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We investigate the dense-flow rheology of cohesive granular materials through discrete element
simulations of homogeneous, simple shear flows of frictional, cohesive, spherical particles. Dense
shear flows of non-cohesive granular materials exhibit three regimes: quasistatic, inertial, and inter-
mediate, which persist for cohesive materials as well. It is found that cohesion results in bifurcation
of the inertial regime into two regimes: (a) a new rate-independent regime and (b) an inertial
regime. Transition from rate-independent cohesive regime to inertial regime occurs when the kinetic
energy supplied by shearing is sufficient to overcome the cohesive energy. Simulations reveal that
inhomogeneous shear band forms in the vicinity of this transition, which is more pronounced at
lower particle volume fractions. We propose a rheological model for cohesive systems that captures
the simulation results across all four regimes.

PACS numbers: 45.70.-n, 47.57.Gc, 64.60.F-

I. INTRODUCTION

Flows of dense granular materials occur in both natu-
ral and industrial processes and exhibit a variety of dis-
tinct rheological behaviors. For non-cohesive particles,
three flow regimes have been identified – namely, the qua-
sistatic, inertial, and intermediate regimes [1–4] – each
of which manifests different scalings of the mean stresses
with shear rate and volume fraction. Numerous consti-
tutive stress models have been constructed with these
scalings in mind [2, 3, 5–10]. However, many granular
flows involve cohesive interparticle forces for which the
above models do not account. These cohesive effects are
the primary focus of the present study.

Cohesion can result from a variety of sources – includ-
ing van der Waals forces [11, 12], electrostatic forces [13],
capillary forces [14], and solid bridges [15] – and has a
strong impact on granular rheology. For example, ag-
glomeration of particles has been observed in simula-
tions of cohesive granular materials in various flow ge-
ometries [16–21]. Annular shear flow experiments [22]
and plane shear simulations [18, 20, 23] have shown that
cohesion increases the shear stress ratio η, defined as
the ratio of shear stress τ to pressure p. Both simu-
lations and experiments have shown that the discharge
flow rate from a hopper decreases with increasing cohe-
sion [24]. Rotating-drum experiments reveal that cohe-
sion increases avalanche size and leads to robust pattern
formation on the surface [25–27]. Despite the number of
such phenomenological studies, there is relatively little
literature on constituting the rheological effects of cohe-
sion. One notable work is that of Rognon et al. [20],
which presents modifications to friction and dilatancy
laws for non-cohesive particles to account for the effects
of cohesion observed in 2-D simulations. The present
study goes beyond these earlier studies by exposing how
the regime map for non-cohesive materials [1–4] is altered
by the introduction of cohesion and formulating explicit
models for the mean stresses.

In this paper, we investigate the rheology of cohe-
sive granular materials through discrete element method
(DEM) simulations of homogeneous, simple shear flows
of frictional and cohesive particles. Most of the simu-
lations presented here are based on a linear (Hookean)
spring-dashpot model [28] for particle-particle interaction
and a commonly used model for van der Waals force be-
tween particles [29]. The quasistatic regime where the
stress is proportional to spring stiffness (and indepen-
dent of shear rate), the inertial regime where stress is
proportional to square of shear rate (and independent
of spring stiffness), and the intermediate regime where
stress depends on both shear rate and spring stiffness –
reported previously for non-cohesive particles [2] – persist
even when cohesion is added. The presence of cohesion is
found to introduce a new rate-independent regime where
the stress depends on the strength of cohesion. These
regimes persist when the Hookean contact model is re-
placed by a Hertzian contact model as well as when the
van der Waals force model is replaced with an alternate
cohesion model proposed by Rognon et al. [20], illus-
trating the robustness of these regimes. Finally, we also
modify the blended stress model proposed by Chialvo et
al. [2] for dense flows of non-cohesive particles to obtain
an analogous model for dense flow of cohesive particles.

II. SIMULATION METHODS

The DEM simulations [28] were performed using the
molecular dynamics package LAMMPS [30]. Particles
interact via repulsive spring-dashpot contact forces and
attractive cohesive forces. In the spring-dashpot model,
the normal and tangential contact forces on a spherical
particle i resulting from the contact of two spheres i and
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j with same diameter d are

Fnij
= f(

δijd

4
)[knδijnij − γnmeffvnij

], (1)

Ftij = f(
δijd

4
)[−ktutij − γtmeffvtij ], (2)

where δij is the overlap distance, kn and kt are spring
elastic constants, γn and γt are viscous damping con-
stants, meff = mimj/(mi + mj) is the effective mass of
spheres with masses mi and mj , vnij

and vtij are the
normal and tangential components of relative particle
velocity, and utij is the elastic shear displacement. For
Hookean contact, f(x) = 1, while for Hertzian contact,
f(x) =

√
x. The magnitude of tangential force is lim-

ited by a static yield criterion, |Ftij | ≤ µ|Fnij
|, where

µ is the particle friction coefficient. We set values of
kt/kn = 2/7 [31] and γt = 0. For Hookean contact,
for the default case, γn is chosen such that the restitu-

tion coefficient e = exp
(

−γnπ/
√

4kn/meff − γ2
n

)

= 0.7.

For Hertzian contact, we employ the same value for
γn/

√

kn/meff , but now the restitution coefficient e de-
pends on the collision velocities.
To account for cohesion, an attractive force F

C
nij

is
included so that the total normal force between the par-
ticles becomes F

T
nij

= Fnij
+ F

C
nij

. For van der Waals
force model, the cohesive force between a pair of parti-
cles whose surfaces separated by a distance s is written
as [29]

F
C
nij

= − Ad6

6s2(s+ 2d)2(s+ d)3
, (3)

where A is the Hamaker constant. It is assumed that
the force saturates at a minimum cutoff distance, smin =
θd [29]. Additionally, since the magnitude of the cohe-
sive force decreases rapidly with separation distance, a
maximum cutoff distance smax = d/4 [18] is used to ac-
celerate the simulation process; for s > smax, cohesive
force is neglected.
We also investigated the alternate model of Rognon et

al. [20],

F
C
nij

= −
√

4knNAδij , (4)

where NA is specified as an input. Note that, in the
static limit, where the relative particle velocity is zero,
for Hookean contact, the total normal force between two
particles is knδij −

√

4knNAδij . Accordingly, −NA is
the maximum attractive force between the two particles,
experienced when δij = NA/kn [20].
Differences between these two cohesion models are sig-

nificant. The cohesive force in the van der Waals model
(Eqn. (3)) is present before the particles collide and does
not increase with overlap between particles. In Eqn. (4),
the cohesive force is only present when particles are in
contact and increases with extent of overlap. Neverthe-
less, it will be seen that both models lead to qualitatively
similar results, differing in quantitative details only mod-
estly.

In the DEM simulations, assemblies of about 2000
monodisperse particles of diameter d and density ρs are
placed in a periodic box with fixed volume V . Through
the Lees-Edwards boundary condition [32], particles are
subjected to homogeneous steady simple shear at a shear
rate γ̇. The macroscopic stress tensor is calculated as

σ =
1

V

∑

i





∑

j 6=i

1

2
rijFij +mi(v

′
i)(v

′
i)



 , (5)

where rij is the normal vector pointing from the center of
particle j to that of particle i, and v

′
i is the fluctuating ve-

locity of particle i relative to its mean streaming velocity.
This stress tensor is further ensemble-averaged over many
time steps. Ensemble-averaged pressure and shear stress
can thus be obtained as p = (σxx+σyy +σzz)/3 and τ =
σxz. The stresses and shear rate are made dimensionless
through scaling with d, ρs, and elasticity k = kn. Note
that the dimensions of the spring constants and damp-
ing coefficients differ for Hookean and Hertzian contacts.
Thus, for example, stress will be scaled using k/d and k in
Hookean and Hertzian contacts, respectively. As gravity
is not included in the simulations, a modified Bond num-
ber Bo∗ is introduced, which compares the maximum net
cohesive force experienced by a particle to a characteris-
tic contact force. For Hookean contact with the van der
Waals force model, Bo∗ = Fmax

coh /(kd) ≈ A/(24kθ2d2),
where Fmax

coh denotes the maximum cohesive force. For
Hertzian contact with the van der Waals force model,
Bo∗ = Fmax

coh /(kd2) ≈ A/(24kθ2d3). Simulation results
indicate that the results are insensitive to the particular
value for θ (1.0 × 10−5 ≤ θ ≤ 4.0 × 10−5) for specified
value of Bo∗. For the results presented in this paper,
θ = 4× 10−5 is chosen [18]. Finally, for Hookean contact
with the alternate cohesion model, Bo∗ = NA/(kd).

III. FLOW REGIMES

We first consider Hookean contact and van der Waals
cohesion. Simulations are performed for various shear
rates, volume fractions, friction coefficients, and modi-
fied Bond numbers. Figure 1(a) plots the scaled pressure

pd/k against the scaled shear rate ˆ̇γ = γ̇d/
√

k/(ρsd) for
non-cohesive particles with µ = 0.1. Three regimes are
present [1–4]: quasistatic at low shear rates and high vol-
ume fractions, inertial at low shear rates and low volume
fractions, and intermediate at high shear rates and all
volume fractions. The quasistatic and inertial regimes
are separated by a critical volume fraction φc which is
a function of µ as summarized in Table I. When cohe-
sive forces are included, however, it is found that this
regime map is modified, as shown in Figures 1(b) and
(c), where Bo∗ is 5 × 10−6 and 5 × 10−5 respectively.
Some aspects remain unchanged: all three non-cohesive
regimes persist with no change in φc(µ), and the qua-
sistatic and intermediate pressure values show no appre-
ciable changes. However, the inertial regime is now bifur-
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cated into two regimes occurring at different scaled shear
rates: at higher ˆ̇γ the flow remains inertial (i.e. exhibit-

ing Bagnold scaling), while at lower ˆ̇γ the flow becomes
rate-independent. We term this latter, new regime the
cohesive regime. As Bo∗ increases, this cohesive regime
expands to encompass a larger domain of ˆ̇γ, as illustrated
in Figures 1(b) and (c). Simulations were also performed
for a highly inelastic system by lowering e from 0.7 (de-
fault case) to 0.02. It was found that all four regimes
persist even for such a highly dissipative system, with
no discernible change in the magnitude of the jamming
volume fraction. (See Figure 2).

In Figures 1 and 2, we present the results only from
simulations in which the velocity profile in the statistical
steady state is found to be linear indicating homogeneous
shear. There is a conspicuous absence of simulation re-
sults in Figures 1(b)(c) and 2(b) at the lower volume
fractions and shear rates in the region representing tran-
sition from cohesive regime to inertial regime. In this
region, the velocity profiles are found to be inhomoge-
neous (see Appendix A for further details). These cases
are not included in the analysis of the homogeneously
sheared state presented here.

The cohesive regime corresponds well to previous re-
sults [18] which report the existence of a rate-independent
regime due to cohesion. Also, the cohesive-to-inertial
regime transition is in accord with results from dy-
namic shear cell experiments on slightly cohesive pow-
ders [22]; the pressure in these experiments is roughly
rate-independent at low shear rates but increases signifi-
cantly at higher shear rates. Finally, the impact of cohe-
sion on the scaling of pressure with respect to shear rate
is consistent with previous 2-D, constant-pressure shear
simulations of Rognon et al. [20]. They utilize NA/(pd)
to characterize cohesion and find that, when NA/(pd)
is large, the solid fraction no longer varies with inertial
number (defined by them as γ̇

√

m/p for particle mass
m) in their dilatancy law, which corresponds to the rate-
independent behavior we observe for the pressure in the
cohesive regime. The present paper details where this
new rate-independent cohesive regime is located in pa-
rameter space with respect to the other three regimes
and, for the first time, provides a comprehensive regime
map for dense flows of cohesive granular materials capa-
ble of explaining all of the above behaviors.

Because previous works (e.g. [20, 33]) demonstrate the
importance of microstructure on dense granular rheology,
we aim to explain the cohesive-to-inertial regime transi-
tion in terms of changes in microstructure. To this end,
we study the average coordination number Z, which is
defined as the average number of contacts per particle in
the system. Specifically, Z = 2nc/n, where nc is the total
number of contacts (with particle overlap) and n is the
total number of particles in the system. When φ > φc,
cohesion has negligible impact on Z across all shear rates
(i.e. quasistatic and intermediate regimes), as seen in
Figure 3(a). For φ < φc, cohesion has a weak impact
on Z at high shear rates (i.e. inertial and intermediate

regimes), but substantially increases the value of Z in
lower shear rate region (i.e. the cohesive regime), as seen
in Figure 3(b). Thus, cohesion has an appreciable impact
on Z only in the cohesive regime, which is consistent with
the pressure data shown in Figure 1. To make this obser-
vation more transparent, we present in Figures 4(a) and
4(b) the variation of pressure with shear rate correspond-
ing to conditions in Figures 3(a) and 3(b), respectively.
It is clear that cohesion has only a weak impact (if any)
on pressure (and, as presented later, shear stress) in qua-
sistatic, inertial, and intermediate regimes. The emer-
gence of rate-independent regime because of the cohesive
force can be reasoned through the average coordination
number characterizing the microstructure. When a dense
assembly of non-cohesive particles is subjected to steady
(and slow) shear, jamming occurs at a critical volume
fraction, φc, which depends on the particle-particle co-
efficient of friction [33, 34] and there is a corresponding
average coordination number Zc. Under dynamic con-
ditions [33], the stress tracks Z more closely than the
particle volume fraction. Hence it is more accurate to
characterize the regimes in terms of Z and shear rate,
than in terms of volume fraction and shear rate. This
distinction is more apparent when particles interact cohe-
sively. For non-cohesive assemblies in slow, steady shear,
Z falls below Zc, when φ drops below φc. In contrast,
for cohesive assemblies, Z can remain large even when
φ is lowered below φc, and force chains persist, lead-
ing to rate-independent regime. (Compare Figures 3(b)
and 4(b).)

Another behavior connected to the coordination num-
ber is the expansion of the cohesive regime with increas-
ing Bo∗, as illustrated in Figure 3(b). The critical shear
rate which sets the boundary between the cohesive and
inertial regimes scales with

√
Bo∗, as demonstrated in

Figure 3(c), where data are collapsed by scaling the di-

mensionless shear rate with
√
Bo∗. The

√
Bo∗ scal-

ing can readily be rationalized: when cohesive energy
(∼ Bo∗) is overcome by the kinetic energy supplied by

the shearing (∼ ˆ̇γ2), the system transitions from cohesive
regime to inertial regime. This transition in dependence
of Z on shear rate between the cohesive regime and iner-
tial regime is consistent with previous findings [18, 19].

The variation of Z with shear rate is analyzed in more
detail by decomposing the average coordination num-
ber plotted in Figures 3(a)(b) into two components: one
in the extension quadrants (Zext) and one in the com-
pression quadrants (Zcom), as shown in Figures 5(a)(b).
As one would expect, the average coordination number
in the compression quadrants is always higher than the
counterpart in the extension quadrants [35]. At a packing
fraction of 0.62 (which is larger than φc), Zcom and Zext

are essentially the same for cohesive and non-cohesive
systems, see Figure 5(a). Furthermore, both of them
remain nearly independent of shear rate at low shear
rates, and decrease at higher shear rates; thus, there is
no discernible difference in the behavior in the different
quadrants. At packing fractions lower than φc, inertial
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FIG. 1. Scaled pressure versus scaled shear rate for (a) non-cohesive particles, (b) cohesive particles with Bo∗ = 5× 10−6, (c)
cohesive particles with Bo∗ = 5×10−5. In all cases, Hookean contact and van der Waals force model are used, and interparticle
friction coefficient µ = 0.1. Symbols denote simulation results, while lines denote model predictions from Eqns. (10) - (12).

regime is obtained for non-cohesive systems, where both
Zcom and Zext increase with shear rate (see Figure 5(b)).
When the particles interact cohesively and the shear flow
is in the cohesive regime, both Zcom and Zext are large at
low shear rates (comparable in magnitude to those in the
quasistatic regime) under low shear rate conditions. In-
creasing shear rate tends to break down the force chains
in all quadrants, weakly at low shear rates and rapidly in
the vicinity of

√
Bo∗, see Figure 5(b). Once a cohesive

system enters the inertial regime, its behavior is similar
to that of non-cohesive systems, with new contacts form-
ing more readily leading to an increase in Zcom and Zext.
It is the interplay between these two trends that give rise
to a minimum in the average coordination number for co-
hesive systems in the vicinity of

√
Bo∗ (Figures 3(b) and

5(b)), and the regime transition observed in the pressure
plot (Figure 4(b)).

IV. PRESSURE

A blended pressure model has been previously pro-
posed for non-cohesive granular materials, which can cap-
ture the pressure continuously across different dense-flow
regimes for different volume fractions and shear rates [2],

p =

{

pQS + pint for φ ≥ φc

(p−1
inert + p−1

int)
−1 for φ < φc.

(6)

In this model, pQS, pinert, and pint represent pressure in
the quasistatic, inertial, and intermediate regimes. To
model the transitions between them, a blending function
B of the form B(y1, y2) = (yw1 + yw2 )

1/w is used. w = 1
is chosen to create an additive blend for the quasistatic-
to-intermediate transition and w = −1 is chosen to yield
a harmonic blend for the inertial-to-intermedaite transi-
tion. Pressure in each individual regime is modeled based
on scaling law similar to those in conventional critical
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FIG. 2. Scaled pressure versus scaled shear rate for (a) non-
cohesive particles, (b) cohesive particles with Bo∗ = 5×10−5.
Hookean contact and van der Waals force model are used, and
interparticle friction coefficient µ = 0.1 and restitution coeffi-
cient e = 0.02. Symbols denote simulation results at various
volume fractions as per the legend from Figure 1. Lines de-
note model predictions from Eqn. (7) – (12). Model parame-
ters used are the same as those in Table I.

TABLE I. Values of model constants

µ-dependent parameters

µ 0.1 0.3 0.5

φc 0.614±0.001 0.596±0.001 0.587±0.001

χ 2.08±0.02 2.09 ±0.02 2.14±0.08

ǫ 1.00±0.01 0.92±0.01 0.67±0.02

αQS 0.36 0.36 0.20

αint 0.15 0.13 0.10

αcoh,1 0.15 0.32 0.26

ηs 0.268 0.357 0.382

α3 0.23 0.23 0.15

µ-independent parameters

φa αinert αcoh,2 I0 α1 β1
ˆ̇γ0 α2 β2 α4

0.45 ± 0.01 0.015 0.008 0.32 0.37 1.5 0.1 0.2 1.0 0.1

phenomena [36–39]. Specifically, one seeks a power-law
relationship between pressure and shear rate in each flow

regime [2]:
pj

|φ−φc|ǫ ∼ [ γ̇
|φ−φc|ω ]

mj

, j = QS, int, inert. In

the rate-independent quasistatic regime, mQS = 0. In
the inertial regime, where pressure varies as the square
of shear rate, minert = 2. Thus, assuming pinert ∼
|φ − φc|−χ, we set ω = (ǫ + χ)/2. Furthermore, as
the pressure is essentially independent of |φ− φc| in the
vicinity of the intermediate asymptote, we deduce that
mint = ǫ/ω = 2ǫ/(ǫ+χ). Thus, for non-cohesive particles
with Hookean contact,

pQSd/k = αQS|φ− φc|ǫ, (7)

pintd/k = αint
ˆ̇γ2ǫ/(ǫ+χ), (8)

pinertd/k =
αinert

ˆ̇γ2

|φc − φ|χ . (9)

The Levenberg-Marquardt method [40] is used to esti-
mate the model constants. Details are included in Ap-
pendix B. As shown in Table I, it is found that αinert is
approximately independent of µ, while φc and αint differ
for different µ. The scaling exponent ǫ and prefactor αQS

in Eqn. (7), as well as the scaling exponent χ in Eqn. (9),
manifest systematic dependence on µ, which was not re-
ported by Chialvo et al. [2], who took χ = 2 and ǫ = 2/3
for all µ. Although it is not the principal focus of this
study, we report in Table I the best-fit values of ǫ, αQS,
and χ for three different µ values. As demonstrated in
Figures 6(a) and (b), Eqn. (7) and Eqn. (9) respectively
capture the pressure in the quasistatic regime and inertial
regime satisfactorily.
Furthermore, the resultant value of mint = 2ǫ/(ǫ +

χ) is consistent with experimental results [41, 42]. The
effectiveness of the power-law relations is illustrated in
Figure 7, where the pressure vs. shear rate data at several
different volume fractions are collapsed on to two curves
(one above φc and one below). Figures 7(a)-(c) show
results for three different values of µ.
It has been noted previously in the literature [33] that

the pressure in the quasistatic regime is not set by par-
ticle volume fraction (as in Eqn. (7)), and that it tracks
more closely the average contact coordination number
Z under both steady and dynamic flow conditions. In
steady shear flows, Z is set by the particle volume frac-
tion and so Eqn. (7) can be thought of the outcome of
integrating a relation that applies under steady as well as
dynamic conditions and one that is restricted to steady
shear flows. Since stress is principally transmitted in
the quasistatic regime through force chains, researchers
have focused on Z2, where particles with 0 or 1 contact
are excluded as they are not involved in the force chains
(e.g., see [33, 43]). We find that the pressure in the qua-
sistatic regime can be expressed as αZ(Z − Zc(µ))

2 or
αZ2

(µ)(Z2 − Z2c(µ))
2; see Figures 8(a) and (b). It is in-

teresting to note that when the pressure is expressed in
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FIG. 3. The average coordination number versus scaled shear rate at µ = 0.1 and various modified Bond numbers for (a)
φ = 0.62 and (b) φ = 0.59. In (c), the data from (b) are collapsed into one curve by subtracting Z for non-cohesive system
from that of cohesive systems and rescaling the shear rate. Hookean contact and van der Waals force model are used here.
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FIG. 4. Scaled pressure versus scaled shear rate at µ = 0.1 and various modified Bond numbers for (a) φ = 0.62 and (b)
φ = 0.59. Hookean contact and van der Waals force model are used here.
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FIG. 5. The average coordination number in the extension quadrants (unfilled symbols) and compression quadrants (filled
symbols) versus scaled shear rate at µ = 0.1 for (a) φ = 0.62 and (b) φ = 0.59. Hookean contact and van der Waals force model
are used here.
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FIG. 6. Collapse of pressure for (a) inertial regime and (b)
quasistatic regime. For both (a) and (b), the solid line has
a slope of 1 and y−intercept of 0. All points with different
volume fractions and particle friction coefficients fall on the
lines. Hookean contact is used.

terms of Z or Z2, the exponent is independent of µ; fur-
thermore, when it is expressed in terms of Z (instead of
Z2), the proportionality constant is also independent of µ
and the role of friction is manifested only through Zc(µ).
As seen in the caption for Figure 8(a) and (b), Zc and
Z2c decrease as µ increases, which is consistent with pre-
vious results ([33, 34]). As seen in Figures 3(a) and 4(a),
the pressure in the intermediate regime (and φ > φc) in-
creases with shear rate, while Z decreases with increasing
shear rate. This clearly shows that the relationship of the
type shown in Figures 8(a) and (b) fail in the intermedi-
ate regime, even though the stress continues to be largely
transmitted through force chains.

The pressure model for non-cohesive systems is read-
ily modified to account for the effect of cohesion, as de-
scribed below. The data reveal two trends which provide
clues for constructing simple models. Firstly, as illus-
trated in Figure 10, pd/k ∼ Bo∗ in the cohesive regime
for all volume fractions (except for those near φc). This

behavior is consistent with: (a) pd/k ∼ ˆ̇γ2 in the inertial

regime and (b) the critical ˆ̇γ value separating the inertial

and cohesive regimes scales as
√
Bo∗. Figure 10 shows re-

sults down only to φ ≈ 0.50. At lower values of φ, the flow
transitions to shear flows of agglomerates, and the size of
the simulation domain used in this study is inadequate
to get meaningful results. Secondly, while the interme-
diate asymptote (at φ = φc) given by Eqn. (8) persists

for cohesive particles at high ˆ̇γ values, it becomes rate-
independent when ˆ̇γ becomes small compared to a criti-
cal shear rate. This critical shear rate scales as

√
Bo∗, as

shown in Figure 9; this is exactly the same dependence
as observed eariler for the cohesive-to-inertial transition.
Together these observations suggest that, in the vicinity
of φc, pd/k in cohesive regime scales as (Bo∗)ǫ/(ǫ+χ).
Based on these observations, Eqn. (6) is adapted using

the blending function previously described with w = 1
to provide an additive blend that can model both the
cohesive-to-inertial and cohesive-to-intermediate transi-
tions. Thus, the model becomes

p =

{

pQS + (pint + pcoh,2) for φ ≥ φc

[(pinert + pcoh,1)
−1

+ (pint + pcoh,2)
−1

]
−1

for φ < φc,

(10)

where pQS, pint, and pinert are given by Eqns. (7)-(9), and

pcoh,1d/k = αcoh,1Bo∗
|φ− φa|
|φc − φ| , (11)

pcoh,2d/k = αcoh,2(Bo∗)ǫ/(ǫ+χ)
. (12)

For non-cohesive particles, where Bo∗ = 0, pcoh,1 and
pcoh,2 vanish, and the proposed model returns to its
original form written for non-cohesive particles. The
Levenberg-Marquardt method [40] is again used to es-
timate the model constants. (Details are included in Ap-
pendix B.) They are provided in Table I. Predictions
based on this pressure model are compared with the sim-
ulation results in Figure 1. The proposed model captures
the data reasonably well not only in each regime but also
in the transition regions.

V. SHEAR STRESS RATIO

Figure 11 displays the variation of stress ratio η (=

τ/p) with the scaled shear rate ˆ̇γ for both non-cohesive
and cohesive particles with µ = 0.1. Cohesion has a
significant effect on the stress ratio only in the cohesive
regime, where cohesion increases the stress ratio appre-
ciably. This increase in stress ratio due to cohesion is
in agreement with prior experiments [22] and simula-
tions [18, 20, 23]. It is also consistent with increasing
average coordination number with the inclusion of cohe-
sion in the cohesive regime.
The stress ratio model for non-cohesive frictional gran-

ular materials proposed by Chialvo et al. [2] is composed
of two contributions, ηhard and ηsoft. The term ηhard is a
function of inertial number I ≡ γ̇d/

√

p/ρs and describes
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FIG. 7. Collapse of pressure versus shear rate curves for (a) µ = 0.1, (b) µ = 0.3, and (c) µ = 0.5. In all cases, the pressure

is scaled as p∗ = p/|φ − φc|
ǫ, and shear rate as γ̇∗ = γ̇/|φ − φc|

(ǫ+χ)/2. (Values for ǫ and χ are included in Table I.) Symbols
denote simulation results at various volume fractions as per the legend from Figure 1. The blending function, described in Eqns.
(6)–(9) and represented by solid lines, captures regime asymptotes as well as transitions. Hookean contact with no cohesion is
used.

0 0.01 0.02 0.03
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

αZ(Z − Zc)
2

p
Q

S
d
/
k

 

 

µ=0.1

µ=0.3

µ=0.5

(a)

0 0.01 0.02 0.03
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

αZ2
(Z2 − Z2c)

2

p
Q

S
d
/
k

(b)

FIG. 8. Simulation data of scaled pressure in the quasistatic
regime versus the predictions from the models based on (a) Z
and (b) Z2 for various volume fractions. In (a), αZ = 0.007,
and Zc = 5.10, 4.38, and 4.00 for µ = 0.1, 0.3, and 0.5,
respectively. In (b), Z2c = 5.20, αZ2

= 0.0077 for µ = 0.1;
Z2c = 4.56, αZ2

= 0.0083 for µ = 0.3; and Z2c = 4.26,
αZ2

= 0.0091 for µ = 0.5. The system is non-cohesive and
Hookean contact is used. The line represents y = x.
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FIG. 9. Scaled pressure versus scaled shear rate at φ = 0.614
for different cohesion levels (as shown in the legend). Inter-
particle friction coefficient µ = 0.1 is used. Hookean contact
and van der Waals force model are used here.

the shear stress ratio for infinitely hard particles [8–10],

while ηsoft is a function of ˆ̇γ and describes the deviation
from hard-particle behavior due to finite stiffness:

η∗ = ηhard(I)− ηsoft(ˆ̇γ), (13)

ηhard(I) = ηs(µ) +
α1

(I0/I)β1 + 1
, (14)

ηsoft(ˆ̇γ) =
α2

(ˆ̇γ0/ˆ̇γ)β2 + 1
. (15)

Here, η∗ is the stress ratio for non-cohesive granular ma-
terials, and ηs is the yield stress ratio. The validity of this
stress ratio model for non-cohesive granular materials is
demonstrated in Figure 12. By correcting for particle
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contact and van der Waals force model are used here.

softness, the stress ratio data from all three regimes and
particle friction coefficients are collapsed onto one curve.

As shown below, the well-known Mohr-Coulomb rela-
tion τ = η∗p+ C, which can be cast as

η = η∗ + C/p, (16)

captures our steady, simple shear flow simulation re-
sults in the rate-independent regimes, namely quasistatic
and cohesive regimes, provided C is properly modeled.
Rognon et al. [20] found that the model proposed by
Rumpf [44] for C, CRumpf = Zη∗φBo∗k/(πd), overesti-
mates the value of C needed to match the simulation
results. We found the same to be true as well. It is now
known that Rumpf’s formula does not account for non-
affine particle displacements [45–48], which arise due to
the structural disorder in the system. The relevance of
nonaffine displacement has been investigated in the con-
text of the shear modulus of covalent amorphous solids.
He and Thorpe [49] performed simulations on randomly
depleted covalent lattices, and found that, for the shear
modulus G, G = 0.33(Z − 2.4)1.42. Recent analytical
theory by Zaccone [48] was applied to the same system
and led to the expression, G = 0.36(Z − 2.4). While this
theory captured the critical coordination number well,
there is a discrepancy between the theory and simulation
results for the exponent and proportionality constant. In
an analogous fashion, we accounted for the effect of non-
affine displacement in our system by replacing Z in the
Rumpf model with a(Z − Zn)

b so that

Ccorr
Rumpf = a(Z − Zn)

bη∗φBo∗k/(πd), (17)

and sought if suitable choice of a, Zn and b could cap-
ture our simulation results. We found that many combi-
nations of these values yielded equally good fits, making

it difficult to discriminate among the different choices.
For example, in the spirit of Zaccone [48], one could set
Zn = 2.4, b = 1 and allow a to be a function of µ and cap-
ture the data well (not shown). We found that we could
get equally good fit by setting a = b = 1 and Zn = 3
(where now all the parameters are independent of µ);
this fit is illustrated in Figure 13. (As discussed later,
a = b = 1 and Zn = 3 captured the Hertzian contact
results as well.) The simplicity of the fit with Zn = 3 (as
opposed to 2.4) could be due to the fact that microscopic
models are different. For example, the cohesive force is
active not only on the contacts that emerge due to co-
hesion, but also on those that form even in the absence
of cohesion in our system, which differs from the system
studied by He and Thorpe [49], and Zaccone [48]. In any
case, our data do not permit more definitive analysis.
In the quasistatic and cohesive regimes, η∗ is essen-

tially ηs, and Z does not vary significantly with the shear
rate (e.g., see Figures 3(a)(b)) and volume fraction (see
results for the case of Hookean contact and van der Waals
force model shown in Figure 14). In views of these, and
since the coordination number is not directly accessible,
a lumped model constant α3 = (Z−Zn)ηs/π is sufficient
to capture our data:

η = η∗ +
α3φBo∗k/d

p
. (18)

To extend this model to cover rate-dependent regimes,
namely inertial and intermediate, we modify the model
as:

η = η∗ +
α3φBo∗k/d

p

1
ˆ̇γ

α4

√
Bo∗

+ 1
. (19)

Here, α4

√
Bo∗ approximates the critical shear rate which

separates the cohesive and inertial regimes. When ˆ̇γ ≪
α4

√
Bo∗, the model returns to Eqn. (18). When ˆ̇γ ≫

α4

√
Bo∗, the second term in the model vanishes. The

model describes stress ratio reasonably well for all Bo∗

values considered without any changes to constitutive pa-
rameters, and for different µ values with slight adjust-
ment of α3. The values for α3 and α4 are listed in Ta-
ble I.

VI. GENERALITY OF THE RESULTS

The newly identified regime map is preserved when
the Hookean contact model is replaced by a Hertzian
contact model as well as when the van der Waals force
model is replaced with the alternate cohesion model of
Rognon et al. [20]. The general form of the stress model
is also preserved, albeit with small modifications. We il-
lustrate these points by presenting two different particle-
scale models: a) Hertzian contact and the van der Waals
force model and b) Hookean contact and the alternative
cohesion model (Eqn. (4)).
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FIG. 11. Shear stress ratio versus scaled shear rate for (a) non-cohesive particles, (b) cohesive particles with Bo∗ = 5×10−6, (c)
cohesive particles with Bo∗ = 5×10−5. In all cases, Hookean contact and van der Waals force model are used, and interparticle
friction coefficient µ = 0.1. Symbols denote simulation results at various volume fractions as per the legend from Figure 1.
Lines denote model predictions from Eqns. (13) - (15) and (19).
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.

Hookean contact is used.

Flow Regimes

Figures 15(a) and (b) show the variation of scaled
pressure against the scaled shear rate for cohesive par-
ticles from these two particle-scale models. The cohesive
regime, characterized by rate-independent behavior be-
low the critical volume fraction (φc = 0.614 for µ = 0.1
in the figures) and lower shear rates, is clearly present in
both cases. In addition, simulation results from different
Bo∗ values confirm that the critical shear rate, separat-
ing the cohesive and inertial regimes, scales with

√
Bo∗

for both cases (not shown).
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FIG. 13. Predictions of Ccorr
Rumpf/p taking account of non-

affine displacements versus η − η∗ from simulation results
for different volume fractions (0.50 ≤ φ ≤ φc), cohesion lev-
els (as shown in the legend), and friction coefficients (µ =
0.1, 0.3, and 0.5) in the cohesive regime. In all cases, Hookean
contact and van der Waals force model are used. The line
represents y = x.

Pressure

The blended model for pressure, given by Eqn. (10),
remains unaltered, but scalings for the various contri-
butions there change when Hookean contact is replaced
with Hertzian contact.
Specifically, pjd/k is changed to pj/k. Therefore,

pQS/k = αQS|φ− φc|ǫ, (20)

pint/k = αint
ˆ̇γ2ǫ/(ǫ+χ), (21)

pinert/k =
αinert

ˆ̇γ2

|φc − φ|χ . (22)
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The Levenberg-Marquardt method [40] is performed to
estimate the model constants. (Details can be referred to
Appendix B.) It is found that χ = 1.43±0.03. It is found
that ǫ = 1.56, 1.21, and 1.10 with uncertainties of ±0.03
for µ = 0.1, 0.3, and 0.5, respectively. The value of ǫ
for Hertzian contact is approximately 3/2 times the one
for Hookean contact, which is consistent with previous
results [33, 50]. Using the values for χ and ǫ, the pressure
data can now be collapsed onto two curves for different µ,
as illustrated in Figure 17 for the case of µ = 0.1. Thus,
Hertzian and Hookean contacts afford similar simulation
results such that pressure can be collapsed in a similar
fashion.

The first cohesive contribution pcoh,1 remains un-
changed from Eqn. (11) except for scaling on the left-
hand side:

pcoh,1/k = αcoh,1Bo∗
|φ− φa|
|φc − φ| . (23)

Finally, since pcoh,2 modifies the intermediate-regime

contribution (pint/k ∼ ˆ̇γ2ǫ/(ǫ+χ)) and their sum becomes

rate-independent for ˆ̇γ ≪
√
Bo∗, it is modified to scale

as Bo∗ǫ/(ǫ+χ). This term now becomes

pcoh,2/k = αcoh,2(Bo∗)ǫ/(ǫ+χ)
. (24)

Model parameters used in the lines shown in Figure 15(a)
are: χ = 1.43, ǫ = 1.56, αQS = 0.19, αint = 0.15, αinert =
0.13, αcoh,2 = 0.006. Values for φc, φa, and pcoh,1 are the
same as those for Hookean contact with van der Waals
force model (see Table I).

For case (b), the functional forms for the pressure
model are unchanged, and Eqns. (7) – (12) are applied.
Only values for φa, αcoh,1, and αcoh,2 are now different:
φa = 0.50, αcoh,1 = 1.2, αcoh,2 = 0.03.

Shear Stress Ratio

Stress ratio models are slightly modified for both cases
and compared with the simulation data in Figures 16(a)
and (b). For case (a), as noted earlier, Zn = 3 captures
our simulation results, and since Z does not change sig-
nificantly with volume fraction (see results for the case of
Hertzian contact and van der Waals force model shown
in Figure 14), we can continue to lump (Z − Zn)ηs/π as
α3. As a result of change in the dimension of k for the
Hertzian contact, Eqn. (19) now reads:

η = η∗ +
α3φBo∗k

p

1
ˆ̇γ

α4

√
Bo∗

+ 1
, (25)

where η∗ is described in Eqns. (13) – (15). Model pa-
rameters used in the lines shown in Figure 16(a) are:
α1 = 0.27, α2 = 0.23, β1 = 1.0, α4 = 3. Values for all
the other parameters are the same as those for Hookean
contact with the van der Waals force model.
For case (b), Zn = 0.5 captures our simulation re-

sults adequately. Since Z changes significantly with vol-
ume fraction (see results for the case of Hookean contact
and the alternative cohesion model shown in Figure 14),
we find that modeling (Z − Zn)ηs/π as α5(φ− φa) with
α5 = 10.3 captures the stress ratio data well. As a result,
Eqn. (19) is modified to the following:

η = η∗ +
α5(φ− φa)φBo∗k/d

p

1
ˆ̇γ

α4

√
Bo∗

+ 1
, (26)

where α4 = 0.5. The solid lines in Figure 16(b) corre-
spond to Eqn. (26). Good agreement with simulation
results is readily seen.
Note that different expressions for (Z − Zn)ηs/π are

needed to capture stress ratio results for van der Waals
force model and alternative cohesion model. As noted
earlier, the two cohesion models are significantly differ-
ent: the van der Waals force saturates when the particles
come to contact, while the cohesion is only present when
the particles are in contact in the alternative cohesion
model. Figure 14 illustrates the dependence of the coor-
dination number on volume fraction for the three differ-
ent cases presented in this article. For Hookean contact
and van der Waals force model, Z is roughly indepen-
dent from φ; for Hertzian contact and van der Waals
force model, Z shows slight dependence on φ; and for
Hookean contact and alternative cohesion model, Z in-
creases appreciably with φ. This difference in response
of coordination number to volume fraction helps explain
the necessity of different expressions for (Z − Zn)ηs/π.

VII. SUMMARY

We have investigated shear flows of dense cohesive
granular materials via DEM simulations. The quasistatic
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FIG. 15. Scaled pressure versus scaled shear rate for (a) Hertzian contact and the van der Waals force model, (b) Hookean
contact and the alternative cohesion model [20]. Here, µ = 0.1 and Bo∗ = 5 × 10−5. Symbols denote simulation results at
various volume fractions as per the legend from Figure 1. Lines denote model predictions from Eqns. (10) and (17) - (21) in
(a), and Eqns. (10) - (12) in (b).
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FIG. 16. Shear stress ratio versus scaled shear rate for (a) Hertzian contact and the van der Waals force model, (b) Hookean
contact and the alternative cohesion model [20]. Here, µ = 0.1 and Bo∗ = 5 × 10−5. Symbols denote simulation results at
various volume fractions as per the legend from Figure 1. Lines denote model predictions from Eqns. (13) - (15) and (25) in
(a), and Eqns. (13) - (15) and (26) in (b).

and intermediate regimes observed for non-cohesive par-
ticles persist for cohesive particles, while the inertial
regime of non-cohesive particles bifurcates into two
regimes: rate-independent cohesive regime at low shear
rates and inertial regime at higher shear rates. The
regime map for the rheology of dense assemblies of cohe-
sive particles is found to be robust even when the particle-
scale details of the model are altered. Furthermore, the
pressure and shear stress ratio results obtained in our
simulations can be captured via simple algebraic expres-
sions that can be used in conjunction with continuum
models for flows in practical devices.
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Appendix A: Inhomogeneously sheared state

In all the simple shear simulation results presented in
the main text, the locally averaged velocity of the par-
ticles is verified to have a very nearly linear profile, and
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FIG. 17. Collapse of pressure versus shear rate curves for
µ = 0.1. The pressure is scaled as p∗ = p/|φ − φc|

ǫ, and

shear rate as γ̇∗ = γ̇/|φ − φc|
(ǫ+χ)/2. ǫ = 1.56 and χ = 1.43

is used. Symbols denote simulation results at various vol-
ume fractions as per the legend from Figure 1. The blend-
ing function, described in Eqns. (20)–(22) and represented by
solid lines, captures regime asymptotes as well as transitions.
Hertzian contact with no cohesion is used.
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FIG. 18. Locally averaged velocity versus position in the di-
rection of shear. Domain-averaged volume fraction of parti-
cles is 0.51. Hookean contact and van der Waals force model
are used with µ = 0.1 and Bo∗ = 5 × 10−6. H denotes the
thickness of the periodic box in the shear direction.

the particle volume fraction profile is uniform. For cohe-
sive particles, shear flow simulations yield inhomogeneous
volume fraction and velocity fields at the lower volume
fractions considered in this study (namely, φ ≈ 0.5) and
at shear rates in the vicinity of the transition between
cohesive and inertial regimes. Figure 18 shows the scaled
velocity profiles for two different scaled shear rates and
domain-averaged volume fraction of 0.51. All other con-
ditions are as in Figure 1(b). It is readily seen that a lin-

ear velocity profile was achieved for ˆ̇γ = 9.49× 10−4 (re-

sults included in Figure 1(b)), but not for ˆ̇γ = 3.16×10−4

(and hence omitted from Figure 1(b)). It appears reason-
able to hypothesize that the occurrence of an inhomoge-
neous state is a manifestation of shear-banding instabil-
ity [51, 52] which has not been a focus of the present
study but merits future investigation.

Appendix B: Model constants determination

The Levenberg-Marquardt method [40] is used to esti-
mate the critical exponents as well as the values for φc

and φa in the pressure models for the inertial, quasistatic
and cohesive regimes. Here, we use the case of Hookean
contact and the van der Waals force model to detail the
process of using this method to arrive at the values as
shown in Table I.
For the pressure model in the inertial regime, the

functional form pinertd/k
ˆ̇γ2

= αinert

|φc−φ|χ is assumed. The

Levenberg-Marquardt method is used to estimate φc and
χ from simulation results for non-cohesive particles at
various shear rates with φ as the independent variable

and pinertd/k
ˆ̇γ2

as the dependent variable. The values of χ

and φc for different particle friction coefficients are found
and included in Table I.
For the pressure in the quasistatic regime, the func-

tional form pQSd/k = αQS|φ − φc|ǫ is assumed. The
Levenberg-Marquardt method is performed to estimate
φc and ǫ from simulation results for non-cohesive par-
ticles at various shear rates with φ as the independent
variable and pQSd/k as the dependent variable. The val-
ues for φc are found to be close to the ones previously
determined in the inertial regime. These previously de-
termined φc values are then used to estimate ǫ, which are
reported in Table I.
For the pressure in the cohesive regime, the functional

form
pcoh,1d/k

Bo∗ = αcoh,1
|φ−φa|
|φc−φ| is assumed. The Levenberg-

Marquardt method is again performed to estimate φa and
φc from simulation results for cohesive particles at vari-
ous shear rates and modified Bond values with φ as the

independent variable and
pcoh,1d/k

Bo∗ as the dependent vari-
able. The values for φc are found to be close to the ones
previously determined in the inertial regime. These pre-
viously determined φc values are then used to estimate
φa. It is found that φa is 0.45 ± 0.01, 0.45 ± 0.01, and
0.44± 0.01 for µ = 0.1, 0.3, and 0.5, respectively. Thus,
the values for φa are the same for different particle fric-
tion coefficients within uncertainties. In Table I of the
manuscript, we only report one value for φa for different
particle friction coefficients.
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