii) the expression for probability rate
of creation of the bridging chainsL(Q,t), and (iii) the probability
rate of destruction of the bridging chainsM(Q,t). Therefore, at
any instant, the above terms are taken to be independent of the
distribution Q but dependent on the ensemble average ofQ2.
Recent studies46,47 have shown that preaveraging can be
inaccurate in strong flows; however, for steady-state flows,
preaveraging seems to be an acceptable approximation.44,48

Before integrating the evolution equations over configuration
space, we introduce the dimensionless conformation tensorsA
for the bridging chains andB for the temporary dangling chains,
which are computed by averaging the approximate dyadic
productQQover the respective conformation distribution spaces
to give

wherelc ) xNb2/3 is the characteristic length for scaling such
that tr Aeq ) tr Beq ) 3.

To obtain evolution equations for the orientation tensors
describing the bridges and dangling chainsA andB, we multiply
eqs 7 and 8 byQQ and integrate over the configuration space.
This leads to

and

where ( )(1) denotes the upper convected derivative, which is
defined as

The dimensionless fraction of bridged chains is denotedφ )
νA/ν; τR ) ú/4H denotes the relaxation time of free chains,
and Lh and Mh are dimensionless creation and destruction
rates. Note that the hydrophobe exit timeτE given by eq 2
has been used to nondimensionalize both time and the rate
of creation and destruction. To compute the stress tensor,
given by eq 10, we also need an evolution equation for the
number of bridging chains per unit volume. Hence, we integrate

eq 7 over all configurations to obtain

Finally, we write the stress calculator by the FENE force law
described by eq 10 as

where the stress is made dimensionless using the plateau
modulusGN

0 ) νkBT.
The constitutive model is represented by the set of eqs 12-

16 in which we compute the stress fieldσ, the fraction of
bridging chainsφ, and the orientation tensorsA andB, for a
given deformation fieldK + KΤ. It still remains to model the
probability of creation and destruction of bridging chains in a
telechelic polymer solution.

It is nontrivial to correctly formulate the creation and
destruction processes, and numerous authors have proposed
suitable models. Table 1 summarizes some of these attempts.
Green and Tobolsky32 initially took the rate of creation and the
rate destruction to be constant and their model reduces to the
upper convected Maxwell model.42 Tanaka and Edwards28-31

introduced a chain-length-dependent dissociation rate to predict
the rheological properties of the physically cross-linked net-
works. Tanaka and Edwards estimated the force required to pull
a hydrophobe from a micellar well and showed that the
detachment rate increases exponentially with the force acting
on the polymer chain. In addition to the bridging and the
dangling chains, Wang34 also considered the presence of free
chains. He rationalized the shear thickening behavior by
proposing a quadratic shear rate dependence of the recombina-
tion of free chains. This model also postulated a weak algebraic
dependence of destruction rate on chain end-to-end vector. Ahn
and Osaki37 introduced phenomenological expressions for the
microscopic creation and destruction rates in terms of the
effective macroscopic strainγ ) (τ11 - τ22)/2τ12 and enumerated
16 different rheological scenarios. Van den Brule and Hooger-
brugge38 found from Brownian dynamics simulations that the
probability of reattachment increases linearly with the length
of chain. As a result of this mechanism, the fraction of long
chain segments present in the network can increase with imposed
flow, and this can explain the shear thickening observed
experimentally. Hatzikiriakos and Vlassopoulos49 also performed
Brownian dynamics simulations of shear-induced thickening of
dilute polymer solutions. Although this work primarily consid-
ered shear thickening of nonmicellar polymer solutions, the
model is of the same basic form and considered the dynamical
evolution of two species with nonlinear creation and destruction
rates given by the expressions in Table 1. Recently, Vaccaro

Table 1. Comparison of Creation and Destruction Rate for Various Modelsa

model probability rate of creationL(Q,t) probability rate of destructionM(Q,t)

Green and Tobolsky32 1/τE 1/τE

Tanaka and Edwards28-31 c1/τE exp(c2Q)/τE

(c3 + 1.5c4Q2)/τE

Wang34 (c1 + c2τE
2γ̆2)/τE (1 + c3Q2/Qeq

2)/τE

Ahn and Osaki37 exp(c1γ)/τE exp(c2γ)/τE

van den Brule and Hoogerbrugge38 (c1Q/Qeq)/τE 2/τE

Hatzikiriakos and Vlassopoulos49 2Q3n1γ̆/3 4D/Q2 exp(-W/kBT)
Vaccaro and Marrucci40 (c1 + c2Q/Qeq)/τE f/τE

Hernandez-Cifre et al.39 1 - exp{-(c1 + c2fQ)∆t} 1 - exp{-2∆t exp(c3f 2)/τE}
a Herec1, c2, c3, andc4 are model specific constants;γ is the total strain;γ̆ is the shear rate;f is given in eq 9;n1 is the concentration of single molecules;

D is the translational diffusivity of a molecule;W is the energy of interaction of two molecules;Q ) x〈Q2〉 is the ensemble average length of the bridged
chain;∆t is the simulation time step.

A ) 1

lc
2∫QAQAψA dV and B ) 1

lc
2∫QBQBψB dV (11)

(φA)(1) ) (1 - φ)Lh(Q,t)B - φMh (Q,t)A (12)

((1 - φ)B)(1) )
τE

2τR
(1 - φ)δ -

τE

2τR
f (Q)B -

(1 - φ)Lh(Q,t)B + φMh (Q,t)A (13)

( )(1) ) D
Dt

( ) - ∇vT‚( ) - ( )‚∇v (14)

Dφ

Dt
) (1 - φ)Lh(Q,t) - φMh (Q,t) (15)

σ ) φf (QA)A + (1 - φ)f (QB)B (16)
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and Marrucci40 have developed a simple closed-form model for
the nonlinear rheology of associative polymers based on the
van den Brule and Hoogerbrugge study. In this model, the
kinetic rate of creation is proportional to the chain length, and
the rate of destruction is proportional to thermal fluctuations of
the hydrophobes.

All of the above studies have provided important insights
toward understanding the complex molecular processes of
association and dissociation for elastically active chains;
however, they all lack quantitative comparison with experi-
mental measurements of the rheological properties of associative
polymers in steady shear and/or small-amplitude oscillatory
shear flows. Extensive attempts in our laboratory to fit measured
viscometric data to any of the existing models have resulted in
less than quantitative agreement. Similar findings are reported
very recently by Pellens et al.4 We have thus returned to the
basic formulation of Green and Tobolsky and Tanaka and
Edwards. By appropriately incorporating each of the features
elucidated in the Brownian dynamics studies, we seek to develop
a closed-form constitutive model that can quantitatively describe
the rheology of HEUR solutions. In the following two sections,
we attempt to understand the processes of dissociation and
creation of active chains by considering relevant the thermo-
dynamically driven mechanisms and their relation to deforma-
tion-induced structural changes in the elastic network.

2.3. Probability Rate of Destruction of Active Chain.In a
quiescent solution, the hydrophobic ends located in micellar
aggregates experience ambient thermal fluctuations(∼kBT). Such
fluctuations occasionally induce sufficient energy in a micellar
hydrophobe to allow it to overcome the large activation barrier
∆G separating the micelle from the solvent. This thermodynamic
activity establishes an overall rate of dissociation 1/τE, given
by eq 2, of hydrophobes in a solution containing telechelic
polymers. The equilibrium thermodynamically driven probability
rate of dissociation is independent of the end-to-end distance
of the chain. (In fact, Green and Tobolsky32 first considered
this simplest model forM(Q,t).)

Under an external deformation field, the bridging polymer
chains connecting the micellar hydrophobes are stretched and
impart a net force on a hydrophobhic end group residing in the
micelle. If the chains are very long, or the concentration is high,
then this force can be described by a linear spring; however,

for large deformations the force is better described by the FENE
expression of Warner42 given by eq 9. Following Hernandez-
Cifre et al.,39 we incorporate the effect of this nonlinear spring
force on the exit rate of the hydrophobes from the micellar
junctions. As indicated in Figure 1, the tensile force in the chain
distorts the energy well by an amount that is proportional50 to
∫QA

QA-rcF(c)‚dr, whererc is the displacement associated with the
energy barrier. This distortion lowers the activation barrier
relative to kBT at |rc|, increases the probability of barrier
crossing, and thereby increases the frequency of hydrophobe
detachment. Hence, the destruction rateM(Q,t), i.e., the likeli-
hood of a hydrophobe jumping out of the energy well, can be
approximated by

where the front factorg(c,Mw) is a monotonic function of
polymer concentration and molecular weight. We notice that
the exit rate of the active chains or bridges is enhanced
exponentially due to the deformation. The width of the activation
barrierrc depends on the attraction energy between the hydro-
phobes in the core of the micelle, the aggregation number, the
solvent quality, and the length of hydrophobes. Semenov and
co-workers10 investigated the properties of an isolated micelle
in the limit of high aggregation numbers by adopting the model
of Daoud and Cotton51 for triblock copolymer brushes in a good
solvent. Following this study, we estimate the dimensionless
width of the activation barrier as

whereυ is the Flory exponent for a good solvent ()0.588) and
â is a numerical constant of order unity. If we substitute for
the length of an individual chain in terms of the ensemble
average and nondimensionalize with the characteristic length

scalelc ) xNb2/3, we finally obtain the following expression
for the destruction rate from integrating the exponential term

Figure 1. Conceptual view of the energy landscape for the detachment of a hydrophobe in extension. When a deformation is applied to the system,
the free energy difference∆G between the native and detached state is skewed by work performed by the tensile force on the chain.

M(Q,t) ) g(c,Mw)Ω exp(- 1
kBT

{∆G - ∫QA

QA-rcF(c)‚dr}) )

g(c,Mw)

τE
exp( 3

Nb2∫QA

QA-rcf(r)r dr) (17)

rc

lc
) â(N2)υ

Nagg
(1-υ)/2x3

N
(18)
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in eq 19 with the Warner spring function:

HereMh is made dimensionless using the exit time scaleτE. The
precise form of the front factorgj(c,Mw) is presented in the
Results section.

2.4. Probability Rate of Creation of Active Chain. Here
we propose a mechanism for the creation of active junctions
which provides some insights with respect to configurational
changes of the micellar-network when subjected to shear or
extensional deformation and thus to the molecular origins of
deformation-induced structural changes. Many diverse rheo-
logical phenomena are related to shear-induced modification
of the creation and loss rates of transient molecular structure
and arise from modifications to the energetic barriers for creation
and destruction. Examples observed in complex fluids include
assembly ofλ-phage DNA,52 inhomogeneous structure formation
and shear-thickening in wormlike micellar solutions,53 and
multilamellar vesicle (“onions”) formation in diblock copoly-
mers.54

In the quiescent medium, thermal fluctuations bring about
the transfer of ejected looped and bridged hydrophobes between
the micelles. Hence, the probability rate of creation of active
chains is proportional to the ejection rate 1/τE of the hydrophobic
ends. However, under shear or extensional deformation the
association processes are expected to become considerably more
pronounced owing to the strongly attracting end groups in
telechelic polymers.34,37,38,40,49The association of telechelic
molecules originates from the enhanced probability that the
hydrophobic end will collide with another micellar aggregate
in the presence of an imposed deformation. Figure 2 shows a
schematic of two hydrophobic ends “m” and “n” in a lattice of
micelles undergoing shear. The “m” end is likely to experience
more interactions per unit time with neighboring micelles
compared to the “n” end due to the differential velocity. Note
that the “m” and “n” chains have the same length but different
orientation. Hence, the collision rate increases as the root-mean-

square projection of the chain dimension in the deformation

direction,36 xlc
2+τs(K+KT):〈QQ〉 increases. Specifically, the

dangling chains of dimensionxlc
2+τs(K+KT):〈QBQB〉 and the

bridging chains of dimensionxlc
2+τs(K+κ

T):〈QAQA〉 are cre-
ated. Here,τs is the characteristic interaction time of hydrophobic
ends with the surrounding fluid medium comprising a lattice
of attractive micelles. The probability rate of creation of active
chains can then be determined as

where peq ) ∫〈a〉
∞ 4πr2 exp(-0.5r2) dr/∫0

∞4πr2 exp(-0.5r2) dr
denotes the equilibrium probability of chains lying at|r| > 〈a〉
(the average distance between micelles). The first term accounts
for the ejected loops, and the second term accounts for the
temporally ejected bridging chains. Equation 20 is nondimen-
sionalized to yield

whereGm ) τs/τE is a dimensionless constant andhh(c,Mw) is a
monotonic function of polymer concentration and molecular
weight. The form ofhh(c,Mw) is presented in the next section.
The parameterGm represents the ratio of the interaction time
of the hydrophobic end to the characteristic thermal time scale
for ejection of hydrophobes. This single parameter characterizing
the dependence of the creation process on the nonlinear
deformation rate will depend on the specific characteristics of
the fluid (e.g., molecular composition and concentration). This
completes the set of equations specifying the constitutive
response of a model telechelic polymer. For completeness, we
summarize the model in Table 2.

We now explore some consequences of the set of equations
derived in this section by computing the stress response in steady
shear and small-amplitude oscillatory shear flows.

3. Model Results

3.1. Equilibrium Composition and Conformation Tensor.
In the absence of flow, the number of bridging and looped chains
is in dynamical equilibrium. By settingK ) 0, we solve eqs
12-15 for the equilibrium fraction of bridging chainsφeq and
for the equilibrium conformation tensorsAeq and Beq for the
bridges and danglers to obtain

and

This results in an isotropic stress tensorσeq ) δ. Equation 22
shows that the equilibrium fraction of bridging chains is the
ratio of the probability rate of its formation to the sum of the
creation probability rates of bridging and dangling chains. This
is consistent with the partition function approach of statistical
thermodynamics and the Monte Carlo simulations of Annable

Figure 2. Schematic of two hydrophobic ends “m” and “n” in a lattice
of micelles undergoing shear. The “m” end is likely to experience more
interactions with neighboring micelles compared to the “n” end due to
the differential velocity.

Mh (QA,t) ) gj(c,Mw)[1 -
(QA - rc)

2

3N

(1 -
QA

2

3N ) ]3N/2

(19)

L(Q,t) ≈ 1
τE

1 - peq

lc
xlc

2 + τs(K + KT):〈QBQB〉 +

1
τE

peq

lc
xlc

2 + τs(K + KT):〈QAQA〉 (20)

Lh(Q,t) ) hh(c,Mw){(1 - peq)x1 + Gm(K + KT):B +

peqx1 + Gm(K + KT):A } (21)

νA

ν
) φeq )

Lh(Qeq
2)

Lh(Qeq
2) + Mh (Qeq

2)
(22)

Aeq ) δ and Beq ) δ (23)
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and co-workers.5 Note that the conformation tensors are
independent of the fraction of bridging chains due to the
normalization procedure.

3.2. Zero-Shear Viscosity and First Normal Stress Coef-
ficient. We now consider weak flows under steady-state
conditions. We explore this by linearizingA, B, andφ to a first-
order perturbation in the shear rateγ̆ and then solving the
governing eqs 12-16. We then substitute the leading order terms
in the equation for the stress tensor (eq 10) to obtain the
following expression for the dimensionless zero-shear-rate
viscosity:

The first term is the stress contribution arising from the bridging
chains, and the second term comes from the dangling chains.
This clearly shows that if the Rouse relaxation time of the
temporary dangling chain is very short compared to the time
scale associated with ejection of hydrophobic ends, then the
dangling chains will have negligible contribution to the shear
stress. This limit was considered by Tanaka and Edwards.28-31

We shall discuss the dependence of the zero-shear-rate viscosity
on the polymer concentration and molecular weight later in this
section.

By collecting the terms at second order in the perturbation
expansion, we can evaluate the first normal stress coefficient
as

whereφeq is given by eq 22. Note that the second normal stress
coefficientΨ20 ) 0 as expected from this preaveraged closed
system of equations.

3.3. Small-Amplitude Oscillatory Shear Response.Next,
we probe the linear viscoelastic response to a small amplitude
oscillatory shear deformation which may be represented in
complex form γ ) γ0eiωt. Here, γ0 is the (real, positive)
amplitude of the oscillatory shear strain andω is the dimensional
circular frequency. For small deformations, the conformation
tensorsA and B and the dimensionless shear stressT12 are
assumed to oscillate with the same frequency, but not necessarily
in phase with the shear strain:A ) Aeq + A′eiωt, B ) Beq +
B′eiωt, andT12 ) T′12eiωt whereA′, B′, andT′12 are the leading
order responses and can be complex. Substituting these pertur-
bations into eqs 12-16, we obtain the following expression for
the dimensionless complex viscosityη* () η′ - iη′′)

By gathering real and imaginary parts, eq 26 results in the
following closed-form expressions for the dynamic moduliG′
andG′′:

whereP ) -(ωτE)2τR/τE + 2Mh (Qeq
2), Q ) 2ωτE + ω[Lh(Qeq

2)
+ Mh (Qeq

2)]τR, R ) 2φeqωτE + {Lh(Qeq
2) + Mh (Qeq

2)}τRω, and
S) τR(ωτE)2/τE. The nonuniform dependence of the probability
rate of dissociation and association on the chain end-to-end
distance crucially affects the dynamic moduli, leading to
deviation from the conventional form for parallel superposition
of linear Maxwell elements. Nevertheless, eq 27 shows that more
than one time scale can be important in the linear viscoelastic
deformation of telechelic polymers.

3.4. Analytical Solutions in the Limit τR/τE f 0. We now
explore some consequences of the set of equations derived above
by assuming fast relaxation of the dangling chains. If the
relaxation is faster than the hydrophobe dissociation rateτR ,
τE, then the average orientation of dangling chains at any time
will always be near the equilibrium value. This results in
uncoupling of the nonlinear equations for the bridging and
dangling chains. Hence, the material functions can be written
in simpler form as

Hence, in small-amplitude oscillatory shear, our model reduces
to a linear Maxwell model with an effective relaxation time

Table 2. Transient Network Constitutive Model for Telechelic
Polymersa

a f (tr A) ) 1/(1 - tr A/3N), f (tr B) ) 1/(1 - tr B/3N), andgj(c,Mw) and
hh(c,Mw) are numerical constants that scale with molecular weight;Gm is a
dimensionless constant.

η0

νkBTτE
)

φeq

Mh (Qeq
2)

+ 1
2

τR

τE

1
1 - φeq

(24)

Ψ10
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2
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2φeq

Mh 2(Qeq
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+ 2(τR

τE
) φeq

1 - φeq

1

Mh (Qeq
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+

1
2(τR

τE
)2 1

(1 - φeq)
2

(25)

η*
νkBTτE

)

2φeq + (τR

τE
){Lh(Qeq

2) + Mh (Qeq
2) + iωτE}

2{iωτE + Mh (Qeq
2)} + (τR

τE
){iωτE[Lh(Qeq

2) + Mh (Qeq
2)] - (ωτE)2}

(26)
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) RQ- SP

P2 + Q2
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G′′(ω)
νkBT

) RP+ QS

P2 + Q2
(27)

η0

νkBTτE
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φeq

Mh (Qeq
2)
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Ψ10

νkBTτE
2

)
2φeq

Mh 2(Qeq
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(29)

G′(ω)
νkBT

) φeq

(ωτE)2

Mh 2(Qeq
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that depends on the dimensionless destruction rate, which itself
depends on polymer concentration and molecular weight. We
can easily verify that the zero-frequency viscosity
limωf0(G′′/ω) ) η0 is the same as the zero-shear rate viscosity,
as expected. Furthermore, the storage modulus, in the limit
limωf0{G′/ω2} ) Ψ10/2 gives the result expected from simple
fluid theory. We also obtain the Plateau modulusGN

0 in the
limit of high-frequency modulus as limτeffω.1G′(ω) ) φeq, which
also scales with polymer concentration and molecular weight.

In the limit τR/τE f 0, we can also solve explicitly for the
steady shear viscosity and the steady extensional viscosity as a
function of shear rate. The solution is obtained analytically as
a function of the trace of the conformation tensor for bridging
chainsQA

2 ) tr A. The expressions for the steady shear viscosity
and steady extensional viscosity are given by

and

wheref (tr A) ) 1/(1 - tr A/3N), φ ) Lh(tr A)/(Lh(tr A) + Mh (tr
A)), the Weissenberg number in steady shear is computed as
Wi ) γ̆τE ) Mh (tr A)x(trA-3)/2 and the Deborah number is
evaluated asDe ) ε̆τE ) Mh (tr A)(x(trA-3)(9trA-3) - (tr A
- 3))/(4 tr A).

3.5. Concentration and Molecular Weight Scaling of
gj(c,Mw) and hh(c,Mw). We construct the molecular weight and
concentration scaling for the observed rheological material
properties following the arguments of Annable et al.5 and
Marrucci et al.36 The experimental results of Annable and co-
workers show that the concentration-dependent relaxation time
scales as a function ofcxMw, and the theoretical predictions
of Marrucci and co-workers suggest that the effective relaxation
time scaleτeff ∼ (cxMw)2/3. Since the effective relaxation time
is inversely proportional to the probability rate of dissociation,
we obtain from eqs 19 and 31 that

where〈a〉, given by eq 3, is the average spatial distance between
the micelles andø is a numerical constant of order unity. The
theoretical predictions of Marrucci et al.36 also show the
augmented dependence of zero shear viscosity on concentration
(η0 ∼ c5/3). Following his scaling arguments and using eqs 28
and 34, we approximated the form ofhh(c,Mw) as

whereê is a numerical constant of order unity andF(Mw) is a
function of molecular weight of the polymer which describes
the degree of compression of micellar systems as discussed by
Semenov et al.10 We approximate a simple form for this function
to be

where Mw
/ is the critical molecular weight of the polymer

when the micellar system turns into a completely compressed
gel. At this point no further creation of bridging chains is
possible.

3.6. Nonlinear Steady Shear Rheology (Model) Predic-
tions. We now examine the predictions of our model (eqs 12-
16) for steady-state shear flows. Although it is possible to obtain
simplified analytical solutions for the material functions for the
limit τR/τE f 0, this is not true in the more general case because
of the terms in eqs 12-16 that are nonlinear in the conformation
tensor. We solve these equations numerically as a set of coupled
(scalar) ordinary differential equations. That is, we specify the
components of the deformation tensorK + KΤ and solve eqs
12-16 with a Runge-Kutta routine. Steady-state material
functions are obtained as the long time asymptotes of the
corresponding material functions following the instantaneous
inception of the flow. We neglect the solvent contribution of
stress (such a contribution is not significant in a semidilute
aqueous solution).

The description of the evolution of material properties
depends on various molecular features such as molecular weight
Mw, aggregation numberNagg, number of hydrophobic carbon
moietiesnc, the concentration of telechelic chainsc, and the
solvent quality. In addition, material properties are functions
of the rate of deformation and the temperature of the system.
Although the quantitative dependence of the material properties
on each of these molecular features can be studied, we
specifically focus our attention on the variation with concentra-
tion and the number of hydrophobic carbon links. Hence, we
examine the predictions of our model for a particular set of
molecular propertiesNagg ) 20, Mw ) 65 300 g/mol,
T ) 25 °C, c ranging from 10 to 40 kg/m3 (1-4 wt %), andnc

ranging from 14 to 16. In addition, we also fix the numerical
values of various model constants asâ ) 0.07,ø ) 0.3, ê )
1.2, andMw

/ ) 109 × 103 g/mol.
An interesting feature of the model is the importance of the

deformation-induced creation rate as compared to thermal
diffusion rate, given by the parameterGm. Figure 3a shows the
steady-state fraction of bridging chainsφ as a function of the
dimensionless shear rateγ̆τE for several values of the dimen-
sionless numberGm. Here, the polymer concentration and the
number of hydrophobic units arec ) 2 wt % andnc ) 16,
respectively. At low shear rates, thermally induced fluctuations
predominantly initiate both the destruction and creation of the
bridging chains. Since rates for these two processes are initially
equal (1/τE), the fraction of bridging chains stays constant. With
increasing shear rate, both the rate of creation and the rate of
stretch-induced destruction of bridging chains increase nonlin-
early. The balance between these rates characterizes the shear
thickening and shear thinning behavior of the telechelic
polymers. When the exit rate of hydrophobic end groups exceeds
the collision rate of the dangling end groups with the surround-
ing micelles, the fraction of bridging chains decreases with
increasing shear rate. Hence, forGm < 1, the increase in shear
rate leads to an increase in the stretching force in the bridging
chains, which decouples them from the micellar junction.
However, for some telechelic polymeric systems, the rate of
deformation-induced association of the dangling end groups
increases for a range of shear rates. Hence, forGm > 1, the
number of elastically active bridges first increases and subse-
quently decreases with the applied shear rate.

τeff ) τE/Mh (Qeq
2) (31)

η(Wi)
νkBTτE

) φ

Mh (tr A)
f (tr A) (32)

ηE(De)

νkBTτE
)

3φMh (tr A)

(Mh (tr A) - 2De)(Mh (tr A) + De)
f (tr A) (33)
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3N

1 -
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2
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(34)

hh(c,Mw) )
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Figure 3b shows the steady-state fraction of bridges as a
function of applied shear rate for concentrations ranging from
1 to 4 wt %. In general, the number of bridging chains stays
constant at low values of shear rate, increases at moderate shear
rates, and eventually decreases at large values of the shear rate.
At low concentrations, only a few bridging and dangling chains
is present in the network system. Hence, the molecular associa-
tions hardly increase the number of bridging chains in a shearing
telechelic polymer system. As the concentration increases, the
probability of association of a dangling chain increases, and
the maximum value attained by number of bridging chains also
increases.

In Figure 4 we present the dimensionless steady shear
viscosity as a function of the dimensionless shear rate for
different values of polymer concentrationc. The steady shear
viscosity profile captures typical characteristics of telechelic
polymers such as a shear-rate-independent viscosity at low shear
rates, shear thickening at intermediate shear rates, and severe
shear thinning at elevated shear rates. Although the zero-shear
viscosity is parameter independent, the amount of shear thicken-
ing can be adjusted by tuning the parameterGm. As the
concentration increases, the onset of shear thickening and shear
thinning shift to lower shear rates. This is consistent with the
recent experimental findings of Ma and Cooper.21 The model

predicts corresponding features of the steady shear stress profile
such as a constant rate of increase of shear stress at low values
of shear rates and a slow rise at high shear rates. For the range
of concentrations and molecular weights in the present study,
most of the shear thinning that is observed is a result of
progressive network deformation rather than network collapse.
Analysis of the first normal stress difference profiles further
supports these conclusions. The normal stress difference is found
to slowly increase in the shear thinning region, and its value is
larger than the corresponding shear stress (τ11 - τ22) g τ12.
Hence, the network becomes increasingly elastic at high values
of the Weissenberg number. These observations are consistent
with recent experimental findings of Sadeghy and James.26

3.7. Nonlinear Extensional Rheology (Model) Predictions.
We now examine the predictions of our model (eqs 12-16)
for uniaxial extensional flows. We solve these equations
numerically as a set of coupled (scalar) ordinary differential
equations. Figure 5a shows the transient extensional viscosity
of a 4% HEUR solution for various Deborah numbers. After a
rapid increase at short times, the extensional viscosity rapidly
attains a steady-state value for all values of Deborah number.
As the Deborah number increases, the critical time to reach
steady state decreases. For comparison, the linear viscoelastic
(LVE) extensional viscosityηE

+ ) 3η0(1 - exp(-t/τE)) is also
plotted in Figure 5a. The model clearly predicts a strain
hardening behavior for associative polymers. Figure 5b shows
the steady extensional viscosity as a function of Deborah number
for three different sets ofN andnc values that parametrize the
PEO chain length and hydrophobe length. The steady exten-
sional profile captures important characteristics of telechelic
polymers such as strain-rate-independent viscosity at low
extensional rates, strain hardening at intermediate strain rates,
and an extensional viscosity decrease at elevatedDe. The
increase in viscosity is due to a strain-induced increase in
bridging interactions. The experimental work of Sadeghy and
James26 also show strain hardening behavior for 0.2< De <
0.8. For consistency with our initial theoretical model consid-
erations, we have defined the Deborah number asDe ) τEε̆;
however, we recognize that a more realistic definition of
Deborah number should beDe ) τeffε̆. This can be easily
evaluated using eq 31. As expected, on increasing the hydro-
phobic strength (stronger micelles) the extensional viscosity
rapidly rises. Similarly, a decrease in the length of the bridging

Figure 3. (a) Steady-state fraction of bridging chainsφ as a function
of dimensionless shear ratesγ̆τE for several values of the dimensionless
numberGm, at a concentrationc ) 2%. (b) Steady-state fraction of
bridges as a function of applied shear rate for polymer concentrations
ranging 1-4 wt %.

Figure 4. Steady-state shear viscosity as a function of dimensionless
shear ratesγ̆τE for concentrations ranging 1-4%.
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chains leads to an increase in the elongational viscosity due to
nonlinear elastic stretching of the chains. Figure 5b also shows
the analytical solutions (for the limitτR/τE f 0) to be in
excellent agreement for smallDe. Furthermore, at large Deborah
numbers, the model predicts an inverse dependence onDe,
showing that the extensional stress difference saturates. Dashed
lines with-1 asymptotic slope are also indicated in the figure.

To summarize, the proposed nonlinear network model is able
to predict the majority of commonly observed characteristics
of telechelic polymers. In the next section, we proceed to
describe our experimental work and then compare the experi-
mental data with model predictions.

4. Experiments

The model polymers used in this study were C16H33 and
C20H41 (i.e., nc ) 16, 20) end-capped urethane-coupled poly-
(oxyethylene) of three different molecular weights. The model
HEUR polymers were synthesized and characterized by Dr. R.
D. Jenkins. The chemical structure is shown in Figure 6, and
the composition details are also summarized. In the first column
some simple codes used to represent “specific molecular
compositions” are assigned. We also present the estimated
molecular properties for these model polymers. We ignore any
variation in the aggregation number either with the polymer
concentration15 or under an applied deformation field.55 The
procedure describing the synthesis of the HEUR polymers is

described in detail by Jenkins et al.56 The number-averaged
molecular weight,Mn, and the polydispersity index of the
polymer,Mw/Mn, were measured in THF using a standard GPC
technique (Shimadzu GPC system). The polymer was stored in
the refrigerator at 4°C to minimize air oxidation and degrada-
tion. The samples were made by mixing a known amount of
Millipore Milli-Q distilled water and were kept for 2 days prior
to testing to allow the solutions to equilibrate. The relevant
concentration-molecular weight regimes are discussed in detail
in section 4.1.

The shear flow experiments were performed using a controlled-
stress rheometer (AR-1000N, TA Instruments). Different ge-
ometries (including cone-and-plate, Couette fixtures) were used
to probe the rheological response of the test fluids. Both steady
shear and small-amplitude oscillatory tests were performed. For
oscillatory testing, the applied strain was kept to amplitudes
less thanγ0 e 0.2 in order to ensure that the tests were within
the linear viscoelastic region. Experiments were carried out at
temperature of 25°C and controlled using a Peltier plate.

The extensional flow measurements were performed using a
filament stretching rheometer, and the procedure has been
described elsewhere.57-59 A nearly cylindrical sample of HEUR
polymer solution initially fills the gap between two rigid, circular
end plates with diameterD0 ) 3 mm and initial separationL0

) 1.5 mm. To estimate the effect of gravitational sagging of
the samples, the ratio of gravitational to surface tension forces,
characterized by the dimensionless Bond numberB0 ) FgD0

2/
4Γ, was evaluated. Here, the surface tensionΓ of the HEUR
polymer solutions was measured to beΓ ) 40 dyn/cm. The
Bond number for the fluid samples was kept small (B0 ) 0.55)
to minimize the errors due to gravitational sagging. The end
plates were then moved apart to a final separation with an
exponentially increasing separation profile,L(t) ) L0 exp(Ėt),
whereĖ is the strain rate. While the fluid filament was being
stretched the evolution in the tensile force and mid-filament
diameter were measured simultaneously. Although the imposed
filament length increase is exponential, the measured evolution
in the mid-filament diameter was observed to be far from ideal
(i.e., it was not described by the homogeneous deformation of
a cylindrical elementDmid(t) ) D0 exp(-0.5 ε̆t)) due to
additional shearing motion induced at either end plate. Hence,
filament stretching experiments are performed twice for each
sample, first using an imposed separation profile,L(t) ) L0 exp-
(Ėt), to construct a “master curve”58 and second using a
corrected separation profile,L(t) ) L0 exp(2 ln (D0/Dmid(t))t).
These so-called “type III” tests58 resulted in ideal uniaxial
extension of the HEUR samples with a constant deformation
rate at the midplane.

4.1. Concentration-Molecular Weight Regime.The inter-
entanglement and recombination of hydrophobic chains under
quiescent conditions depends on the molecular weight and
volume fraction of the polymer. In dilute solutions the number
of bridges is exponentially small; thus, the attraction energy
for the recombination of hydrophobic chains is weak. However,
the excluded volume repulsion is also small in this region, and
the interaction energy is dominated by attraction.8,9 For perfectly
end-capped systems there is a tendency for phase separation to
be observed in this dilute regime.7-9 As the concentration of
polymer increases, the attraction between the micelles increases;
however, the excluded volume repulsion between chains also
increases. The coronas of neighboring micelles become com-
pressed. When the concentration is further increased, the
attraction energy between two flowers is large for large
aggregation number so that the micelles have a tendency to

Figure 5. (a) Transient extensional viscosity for 4 wt % HEUR: model
predictions. (b) Steady extensional viscosity as a function of Deborah
number for 4 wt % HEUR: model predictions.
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entangle. Hence, the net interaction energy10 between the
hydrophobic units and the micelles is expected to vary from
dilute to semidilute and from semidilute to entangled polymer
solutions. Graessley60 represented the viscoelastic behavior of
polymer solutions in a succinct manner by constructing a
concentration-molecular weight diagram. Following this idea,
we compute the overlap concentrationc* for the PEO chains,
which separates the dilute region from the semidilute region
by c* ) 0.77/[η], where [η] is the intrinsic viscosity of the
solution. Similarly, the boundary between unentangled and
entangled regimes is described by (Me)soln ) (Me)melt/c with
(Me)melt ) 4500 g/mol for PEO.2 The intrinsic viscosity of the
poly(ethylene oxide) in a good solvent such as water can be
approximated using [η] ) 0.0125Mw

0.78mL/g.61 Figure 6 shows
the concentration-molecular weight diagram distinguishing
various regimes for PEO-based HEUR solutions. Also, shown
are the concentration and molecular weights of model associative
polymers used in various other recent studies. Most of the
published literature results lie near the dilute/semidilute regime.
The viscoelastic properties of semidilute solutions are very
sensitive to solvent quality and the precise concentration of
dissolved polymer. This is one possible reason for the large

variation in properties of HEUR polymers reported in some
previous studies.

4.2. Comparison with Shear Rheology Experiments.It is
known that the viscosity of hydrophobically end-capped poly-
(ethylene oxide) solution is much higher than that of an
unmodified PEO solution at the same concentration and also
depends more strongly on the polymer concentration. This
viscosity enhancement is convincing evidence of the association
of the hydrophobic end groups in aqueous solution. To evaluate
the zero-shear-rate viscosity of the fluid in steady shear flow,
we use eq 24, where the equilibrium fraction of bridging chains
is given by eq 22. The equilibrium values of the formation rate
Leq and destruction rateMeq reduce from eqs 21 and 19,
respectively, to

Finally, the constantsø andê are set to the values specified in

Figure 6. Chemical structure of model HEUR polymers and a plot of concentration vs molecular weight showing various regimes of associative
polymer solutions together with the range of solutions studied by other workers.

Leq ) ê(Mw
/

Mw
- 1)/(3NaggMw

8πcNA
)1/2

(37)

Meq ) ø(3NaggMw

8πcNA
)2/3

(38)
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section 3.6. Figure 7 shows the effect of HEUR concentration
on the steady zero-shear rate viscosity for a series of model
polymers at 25°C. Both the experimentally measured data and
the model predictions show dramatic increases in the viscosity
with increase in concentration. The predicted scalingη0 ∼ c2.75

of the model provides a good description of the experiments. It
is important to note that the zero-shear viscosity is independent
of the nonlinear parameterGm in the model.

The viscoelastic response of a 2 wt %HEUR22-2 sample to
a small-amplitude oscillatory shear deformation is shown in
Figure 8a. The experimental data are fitted using the model
functions given by eq 30. Note that once again the linear
viscoelastic response is independent of the model parameterGm.
As can be seen, the model describes the frequency dependence
of both the elastic storage modulus and viscous loss modulus
data very well. The viscous and elastic moduli cross at a critical
frequencyω* which is commonly taken to be the effective
relaxation time of the active network. Equating the expression
of G′ andG′′ from eq 30 leads to

where we have used eq 38 in the final equality. This effective
time constant scales asτeff ∼ c2/3. It should be noticed that the
Rouse relaxation timeτR ) 5 × 10-5 s for HEUR22-2 is many
orders of magnitude smaller than the network timeτeff ) 0.076
s. Under these circumstances the dangling chains are essentially
always in their equilibrium conformation. Thus, only bridging
chains (withφeq ) 0.2) contribute significantly to the total
polymeric stress in the system, and the relaxation process of
the temporary dangling chains has a negligible contribution to
the viscoelastic response.

Figure 8b shows the shear rate dependence of the steady-
shear viscosity of the same 2 wt % HEUR22-2 sample. After
showing Newtonian behavior at low shear rates, the data exhibit
a moderate shear thickening region and a maximum in viscosity
at γ̆ ∼10 s-1 followed by pronounced shear thinning at high
shear rates. The model predictions agree remarkably well with
the experimental data and capture all of the characteristics of
the shear rate dependence. Here, the amount of shear thickening
is tuned by adjusting the rate of creation of active junctions

through the value ofGm (the single nonlinear model parameter).
Hence, an increase in the number of active chains with shear
rate leads to the shear thickening of these HEUR solutions. At
higher rates the increased rate of creation is overcome by the
nonlinear stretching of the elastically active chains which leads
to a rapid increase in the junction pull-out rate. Also, shown in
the figure is the frequency-dependent dynamic or complex
viscosity |η*(ω)| obtained from small-amplitude oscillatory
shear experiments. The steady shear viscosity and dynamic
viscosity are equal at low frequencies, whereas at higher
frequencies the complex viscosity shows a much stronger
dependence on frequency than the steady shear data exhibits
with shear rate. This deviation from the Cox-Merz rule has
been observed experimentally3,4 and has been noted as one of
the primary rheological features of telechelic polymer rheology.
In small-amplitude deformations, the contribution of shear-
enhanced aggregation of micellar junctions given by eq 21 is
expected to be negligible.

As the concentration of HEUR chains is increased, we expect
the effective time constant to increase (τeff ∼ c2/3), the total zero-
shear rate viscosity of solution to increase (η0 ∼ c2.75), and the
plateau modulus to increase (GN

0 ∼ φeq). The number of active
bridging chains and the effective time constant increase to
φeq ) 0.35 andτeff ) 0.12 s, respectively, for 4 wt % HEUR22-2
solutions. The model captures each of these features as we show
in Figures 8(c) and (d) for the 4 wt % HEUR22-2 solution. In
addition to the expected trends noted above, we find that the
shear thickening observed at intermediate concentrations is
greatly reduced. This effect can be captured by varying the
parameterGm, as shown in Figure 3a. The anisotropic creation
rate thus appears to be concentration-dependent. We thus fit
the data by decreasing the value of the nonlinear model
parameterGm ) 1.8. The model predictions again show a good
agreement with the experiments. The disappearance of a shear
thickening regime is captured in the model by reducing the value
of the nonlinear parameterGm. Hence, at high concentrations
when the distance between neighboring micelles is small, there
exist a large number of active bridging chains and the flow-
induced anisotropy in the number of active bridging chains is
minimal.

Having verified the concentration dependence of the visco-
metric properties both experimentally and numerically, subse-
quent experiments were performed for HEUR solutions with
longer PEO chains (Mw ) 93 000 g/mol) and identical aliphatic
end groups (nc ) 16). Hence, the solutions are of lower relative
hydrophobicity and contain weaker micelles leading to lower
overall viscosity values. Figure 9a shows the linear viscoelastic
response of a 3.8 wt % HEUR22-4 sample along with the model
prediction. The observed frequency dependence of the loss and
elastic moduli is once again well described by the model. Only
14.5% of chains (φeq ) 0.145) carry stress, and the effective
time constant for the network isτeff ) 0.13 s. Figure 9b shows
the measured steady shear viscosity for various applied shear
rates. The data are in fair agreement with the predictions of
model over entire range of shear rate. It is important to
emphasize that the evaluation of the zero-shear-rate viscosity
requires no free parameter. The scaling is predicted by eq 29
and given fixed values ofMw andc. The magnitude of the shear
thickening is once again adjusted using the single model
parameterGm. Good agreement is also obtained for the 6.8 wt
% HEUR22-6 sample withη0 ) 24.7 Pa‚s, τeff ) 0.19 s, and
Gm ) 3.1. However, space precludes us from presenting the
results here.

Figure 7. Effect of HEUR concentration on the measured steady zero-
shear rate viscosity for HEUR22-2 model polymers.
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Further experiments were also performed using 2 wt %
HEUR23 polymers (Mw ) 86 000 g/mol) with end-caps of
higher hydrophobicity (nc ) 20, i.e., longer end groups). For
such materials, the activation energy for disengagement in-
creases, and the solution is likely to exhibit strong network-
forming properties. Although it can be naively argued that more
hydrophobic end groups likely participate in the formation of
micelles, in fact, the ratio of hydrophilic to hydrophobic chain
segments has increased toN/nc ) 48.57 fromN/nc ) 46.5 for
2 wt % HEUR22-2. Hence, we have kept the aggregation
numberNagg constant for evaluation of rheological responses.
Figure 10a shows the viscoelastic response of 2 wt % HEUR23
sample to small-amplitude oscillatory shearing deformation.
Because the depth of energy well (described in Figure 1) has
increased due to the longer hydrophobes, the relaxation time
of the network has increased dramatically toτeff ) 4.52 s. As
a consequence of this shift in the viscoelastic response of the
network a second relaxation process becomes visible at high
frequencies. Ng et al.20 denote this “the lifetime of the
hydrophobic interactions”. Analysis of eqs 27 and 30 shows
that this mode is associated with the viscoelastic response of
the dangling chains (with characteristic time scaleτR). In fact,
there is an upturn in bothG′ and G′′(shown in Figure 10);
however, because the plateau modulus of the first mode is 30

times greater thanG′′min, the additional contribution to the
storage modulus is negligibly small within the experimentally
accessible frequency window (ω e102 rad/s). It is important to
note that only 11% of chains participate as active bridging chains
(i.e., there are more looping chains) which leads to a low value
of the plateau modulus. The observed dependency of the loss
modulus and storage modulus on dynamic frequency is captured
remarkably well by the model. Figure 10b shows the steady
shear viscosity for 2 wt % HEUR23 sample. After showing
Newtonian behavior at low shear rates, the data exhibit a shear
thickening region at intermediate shear ratesγ̆ ∼ 0.2 s-1, which
is much lower than observed in HEUR22-2 samples. However,
the corresponding Weissenberg number isWi ∼ 1 and is thus
comparable to the value for shear thickening in Figure 8b. The
model predictions agree well with this experimental data. At
high shear rates, the experimental data show much more rapid
shear thinning than that predicted by the model. Since the sample
shear thins at a rate faster thanγ̆-1 (see dashed line Figure 10b),
this is unlikely to be of rheological origin; possible causes for
the rapid shear thinning may be either (a) a shear-induced phase
separation or (b) slip between the sample and conical fixture of
the rheometer. Shear-induced phase separation has been ob-
served in short chains with long hydrophobic end groups (nc )
18) at stresses as small as 10-15 Pa.62 Our measurements are

Figure 8. (a) Comparison of the linear viscoelastic response of 2 wt % HEUR22-2 with the model predictions.τR ) 5 × 10-5 s andτE ) 0.089
s. (b) Steady shear viscosity vs shear rate for 2 wt % HEUR22-2: experiments and model.Gm ) 7.3. The magnitude of complex viscosity vs
frequency is also plotted. (c) Comparison of the linear viscoelastic response of 4 wt % HEUR22-2 with the model predictions.τR ) 0.0002 s and
τE ) 0.089 s. (d) Steady shear viscosity vs shear rate for 4 wt % HEUR22-2: experiments and model.Gm ) 1.8.
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more consistent with the previous observations of Sadgey and
James26 in which they demonstrated the occurrence of slip when
the shear stress exceeded roughly 500 Pa. The critical shear
stress for slip in our experiments can be estimated to be 200 Pa
and is lower, as expected for a sample with stronger hydrophobic
micelles.

4.3. Comparison with Extensional Rheology Experiments.
Having demonstrated that the new model provides good
agreement with the measured shear rheology of HEUR solutions
over a range of concentrations, molecular weights, and end-
cap lengths, we now focus on the transient extensional rheology
of these systems.

We use filament stretching rheometry63 to measure the tensile
stress of extensional stresses in the same telechelic polymer
solutions modeled above. We also explore the predictive power
of the new two-species network constitutive model by compar-
ing our measurements with numerical simulations of the start-
up of uniaxial extension without adjusting any of the constitutive
parameters obtained from regression to steady shear flow.

A series of video frames for a 4 wt %sample of HEUR22-2
stretched at an externally imposed strain rate ofĖ ) 3.06 s-1

are shown in Figure 11. The images show the initial cylindrical
liquid bridge configuration and its rapid extensional deformation
into a necked configuration (as a result of the no-slip boundary

condition at either endplate). The primary effect of non-
Newtonian tensile stresses in the fluid is to establish an axially
uniform cylindrical region over the central part of the filament.
The diameter of the fluid thread subsequently decreases
smoothly and monotonically with time over a large portion of
the filament length, with two quasi-static fluid reservoirs
connecting the fluid thread to the endplates. Because the filament
does not evolve as an ideal cylinder, the kinematics at the
midplane are not those expected from homogeneous uniaxial
elongation, and the velocity profile must be corrected.63-65 The
time evolution in the diameter is measured very close to the
midplane using a laser micrometer, and this measurement is

Figure 9. (a) Comparison of the linear viscoelastic response of 3.8
wt % HEUR22-4 with the model predictions.τR ) 2.5 × 10-5 s and
τE ) 0.089 s. (b) Steady shear viscosity vs shear rate for 3.8 wt %
HEUR22-4: experiments and model.Gm ) 3.8.

Figure 10. (a) Comparison of the linear viscoelastic response of 2.0
wt % HEUR23 with the model predictions.τR ) 2.5 × 10-5 s and
τE ) 4.85 s. (b) Steady shear viscosity vs shear rate for 2.0 wt %
HEUR23: experiments and model.Gm ) 7.8.

Figure 11. Images showing filament stretching of 4 wt % HEUR22-2
sample. The applied strain rateĖ ) 3.06 s-1. The diameter of the
endplate is 3 mm, and the initial sample length is 1.5 mm.
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used to construct the corrected end plate displacement profile.58

The subsequent experiment at the same strain rate can then be
performed under conditions that generate ideal uniaxial elonga-
tion at the midplane (a so-called “type III” test65) in which the
midplane diameter decreases in a smooth exponential manner
that is well-described byDmid(t) ) D0 exp(-0.5 ε̆0t).

Figure 12a shows the tensile force measurements of experi-
ments performed using 4 wt % solutions of HEUR22-2 and
measured by the force transducer attached to the stationary lower
plate (following correction for gravitational and surface tension
terms66). In addition, the numerical predictions of the two-
species model in start-up of steady uniaxial elongational flow
are shown for each sample. For each of these stretching
experiments, the tensile force first grows rapidly at the onset
of stretching, passes through a maximum that is dependent on
strain rate, and then gradually decays as the filament diameter
decays exponentially. These measurements can be combined
with the measured diameter to evaluate the time evolution in
the transient tensile stress difference∆τ(t) ) 4Fz(t)/πDmid

2(t),
as shown in Figure 12b. In each case the time constants and
the single nonlinear model parameter are identical to those
values given in Figure 8c,d and are not adjusted to fit the
measured data. The model appears to provide a good description
of the extensional stress growth in startup of uniaxial extension
of the HEUR22-2 fluid over a range of deformation rates,
although it overpredicts the steady-state tensile stress at long
times for the lowest deformation rate experiment. This might
be in part due to some gravitational sagging in the column,
which progressively invalidates the top-bottom symmetry
assumed in the instrument operation and analysis. Similarly,
the transient extensional viscosity for the 4 wt % HEUR22-2
sample is found to be in good agreement with the model (except
at smallDe and long times for the reason noted above). The
extensional viscosity shows a transient response on time scales
of order τE followed by an approach to steady state with
moderate extension rate thickening leading to Trouton ratios
(scaled with a zero-shear rate viscosity ofη0 ) 63.6 Pa‚s) of
3 e Tr e 10.

Decreasing the concentration of HEUR polymer in solution
results in a progressive decrease in the effective relaxation time
and in the modulus of the micellar network; however, the two
species network model still provides a good description of the
evolution in the extensional stress difference as we show in
Figure 12c for the 2 wt % HEUR22-2 solution.

As the concentration of HEUR polymer, and the associated
network strength, is decreased, the Hencky strains that can be
attained in homogeneous uniaxial extension are reduced due to
the onset of a flow instability that is depicted in the sequence
of high-speed digital video images shown in Figure 13a. A
defect appears in the filament (typically close to the axial
midplane), and a tear rapidly propagates radially across the fluid
thread. Because the fluid is in tension, the scission into two
topologically distinct domains is enhanced by elastic recoil
toward the two end plates. The two blobs undergo a series of
inertio-elastic damped oscillations that decay over time scales
longer than this image sequence. The tear surface present for
short times following the rupture event is shown quite clearly
in the last three frames of Figure 13a. Similar rupture instabilities
are observed in polymer melts when the tensile stresses in the
entangled network result in catastrophic loss of entanglements.67

In the present system, the imposed elongational flow results in
disruption of the network of interconnected flower micelles and
a progressive collapse in the tensile stress. Viscoelastic necking
and rupture instabilities are commonly described phenomeno-

logically by the Conside`re criterion, which states that homo-
geneous uniaxial elongation in an elastic material cannot be
maintained beyond the strain at which the tensile force passes
through a maximum.68 We denote this critical strain as the
“failure strain” εf. However, this stability criterion does not
provide any information on the subsequent time required for

Figure 12. (a) Transient tensile force as a function of time for 4 wt %
HEUR22-2: experiments and model predictions. (b) Transient exten-
sional stress as a function of Hencky strain for 4 wt % HEUR22-2:
experiments and model predictions. (c) Transient extensional stress as
a function of Hencky strain for 2 wt % HEUR22-2: experiments and
model predictions.
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the instability to propagate completely across the elongating
sample and lead to filament rupture. In an elastic solid this
rupture may be very rapid, whereas in viscoelastic fluids the
defect propagation will depend on the specific details of the
fluid rheology and constitutive model.69,70

In Figure 13b we show the results of filament stretching
experiments at three different strain rates and plot the strains at
which the force passes through a maximum (together with the
model predictions) and also the value of the strain (determined
from high-speed video images at 500 frames/s) at which the
sample completely bifurcates into two domains. Although the
constitutive model accurately describes the strain at which the
force passes through a maximum, it is clear that the time
required for instability growth and complete sample failure can
be quite long at low strain rates. As the imposed strain rate
increases and the effective Deborah number grows, the two
curves approach each other, in agreement with general theoreti-
cal expectations of approach toward a rapid stretching limit in
which viscous effects become negligible.68,69

Finally, in Figure 14 we show the measured steady-state
elongational viscosity together with the predictions of the new
network model as a function of the imposed strain rate. The
HEUR solutions show tension thickening at intermediateDe,
and this is predicted to be followed by rate thinning at high
Deborah numbers; however, our present filament stretching
device is unable to achieve deformation rates beyond 10 s-1.
For consistency with our initial theoretical model considerations,
we scale the elongation rate with the natural intrinsic time scale
of the modelτE. For this reason, appreciable elastic effects
appear to develop at Deborah numbers less than 0.5; however,
the effective network time scaleτeff may be significantly longer
(see eq 5 or 31).36 For comparison, we also show by the dashed
lines the sensitivity of the model predictions to changes in the
single nonlinear model parameter,Gm. Although changing this

parameter by an order of magnitude affects the quantitative
model predictions, it does not change the qualitative trends
observed in the figure for finite values ofGm. When the model
parameter is set toGm ) 0, the model predicts much more rapid
rate-thinning at high Deborah numbers. This suggests that, in
the absence of any strain-induced incorporation of hydrophobes,
the number of active chains decreases very promptly under
uniaxial extension.

The dynamics of necking instabilities in viscoelastic fluid
threads have been reviewed recently by Renardy,71 and it is
noted that fluid threads described by constitutive models in
which the extensional viscosity passes through a maximum may
undergo a purely elastic mode of necking failure in which
surface tension plays no role. Our observations of network
rupture shown in Figure 13 appear to be consistent with this
expectation.

5. Conclusions

In this paper we have reported an experimental and theoretical
investigation of the nonlinear rheological properties of telechelic
associative polymers. Shear and extensional flow experiments
were performed using a series of model hydrophobically
modified ethoxylate-urethane (HEUR) polymers with varying
degrees of hydrophobicity. Initial attempts were made to
describe these experimental observations using the Vaccaro-
Marrucci model,40 but only qualitative agreement could be
attained. Similar conclusions were reached by Pellens et al.3,4

On the basis of insights from Brownian dynamics simulations
by van den Brule and co-workers,38,39 a new closed-form
constitutive modelswhich incorporates important molecular
features of the associative polymer solutionsshas been devel-
oped to describe the observed nonlinear flow properties. The
model incorporates contributions to the total stress tensor from
both the “elastically active” bridging chains between micelles
and the dangling chains that continuously exit and reenter the
micellar junctions. Nonlinear chain extension, the shear-induced
enhancement of associations, and the stretch-induced dissocia-
tion of hydrophobic chains are essential features of the model.
The resulting constitutive equation is summarized in Table 2,
and closed form expressions for the linear viscoelastic properties,
the zero-shear rate viscosity, and first normal stress difference
are derived in section 3. Without the use of adjustable functions
the model accurately predicts the experimentally observed

Figure 13. (a, top) Images showing rupture of 2.4 wt % HEUR22-2.
The applied strain rate isĖ ) 3 s-1. (b, bottom) Strain to failure and
strain to rupture during the extension of 4 wt % HEUR22-2 filament.

Figure 14. Steady extensional viscosity as a function of Deborah
number for 4 wt % HEUR22-2: experiments and model predictions
for different Gm.
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power-law dependence of zero-shear-rate viscosity on polymer
concentration;η0 ∼ c2.75. Telechelic polymer systems commonly
exhibit dual relaxation behavior arising from the Rouse relax-
ation timeτR of the individual polymer chains (∼5 × 10-5 s)
and from the “effective” network relaxation timeτeff (∼10-1

s). The model predicts that this “effective” network relaxation
time depends on the concentration and molecular weight of the
chains, the length of the hydrophobic end groups, and the
aggregation number of the micelles and is of the form
τeff ) (øΩ)-1(3NaggMw/8πcNA)-2/3e0.98nc. This agrees with the
nonlinear dependence on concentrationτeff ∼ c2/3 observed
experimentally.

The model and the experimental measurements both show a
marked deviation from the Cox-Merz rule. The measured
steady shear viscosityη(γ̆) for a number of the HEUR samples
show considerable shear thickening, prior to the onset of shear
thinning at higher shear rates. These features are captured by
the new model using a single dimensionless constitutive
parameterGm, which describes the orientational and deforma-
tion-rate-dependent creation rate of the active chains. The
relative magnitude of this parameter with respect to the nonlinear
stretching of the elastically active chains also allows us to
describe quantitatively the observed shift in the onset of shear
thickening and subsequent shear thinning toward lower shear
rates upon an increase in polymer concentration or molecular
weight. Computed profiles of the first normal stress difference
are monotonic and do not show a local maximum, indicating
that, in this model at least, the shear thinning at large
deformation rates is a result of progressive network deformation
rather than network collapse.

We also report the first quantitative comparisons of model
predictions for the transient extensional rheological properties
with experimental measurements obtained using a uniaxial
filament stretching device. Using the same values of the
constitutive parameterGm determined from steady flow, the
model predicts extensional stress growth profiles that are in close
agreement with data. The results show a moderate strain
hardening in the transient extensional viscosity of HEUR
polymer solutions at intermediate strains, and the transient
extensional stress difference approaches a steady state for
Hencky strains greater than two. The elongating samples
ultimately undergo a viscoelastic rupture event. The filament
necking and rupture processes observed experimentally appear
to be connected to an instability resulting from saturation in
the tensile stresses and a local maximum in the steady-state
extensional viscosity at a critical deformation rate.

The new two-species model is shown to quantitatively capture
almost all of the nonlinear features that have been observed in
telechelic associative polymers. However, additional refinement
of the model is needed to investigate several unexplored
properties such as temperature dependence of the rheological
functions, the effect of looped chains (whose contributions were
assumed to be negligible), and the consequence of closure
approximations. The dependence of the network relaxation time
on temperature contains an Arrhenian contribution from the
jump rateτE

-1 but also additional contributions because of the
unknown nonlinear dependence of the aggregation numberNagg

in associative polymer systems on temperature.8,9,15At very high
concentrations of HEUR polymers, the additional presence of
looped chains is likely to generate repulsive potentials10 which
will change the creation and destruction rates of the elastically
active chains. The quality of the closure approximations
employed in deriving closed forms for the network creation and
destruction terms, as well as the orientational dependence of

the creation rate, can be best explored using Brownian dynamics
or other microscale simulation methods.

The recent success of closed-form two-species network
models such as the present one in describing the linear and
nonlinear rheological properties of telechelic polymers suggests
that such models may also be useful (through the incorporation
of appropriate network creation and destruction terms) in
modeling other complex fluids featuring temporary physical
networks. Such systems include hydrophobically modified
alkali-soluble ethoxylates (HASE) and wormlike surfactant
micellar systems.
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