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Suspensions are composed of mixtures of particles and fluid and are omnipresent in
natural phenomena and in industrial processes. The present paper addresses the rheology
of concentrated suspensions of non-colloidal particles. While hydrodynamic interactions
or lubrication forces between the particles are important in the dilute regime, they become
of lesser significance when the concentration is increased and direct particle contacts
become dominant in the rheological response of concentrated suspensions, particularly
those close to the maximum volume fraction where the suspension ceases to flow. The
rheology of these dense suspensions can be approached via a diversity of approaches that
the paper introduces successively. The mixture of particles and fluid can be seen as a
fluid with effective rheological properties but also as a two-phase system wherein the
fluid and particles can experience relative motion. Rheometry can be undertaken at an
imposed volume fraction but also at imposed values of particle normal stress, which is
particularly suited to yield examination of the rheology close to the jamming transition.
The response of suspensions to unsteady or transient flows provides access to different
features of the suspension rheology. Finally, beyond the problem of suspension of rigid,
non colloidal spheres in a Newtonian fluid, there are a great variety of complex mixtures
of particles and fluid that remain relatively unexplored.
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1. Introduction

Suspensions that consist of mixtures of particles suspended in a liquid are ubiquitous
in daily life, e.g. in the kitchen when mixing flour in water, or on the beach when
playing with sand mixed with water, or during construction when manipulating fresh
concrete. However, only a few people suspect that these apparently simple materials
have intrigued many researchers for more than a century and that behaviour of these
suspensions still resists basic understanding and raises many unsettled questions (see e.g.
Mewis & Wagner 2011). The research on suspensions is motivated by the fact that these
mixtures of particles and fluid can be found in many industrial products and procedures.
Common examples include food and cosmetics, civil engineering materials, pulp and
paper, and materials of the petroleum industry. Natural and geophysical processes also
involve the flows of suspensions. Sediment transport in rivers and oceans, landslides,
debris flows, and submarine avalanches are examples of flows of mixture of grains and
liquids that can be observed in the environment.
This paper is dedicated to the rheology of non-Brownian suspensions, meaning that

the particles of interest are sufficiently large (i.e. have radius much larger than a microm-
eter) for thermal fluctuations to be neglected. The fundamental study of non-Brownian
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Figure 1. The different regimes of a suspension of rigid spheres: dilute, semi-dilute (or
moderately concentrated), and concentrated regimes.

suspensions has a long history (see e.g. Guazzelli & Morris 2012) and the time arrow in
figure 1 coincides with the evolution of the research progress towards the understanding of
more concentrated suspensions. The story started in early 1900s with the seminal work of
Einstein who computed the increase in viscosity when adding a few particles to a viscous
Newtonian fluid. Einstein (1906, 1911) calculated this first linear correction in volume
fraction to the viscosity by considering the perturbation induced by a single particle
immersed in a shear flow. In the 70’s and 80’s, important developments were made in
the semi-dilute regime (and even up to the moderately-concentrated regime), starting
with the work of Batchelor who derived the second-order correction in volume fraction
to the viscosity by considering pair hydrodynamics interactions. Numerical simulations
such as the widely-used Stokesian dynamics were developed and have been particularly
useful for the understanding of the dynamics of the suspension microstructure and its
connection to the rheology. In the 90’s, efforts were devoted to the quest of constitutive
laws taking into account non-Newtonian behaviours such as normal stress differences. At
even larger volume fractions, the viscosity is found to increase drastically and to diverge
when approaching a maximum volume fraction when the suspension ceases to flow. In
this regime, direct contacts between the particles become dominant and overcome the
hydrodynamic interactions. This concentrated regime has attracted a lot of attention over
the last 20 years with the development of new experimental tools, numerical techniques,
and theoretical approaches. In this quest towards the understanding of concentrated
suspensions, the role of contact interactions has become a central question as the grains
in this dense limit experience enduring contacts. This article focuses on this regime that
can be coined “dense granular suspensions” in reference to the numerous connections
that can be made between dense suspensions wherein both hydrodynamics and contact
interactions are present and dry granular media which are solely controlled by direct
contact interactions (see e.g. Andreotti et al. 2013).
The paper is organised as follows. First, the bulk rheological properties of dense

suspensions are discussed in § 2 by considering the suspension as an effective fluid with a
focus on the effective viscosity and the normal stress differences. To describe situations
wherein the particles and the fluid have different motions, it is necessary to go beyond
this effective fluid description and to consider the suspension as a mixture of a solid
phase interacting with a fluid phase. This is done in § 3 where the general framework of
the two-phase approach is introduced and several applications presented. An alternative
description of the rheology of suspensions exists in which the confining pressure on the
granular phase is the control parameter in place of the volume fraction in conventional
rheology. This approach inspired by the development of the rheology of dry granular flows
is presented in § 4. Understanding the origin of the rheology from the dynamics at the
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Figure 2. Decomposition of a sphere in shear by combining a sphere in a rotation plus a sphere
in a strain. The sphere is considered as ‘freely mobile’, i.e. it experiences no hydrodynamic force
or torque. The disturbance flow generated by the sphere in a shear is solely due to its resistance
to the straining component of the shearing flow since the freely-rotating sphere embedded in
a solid-body rotation creates no disturbance. This disturbance flow leads to an increase in the
rate of energy dissipation and thus to an increase in viscosity.

grain scale is still an open challenge, but basic mechanisms are discussed in § 5. Describing
unsteady and transient flows also lacks a unified description as discussed in § 6 in the
light of several flow configurations. Finally, beyond the problem of suspension of spheres
in a Newtonian fluid, novel avenues of study exists for more complex systems consisting
of particles of different shapes or properties and of interstitial fluids with non-Newtonian
behaviours. The paper concludes in § 7 with examples of such complex suspensions and
discussions about these more challenging issues.
Writing a review on a subject as broad as suspension rheology can not be exhaustive

and we are fully aware that the personal views proposed in this paper omit important
results and areas of research. We take refuge behind the limited space of the paper and
the restricted number of bibliographical references to apologise for not discussing nor
citing many studies and results which have contributed to the rapid evolution of the
subject.

2. The suspension as a single effective fluid

This section presents some classical features of suspension rheology. As pointed in § 1,
the attention is focused on systems consisting of non-colloidal, rigid, mono-disperse,
neutrally buoyant spheres suspended in Newtonian fluids. While the interactions between
particles and their resulting micro-structural arrangement should be considered at the
microscopic scale, the mixture of fluid and particles can be seen as a continuous effective
fluid at the macroscopic scale. Of course this macroscopic scale needs to be much larger
than the size of the particles to contain a sufficient number of particles for effective-fluid
properties to be well defined. This section describes these effective rheological properties.
It starts by addressing the effective viscosity of suspensions in § 2.1 and then moves to
non-Newtonian phenomena observed at large concentrations in § 2.2 and § 2.3.

2.1. Suspension viscosity

Adding suspended particles to a fluid increases the effective viscosity of the mixture
above that of the suspending fluid. This is known for a Newtonian fluid since the work of
Einstein (1906), with a correction of Einstein (1911), who gave the expression ηf (1+5φ/2)
for the viscosity of a dilute suspension of rigid spheres, where ηf is the viscosity of the
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solvent and φ is the volume fraction of the spheres†. Einstein calculated this viscosity by
considering the effect of immersing a single solid spherical particle in a linear shear flow.
Just looking at the flow around this single particle provides some hint of the physical
origin of this increase in viscosity. The particle is considered to be freely suspended in the
shearing flow which means that the sphere experiences no hydrodynamic force or torque.
In practice, this can be achieved by considering a neutrally-buoyant particle, i.e. a particle
having the same density as the fluid. The ambient shearing flow can be decomposed into
a rotational and a straining flow, see figure 2. The sphere freely rotates in the rotational
portion of the flow and this freely-rotating sphere embedded in a solid-body rotation
creates no disturbance. The rigid sphere however resists the straining component of the
shearing flow and this produces a disturbance flow which leads to an increase in the rate
of viscous dissipation. In simple terms, the viscosity is increased because of the resistance
of the non-deforming particle to the straining component of the shearing flow.
A granular suspension of mono-disperse spheres, i.e. a suspension of non-colloidal,

mono-disperse, hard spheres, can be seen as the simplest case of suspensions. In these
conditions, there is no Brownian or colloidal forces (such as electric double layer or van der
Wall forces, i.e. all the forces that are not hydrodynamic or frictional contact interactions
and are expected to be important for small particles) which can drive the suspension to
a well defined rest state when the flow is stopped and therefore no relaxation process
with an intrinsic time scale. We also restrict for now the discussion to the condition of
vanishingly small Reynolds numbers (inertial suspensions are addressed in § 7.4). When
this suspension of neutrally-buoyant hard spheres is subjected to a steady shear flow,
the linearity of the Stokes equations implies that the shear stress τ scales linearly with
the shear rate γ̇. In other words, the scaling of the stress is viscous, τ = ηsηf γ̇, where
ηs is termed the relative viscosity of the suspension. Moreover, dimensional analysis
indicates that, for this Stokesian non-colloidal suspension, there is only a single remaining
independent variable, the volume fraction of particles, φ. The relative viscosity, ηs, is thus
a sole function of φ, i.e. ηs = ηs(φ). This viscosity is independent of the shear rate and has
an unique value at every concentration. Hence, the suspension can be seen as Newtonian
with a viscosity increasing with increasing volume fraction.
Measuring the viscosity of suspensions may prove to be challenging as it requires

specific procedure and analysis. Problems such as wall-slip effect, sedimentation or
creaming (i.e. particles having a density higher or lower, respectively, than the suspending
liquid), and particle migration (shear-induced migration will be considered in § 3.3.1)
can hamper the measurements. Macroscopic viscosity measurements using classical rota-
tional rheometers such as cone-plate, parallel-plate, and Couette rheometers have been
commonly used, see figure 3. Macroscopic viscosimetry has been also achieved with
the less known inclined plane rheometer which permits the exploration of a larger-φ
range (flow of suspensions along an inclined plane will be further discussed in § 4.2.1).
To overcome problems such as concentration inhomogeneities due in particular to the
migration phenomenon, local measurements can be performed using non-intrusive tech-
niques such as magnetic resonance imaging (MRI) or ultrasound coupled to a classical
rheometer. The extensive measurements performed for non-colloidal hard spheres show
that the suspension viscosity increases with increasing φ and diverges at a jamming
transition where the particle concentration reaches a maximum value, φc, for which the

† The viscosity was initially found to be ηf (1 + φ) by Einstein (1906). Einstein was later
informed of the viscosity measurements performed by Bacelin under the supervision of Perrin
which were significantly larger than his initial prediction. He then asked Hopf to check his
calculation and an error was found. The exact expression, ηf (1 + 5φ/2), was finally given by
Einstein (1911).
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Figure 3. Rheometry used for measuring the viscosity of suspensions. (a) Cone-and-plate
rotational rheometer : The fluid sample is put between the cone and plate and when the cone
angle α is small enough (α 6 0.1 rad.) the viscosity is given by η = 3αT/2πR3Ω where R
is the radius of the cone and the plate and T and Ω are the measured torque and rotational
velocity, respectively. (b) Parallel-plate rotational rheometer : The fluid sample is put inside
the gap, h, between the two plates and the viscosity based on a Newtonian fluid assumption
is given by η = 2Th/ΩπR4 where again T and Ω are the measured torque and rotational
velocity, respectively. (c) Couette rotational rheometer : The fluid sample is put inside the annular
gap between the two coaxial cylinders and when the gap is small enough (i.e. the radius of
the cup Rc and that of the bob Rb are very close, Rb/Rc > 0.99) the viscosity is given by
η = T (Rc −Rb)/πLΩ(Rc +Rb)R

2

b where L is the length of the cylinders and T and Ω are again
the measured torque and rotational velocity, respectively. (d) Inclined plane rheometer : The
fluid flows down an inclined plane at an angle θ with the horizontal and (within the assumption
of a Newtonian behaviour) measuring its free surface velocity, usurface, and its height, h, yields
the viscosity η = ρgh2 sin θ/2usurface where ρ is the fluid density.

suspensions ceases to flow, see graph (a) of figure 4. This maximum flowable volume
fraction generally differs from the maximum close random packing fraction (≈ 0.64) that
can be obtained by vibrating or repeated tapping and in practice it may be difficult to
flow a suspension for φ & 0.55 − 0.62. The precise value of φc varies depending on the
size distribution of the particles but also on their surface interactions and more precisely
their frictional interactions (this jamming transition of suspensions under constant shear
will be discussed in § 5.3). By using the reduced volume fraction, φ/φc, with appropriate
values for φc, the plots of viscosity versus concentration can be collapsed onto a master
curve, as shown in the graph (b) of figure 4 for a selection of data coming from both
macroscopic and local measurements using different combinations of mono-disperse hard
spheres and Newtonian fluids. We have also added to these plots the data of Boyer et al.
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Figure 4. Relative viscosity, ηs, versus (a) volume fraction, φ, and (b) reduced volume fraction,
φ/φc. Experiments of Boyer et al. (2011a) using pressure-imposed rheometry with polystyrene
(PS) spheres of diameter d = 580µm suspended in polyethylene glycol-ran-propylene glycol
monobutylether as well as poly(methyl methacrylate) (PMMA) spheres of diameter d = 1100µm
suspended in a Triton X-100/water/zinc chloride mixture, of Bonnoit et al. (2010) using an
inclined plane rheometer tilted at two different angles with polystyrene spheres of diameter
d = 40µm suspended in silicone oil, of Dagois-Bohy et al. (2015) using pressure-imposed
rheometry with polystyrene (PS) spheres of diameter d = 580µm suspended in polyethylene
glycol-ran-propylene glycol monobutylether, of Dbouk et al. (2013) using a parallel-plate
rotational rheometer with polystyrene spheres of diameter d = 140µm suspended in a mixture of
water, UCON oil, and zinc bromide, of Ovarlez et al. (2006) using MRI technique and a wide-gap
Couette geometry with polystyrene spheres of diameter d = 290µm suspended in silicone oil, of
Zarraga et al. (2000) using a parallel-plate rotational rheometer with glass spheres of diameter
d = 44µm suspended in 3 different fluids. Numerical simulations of Sierou & Brady (2002) and
Gallier et al. (2014) with (µp = 0.5) and without friction (µp = 0) as well as those of Mari et al.
(2014) with (µp = 1) and without friction (µp = 0), where µp is the friction coefficient between
the spheres. Viscosity laws of Einstein (1906, 1911), Batchelor & Green (1972b), Krieger with
exponent α = −2.5φc and α = −2 (Maron-Pierce), and Eilers (Stickel & Powell 2005). The
corresponding φc used for each set of data in graph (b) are indicated in the legend.
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(2011a) and of Dagois-Bohy et al. (2015) coming from pressure-imposed rheometry that
will be discussed in § 4.1.

The linear dependence in φ given by the Einstein relative viscosity (= 1 + 5φ/2) only
reproduces the viscosity curve in the very dilute regime, i.e. up to volume fraction of
about 0.05, as can be seen in figure 4. For larger φ, the interactions between particles
cannot be neglected. For instance, at φ ≈ 0.1, the average distance between particles
having a diameter d is d/2φ1/3 ≈ d, and therefore neighbour particles are affected
by their respective disturbance flows. This pair interaction effect is expected to yield
a viscosity contribution of O(φ2). However, the long range nature of these velocity
disturbances makes the calculation of this contribution difficult. The disturbance flow
created by a freely suspended sphere in a shearing flow decreases at leading order
as 1/r2 where r is the radial distance to the centre of the sphere. It can be shown
that this results in an incremental stress on a neighbouring sphere of order O(1/r3).
A simple integration over the volume of the suspension assuming an uniform pair
distribution function leads unfortunately to diverging integral and a special method
known as hydrodynamic renormalisation must be employed (Batchelor & Green 1972a,b).
The expression up to terms of order O(φ2) for a pure straining flow is ηs = 1 + 5φ/2 +
6.95φ2. For a shearing flow, there is complication in defining the pair probability because
of the existence of closed trajectories due to the rotational portion of the shearing flow.
Assuming a random microstructure leads to a smaller coefficient (≈ 5) of φ2. This latter
expression seems to agree reasonably with the experimental data in the semi-dilute regime
(up to φ ≈ 0.10− 0.15) but fails to capture the rapid growth in viscosity observed when
φ is further increased, see figure 4.

Computing the viscosity for larger φ is very difficult as multi-body hydrodynamic
interactions must be computed together with determining the microstructure. Another
complexity is that the spheres can interact not only by hydrodynamic interactions
through the liquid but also by direct mechanical contact. Exact analytic calculations
do not exist and in order to tackle this concentrated regime simulations with various
level of approximation and sophistication have been performed, starting with the now-
classical Stokesian dynamics, which uses the properties of the Stokes equations through
computing the resistance and mobility functions, and going to the more recent direct nu-
merical simulations using lattice-Boltzmann or fictitious domains methods. Accelerated-
Stokesian-dynamics simulations of Sierou & Brady (2002) considering the shearing flow
of a suspension of 512 hard spheres with the presence of a repulsive inter-particle forces
to prevent overlapping are reported in figure 4, together with the more recent fictitious-
domain simulations of Gallier et al. (2014) which solve long-range hydrodynamics and
lubrication interactions for ≈ 600− 1000 spheres but also incorporate a discrete element
method to model contact forces (this contact model assumes an Hertz law and includes
roughness and friction). An important outcome is that friction has a major impact as it
is seen to increase the value of ηs, in better agreement with the experimental data.

Frictional contacts between particles exist at lower φ as will be pointed later in § 5.1
but become essential to the rheology of the suspensions at large φ (typically φ &

0.20). For these large volume fractions, frictional contact forces overrun the long-ranged
hydrodynamic interactions in such a way that it is not necessary to include these long-
range interactions no longer to obtain realistic predictions. This is evidenced in the
simulations of Mari et al. (2014) which account for frictional contact forces along with
viscous lubrication only, see figure 4. These simulations extend the previous numerical
predictions for values of φ > 0.45. There are clearly two ηs(φ) curves (the open stars and

open crosses, respectively) which diverge at φ
µp 6=0
c ≈ 0.60 and at φ

µp=0
c ≈ 0.64 (at close
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random packing fraction) for frictionless and frictional particles, respectively. Note that
the friction coefficient between the spheres is µp = 1 in the simulations of Mari et al.

(2014) while it is µp = 0.5 for those of Sierou & Brady (2002) and Gallier et al. (2014)
resulting in slightly larger values of ηs for the data of Mari et al. (2014) and a divergence
at a slightly lower packing fraction (≈ 0.58 rather than ≈ 0.61). The better agreement
of the simulations including friction with the experimental observations implies that the
non-colloidal hard spheres are indeed experiencing frictional contacts in experiments. As
will be seen later in §§ 5.3 and 7.2, friction plays also a major role in the understanding
of jamming and discontinuous shear-thickening.
At this stage of the discussion, it is worth returning to the dimensional analysis

introduced earlier in this section and emphasise that contact forces do not bring any
additional force scale with which to compare the hydrodynamic force as hard sphere
contacts can resist any applied load. This is valid whether the hard spheres are frictionless
or frictional as friction does not generate an additional force either. Therefore, the stress
of suspensions of non-colloidal, frictional, hard spheres should scale viscously in Stokes
flows and there should not be any shear rate dependence of the viscosity.
Finally, to be comprehensive on the viscosity of suspensions, it is important to mention

the numerous phenomenological equations relating the suspension viscosity to the volume
fraction that can be found in the literature. Some of these expressions stem from mean-
field approaches. They generally recover the Einstein viscosity limit at low concentration
and aim at accounting for the divergence of the viscosity at φc. One of the most popular
is the Krieger viscosity, (1−φ/φc)

α. The Einstein viscosity is recovered with an exponent
α = −2.5φc but it does not fit properly the data at higher volume fractions for which
an exponent α = −2 yields better results (this later expression is also known as the
Maron-Pierce correlation), see figure 4. Another interesting correlation is that of Eilers,
[1+(5φ/4)/(1−φ/φc)]

2, which happens to comply with both high and low concentration
limits and is in fairly good agreement with the experimental observations over the whole
range of φ.

2.2. Normal stress differences

This quasi-Newtonian behaviour of the shear stress introduced in the preceding section
does not fully describe the rheology of suspensions. It indeed does not account for
the existence of normal stress differences, i.e. for normal stresses which are no longer
isotropic under shear, which appear for non dilute suspensions. Since the suspension is
incompressible, the pressure, i.e. the trace of the total suspension stress denoted Σ, is of
no rheological interest as it is prescribed by the flow and the two pertinent quantities are
the first and second normal stress differences which are defined as N1 = Σ22 −Σ11 and
N2 = Σ22 − Σ33 respectively, where the flow, the gradient, and the vorticity directions
are labelled 1, 2, and 3 (see figure 5). Similarly to the shear stress, these normal stresses
scale viscously in Stokes flows. Since the normal stresses do not depend on the sign of
the shear rate, the normal stress differences are proportional to the modulus of the shear
stress, |τ |. They can be written as N1 = α1|τ | and N2 = α2|τ |. The ratios of normal-stress
differences to shear stress, α1 and α2, are called the normal stress difference coefficients.
They are solely functions of φ and do not diverge at φc since the normal stress differences
and the shear stress present the same divergence when approaching the jamming point
at φc (Morris & Boulay 1999).
This non-Newtonian feature is intimately linked to the loss of isotropy of the suspension

microstructure that will be further discussed in § 5.1. Looking at the pair interactions
between two spheres under simple shear offers some basic physical understanding of
the development of these normal stress differences, see figure 5. The trajectories of two
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(a) (b)

Figure 5. Sketch of the pair interactions between spheres under simple shear. For (a) perfectly
smooth spheres, the trajectories exhibit a fore-aft symmetry. For (b) rough spheres, the
trajectories are irreversible and asymmetric. In that later case, when the minimum approach
distance for the pair is smaller than the roughness, the spheres enter into contact in the
compressional region of the flow (upper left and bottom right quarters) and move apart in
the extensional region (upper right and bottom left quarters), leading to a region depleted in
particles (shown in dark) and thus to weaker hydrodynamic interactions in this extensional
region. After the collision, the spheres do not come back to their initial streamlines, but lay on
two critical streamlines shifted by a minimum approach distance corresponding to the roughness.

perfectly-smooth spheres are reversible and symmetric as this motion reflects the fore-aft
symmetry of the flow lines around a single sphere due to the reversibility of the Stokes
flow, see drawing (a) in figure 5. Whereas this pair motion creates additional shear
stress as seen in the preceding section, it does not lead to normal stress differences as
the effects of the compressive and extensive portions of the flow cancel. However, these
reversible trajectories are extremely sensitive to contact perturbations. If the spheres
present some surface roughnesses, the trajectories become irreversible and asymmetric,
resulting in non-isotropic normal stresses, see drawing (b) in figure 5. The spheres can
collide in the compressional region of the flow when the minimum approach distance for
the pair is smaller than the roughness. After the collision, the spheres do not come back
to their initial streamlines but move apart, leading to a region depleted in particles in
the extensional region. This crude sketch suggests that the normal stresses come from
the repulsion between the two spheres as they approach one another in the shear. Since
most of the collisions take place in the plane of shear, one expects N2 to be negative. The
sign of N1, as we will see in the following, is more uncertain but this simple description
suggests that the deficit in hydrodynamic interactions at the rear of the collision (i.e. in
the extensional region) leads to a negative N1.
Normal stress differences are difficult to measure as they happen to be much smaller

than the shear stress for φ . 0.2. Standard rheological tools such as cone-and-plate or
parallel-plate rotational rheometers have been used but also adapted, e.g. with pressure
measurements at the wall (Singh & Nott 2003; Dbouk et al. 2013), to enhance accuracy,
see figure 6. Alternative approaches have been also undertaken to infer the normal stress
differences from measurements of the deflection of the free-surface in a Weissenberg, or
rotating-rod, geometry and in a tilted trough. The first method is well-known in polymers
as the Weissenberg or rod-climbing effect. For suspensions of spheres, the climbing is down
instead of up the rod and measurement of the free-surface profile provides a combination
of the normal stress differences. The second tilted-trough method provides the second
normal stress difference in isolation. These methods have some significant advantages
over using a standard rheometer as confinement effects can be reduced and sensitivity
improved (Boyer et al. 2011b; Couturier et al. 2011; Dai et al. 2013). Using these non
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(a) (b) (c)

(d) (e)

Pressure Transducers

Figure 6. Rheometry used for measuring normal stress differences of suspensions. (a)
Cone-and-plate rotational rheometer : Measuring the normal force acting of the upper plate
yields a direct measure of the first normal stress difference, N1. (b) Parallel-plate rotational
rheometer : Measuring the normal force acting of the upper plate gives the difference between the
first and second normal stress differences, N1−N2. (c) Parallel-plate rheometer with differential
pressure transducers fitted flush against the lower plate surface: Measuring the radial profile of
the normal stress along the velocity gradient direction yields N2 +N1/2 and N1 +N2 and thus
the determination of both N1 and N2. (d) Weissenberg, or rotating rod, flow : Measurement
of the free-surface deflection induced by the anisotropic stresses (rod-dipping in the case of
suspensions) provides the linear combination N2+N1/2. (e) Tilted-trough flow : Measurement of
the free-surface deflection induced by the second normal stress difference (a bulge in the middle)
yields a direct determination of N2.

conventional rheological tools (rotating-rod and tilted-trough) in conjunction (Boyer
et al. 2011b; Couturier et al. 2011) or combining them with conventional rheometry
(Zarraga et al. 2000; Dai et al. 2013) yields a complete measurement of the two differences,
N1 and N2, which have been shown to be both linear in the modulus of the shear stress,
|τ |. Most of the measurements available in the literature are collected in figure 7.

In spite of uncertainties and scatter in the data, some firm conclusions can be drawn
for N2. The second normal stress difference is found to be negative and its magnitude
is seen to increase with increasing φ, growing especially quickly for φ & 0.20 to reach a
magnitude of ≈ 0.4|τ | at φ = 0.5, see graph (b) of figure 7. The properties of the first
normal stress difference are more elusive. The magnitude of N1 is unquestionably much
smaller than that of N2, but assessing the sign is difficult, see graph (a) of figure 7. Some
experiments find that N1 is quite small and negative (Zarraga et al. 2000; Singh & Nott
2003; Dai et al. 2013), while others report positive values (Dbouk et al. 2013), and yet
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Figure 7. Normal stress difference coefficients, (a) α1 and (b) α2, versus volume fraction, φ.
Experiments of Zarraga et al. (2000) combining rotating-rod and parallel-plate measurements
with glass spheres of diameter d = 44µm, of Singh & Nott (2003) using a cylindrical-Couette
and parallel-plate rheometers with poly (methylmethacrylate) spheres of diameter d = 196µm,
of Boyer et al. (2011b) and Couturier et al. (2011) combining the rotating-rod and tilted-trough
methods with polystyrene spheres of diameters d = 70µm and 140µm, of Dai et al. (2013)
combining tilted-trough and parallel-plate measurements with polystyrene spheres of diameter
d = 40µm, of Dbouk et al. (2013) using wall-pressure measurements in a parallel-plate geometry
with polystyrene spheres of diameters d = 40µm and 140µm. Numerical simulations of Sierou
& Brady (2002) and Gallier et al. (2014) with (µp = 0.5) and without friction (µp = 0) and
with confinement (bounded) in the frictional case. The dotted line on the right graph is the
O(φ2) theoretical prediction of Wilson (2005). The O(φ3) correlations of Dai et al. (2013) are
also shown (dashed lines).
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others consider that the value is too close to zero to determine whether it is negative,
positive or null within experimental accuracy (Boyer et al. 2011b; Couturier et al. 2011).
Analytical calculations of the pair interactions of hard spheres have been conducted

in the dilute regime (Wilson 2005) and predict that α2 is proportional to φ2 with a
proportionality coefficient which varies with surface roughness or minimum separation
(this coefficient goes to zero for smooth spheres, i.e. assessing that α2 = 0 in that latter
case). This O(φ2) prediction has been reported for a roughness relative to the particle
radius of 10−3 (which is typically measured experimentally) in graph (b) of figure 7. It
is of the same order of magnitude as the experimental data for φ . 0.25 but cannot
capture the strong increase in magnitude observed for larger φ. Again, only numerical
simulations can address the concentrated regime. The accelerated-Stokesian-dynamics
simulations of Sierou & Brady (2002) and fictitious-domain simulations of Gallier et al.
(2014) presented earlier for the viscosity have been reported in the graphs of figure 7.
Again, friction between the particles has a profound impact on the rheology as it increases
the magnitude of α2 and decreases that of α1, in better agreement with the available
observations. An important finding revealed by the simulations of Gallier et al. (2014) is
that the two normal stress differences have different physical origins as will be discussed
further in § 5.2. The first difference N1 is mostly of hydrodynamic origin whereas the
second N2 comes from the contact interactions. These simulations also provide some
hints to explain the discrepancies among observations for N1. Simulations performed in
a wall-bounded shear flow show wall-induced layering of the particles which has moderate
impact on α2 but significantly affects α1 (Gallier et al. 2016), see figure 7. Confinement
together with friction can lead to positive value of α1, in closer agreement with the
experiments of Dbouk et al. (2013) where pressure measurements are taken at the lower
plate of the rheometer cell.
The overall picture is that N2 is large and negative as most of the repulsive collisions

between spheres happen in the plane of shear while N1 is small because the collisions
happen fairly equally in the flow and the flow-gradient directions. However, the flow-
induced microstructure of the frictional spheres can explain the sign of N1. In the
suspension bulk, the deficit in hydrodynamic interactions in the extensional region leads
to a negative sign, whereas, near a wall, the particle layering results in a decrease of
contact stresses (enhanced by friction) and thus promotes a positive sign (at least for
φ . 0.5 as documented in figure 7; for larger φ other behavior may be seen but there is
not enough data to conclude yet).

2.3. Other non-Newtonian phenomena

The fundamental results that have been described up to now are that suspensions of
non-colloidal hard spheres can be described by a single viscosity which is a sole function
of volume fraction but also possess some non-Newtonian features since they develop non
isotropic normal stresses. Since there is no other force scale than the hydrodynamic forces,
one expects rate-independent properties. Nonetheless, some shear-thinning behaviour has
been reported in the concentrated regime starting at φ ≈ 0.45 − 0.5 (see e.g. Zarraga
et al. 2000). This is not well understood and clearly implies that some additional forces
come into play (shear-thinning behaviour is also observed for dense suspensions of fibres
as discussed in § 7.1). This may also explain the differences in ηs(φ) and α1(φ) or α2(φ)
curves across experimental work for large φ.
Another cause of scatter may be due to differences in frictional particle contact across

samples resulting in differences in magnitude of ηs and of the coefficients α1 and α2,
in particular at large φ. This frictional contact between the particles also affects the
values of φc as discussed earlier. In addition to contact or even close contact between



Dense granular suspensions 13

(a) (b) (c)

Figure 8. Examples of two-phase suspension flows. (a) Shear-induced migration of
neutrally-buoyant spheres in pressure-driven Poiseuille flow in a tube: the particles migrate
irreversibly from the high shear region at the wall towards the low shear region at the centerline.
(b) Erosion of sedimented particles under the action of viscous fluid shearing flows: the particles
can be transported by the flow in a particular mode of particle motion in which particles roll and
slide but stay in continuous contact within the bed called bed-load transport. (c) Submarine
avalanches: the flow can involve several granular layers and bears similarity with the erosion
situation sketched in drawing (b).

particles, there may be some other effects linked to fluid-particle surface chemistry that
may need to be accounted for. These subtle effects are difficult to decipher and need
further examination.

3. Beyond the single-fluid view: Two-phase flow

In the preceding § 2, the suspension has been viewed as an effective fluid having
rheological properties depending solely on particle concentration. This picture applies
when the solid grains and the fluid move together as a single phase with identical averaged
velocity. However, in many flow configurations, the fluid and the particles experience
relative motion. In other words, there exists a slip velocity between the fluid and the
solid phases. The effective-fluid approach presented in § 2 cannot capture this differential
dynamics of the two phases. Figure 8 shows three examples where going beyond the single
phase description may be necessary. The first example (a) is the observed irreversible
migration of neutrally-buoyant spheres in a pipe flow. The particles have a tendency
to move from the high shear region at the wall toward the low shear region at the
centre line. This phenomenon, known as shear-induced migration, will be considered
in § 3.3.1. Sediment transport sketched in (b) is another example that is encountered in
many geophysical situations. When a fluid flows over a sedimented bed of particles, the
grains can be entrained by the fluid and can flow along with the stream. The erosion of
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Figure 9. Physical illustration of the particle pressure. In a sheared suspension of particles, the
collisions between particles, and between the particles and the walls, creates a force against the
wall. This leads to a ‘particle pressure’, i.e. a pressure coming from the particulate phase. Since
the total pressure created by suspension mixture (particles plus fluid) is constant because of the
incompressibility of the suspension, this positive ‘particle pressure’ is balanced by a negative
pressure coming from the fluid phase. In other words, the top plate is pushed up by the particles
(red arrow) and pulled down by the fluid (blue arrow).

sedimented particles under the action of viscous shearing flows will be discussed in § 4.2.2.
The last example (c) is the triggering of granular avalanches which can be dramatically
influenced by the coupling between the granular and fluid phases. This phase coupling is
not captured by a single phase approach and will be addressed in § 4.2.1.
In order to tackle these flow configurations, it is necessary to address separately

the liquid phase and the solid phase instead of considering a single mixture phase.
The two phases coexist at the same location and the strategy consists in writing the
mass and momentum conservations for the two phases separately while accounting
for the interaction between the phases. This two-phase modelling is presented in § 3.2
and the difficulties and open questions raised by this description are discussed. This
modelling is then applied to two flow configurations, namely shear-induced migration and
resuspension, in § 3.3. Before embarking on this two-phase formalism, we first introduce
in § 3.1 the concept of particle pressure which produces the driving force for the motion
of the particles and is a conspicuous indication of the need of a two-phase description.

3.1. Particle pressure

Whereas the whole suspension, i.e. the mixture of particles and fluid, is incompressible,
the particle phase is not. There exists a particle pressure, or more generally particle
normal stresses, coming from the dispersed particulate phase. Physical understanding of
this particle pressure can be inferred by considering the simple situation of a suspension
uniformly sheared between two plates at a shear rate γ̇, depicted in figure 9. Because
of the incompressibility of the suspension mixture, the entire pressure exerted on the
top plate is constant and independent of γ̇ as found for a simple fluid. Suppose now
that we ignore the fluid contribution and consider the sole interactions of the particles
with the top plate. In the dense suspension regime, the shearing flow induces collisions
between the particles and between the particles and the walls. These collisions result in a
force against the wall leading to a ‘particle pressure’. Since the total pressure must be a
constant (i.e. the reference pressure), this particle pressure is compensated by a negative
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(a) (b)

Figure 10. Analogy with osmotic pressure (from Deboeuf et al. 2009). (a) Osmotic U tube:
The solution is separated from the pure solvent (or a lower concentration solution) by a
semi-permeable membrane permitting the flow of the solvent but restricting the solute to the
solution side. Osmotic pressure is associated with the solvent flow into the solution and is
measured by a reduced pressure in the solvent. (b) Analogical experiment using a Couette
device where an hole is drilled through the outer stationary cylinder: A grid placed on the hole
plays the role of the semi-permeable membrane and restricts the particles on the side toward the
annulus. A tube is fixed on the hole and is filled with the suspending fluid. When the suspension
is sheared, the liquid is sucked from the tube through the grid. The liquid suction pressure is a
way of evidencing and measuring the particle pressure.

pressure in the liquid. In other words, in a sheared suspension, the particles push on the
wall, which in turn pulls on the fluid.
This particle pressure has been considered an analog to the osmotic pressure exerted

by colloidal particles or dissolved molecules and ions, where here the shear rate plays
the role of the temperature to induce agitation and collisions between the particles. An
experiment carried out to illustrate this analogy is depicted in figure 10 (b) (Deboeuf
et al. 2009). The device used is a Couette rotational cell where an hole is drilled through
the outer stationary cylinder. A grid with mesh openings small enough to retain the
particles is positioned on the hole and a small tube is connected to the hole and filled
with the suspending fluid. The grid is the equivalent of a semi-permeable membrane
permitting the flow of the solvent but restricting the solute to the solution side in a
classic U tube osmometer sketched in figure 10 (a). When the suspension is sheared in
the Couette device, the pore pressure between the particles decreases and sucks liquid
from the tube though the grid, until the hydrostatic pressure induced by the difference
of filling level on both sides exactly balances the negative pore pressure created by the
shear. This effect is similar to the solvent flow into the solution in the U tube osmometer
where the osmotic pressure is associated with a reduced pressure in the solvent.
Quantitative measurements of the particle pressure, or more generally of particle

normal stresses, are not easily performed in large part because it is difficult to differentiate
between the particle and the fluid pressures as explained above. Conventional rheometers
measure the total force exerted by the suspension and thus need to be adapted to measure
either the force coming from the particles or that from the fluid, see figure 11. A first direct
method consists in using a grid as a top plate which enables fluid flow through it but not
particles owing to mesh openings smaller than the particle sizes, as done in an annular
shearing cell by Boyer et al. (2011a), see figure 11 (a). Measuring the forces exerted on
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(a) (b)

(c) (d)

Figure 11.Methods for measuring particle normal stresses. (a) Grid pressure measurement: The
top plate of the rheometer consists of a grid permitting the fluid to pass through but retaining
the particles. Measuring the forces exerted on the grid thus gives access to the pressure exerted
by the particles. (b) Pore pressure measurement: The fluid pressure is measured behind a hole
covered by a grid but connected to a tube filled with the suspending fluid. The total pressure of
the suspension is measured by a pressure sensor. The difference between the two measurements
provides estimation of the particle pressure. (c) and (d) Viscous resuspension: When a settled
bed of particles is sheared, particle normal stresses develop and lead to the rise of the bed
height until an equilibrium suspension height is reached when the gravity force is balanced by
the divergence in particle normal stresses. Measurement can be conducted (c) in the plane of
shear or (d) in the plane perpendicular to the plane of shear (i.e. in the vorticity direction).

the grid thus gives access to the pressure exerted by the particles (while the grid pressure
coincides with the particle pressure for dense suspensions, this may not be completely
true otherwise as we shall see later). An alternative method is to measure the fluid
pressure and infer the particle pressure by subtraction to the total pressure as done by
Dbouk et al. (2013) in a parallel plate rheometer and by Garland et al. (2013) in a Couette
rheometer, see figure 11 (b). This can be achieved by measuring the pore pressure behind
a hole covered by a grid in a tube filled with the suspending fluid as done in the osmotic
pressure analogical experiment described in the preceding paragraph (Deboeuf et al.

2009). A second pressure sensor measures the total pressure exerted by the suspension
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Figure 12. Ratio of particle pressure in the gradient direction to shear stress,
−σp

22
/τ = ηn,2/ηs = 1/µ, versus φ. Experiments of Boyer et al. (2011a) with polystyrene

(PS) spheres of diameter d = 580µm suspended in polyethylene glycol-ran-propylene
glycol monobutylether as well as poly(methyl methacrylate) (PMMA) spheres of diameter
d = 1100µm suspended in a Triton X-100/water/zinc chloride mixture and of Dagois-Bohy
et al. (2015) with polystyrene (PS) spheres of similar sizes, both measuring the pressure
on a grid, of Dbouk et al. (2013) with polystyrene spheres of diameter d = 140µm
suspended in a mixture of water, UCON oil, and zinc bromide and of Garland et al.
(2013) with polystyrene spheres of diameters d = 40 and 140µm suspended in polyethylene
glycol-ran-propylene glycol monobutylether, both combining measurements of pore pressure
and total pressure. Correlation of Zarraga et al. (2000), 2.17φ3 exp(2.34φ), using the
resuspension data of Acrivos et al. (1993) to infer σp

33
and their measurement of the second

normal stress difference, N2 = Σ22 − Σ33, of the whole suspension mixture (assuming
that the differences in normal stresses of the whole suspension and of the particle phase
are identical). Numerical simulations of Gallier et al. (2014) containing only the contact
contributions for σp

22
with µp = 0.5. Rheological model proposed by Morris & Boulay (1999):

ηs(φ) = 1+ (5/2)φ(1− φ/φc)
−1 +Ks(φ/φc)

2(1− φ/φc)
−2 and ηn(φ) = Kn(φ/φc)

2(1− φ/φc)
−2

with Ks ≃ 0.1, Kn ≃ 0.75, λ2 ≃ 0.8, and λ3 ≃ 0.5. Rheological model proposed by
Boyer et al. (2011b): ηs(φ) = 1 + (5/2)φ(1 − φ/φc)

−1 + µc(φ)(φ/φc)
2(1 − φ/φc)

−2 and
ηn(φ) = (φ/φc)

2(1 − φ/φc)
−2 with µc(φ) = µ1 + (µ2 − µ1)/[1 + I0φ

2(φc − φ)−2] and
µ1 ≃ 0.32, µ2 ≃ 0.7, I0 ≃ 0.005, λ2 ≃ 0.95, and λ3 ≃ 0.6. In both cases, we have plotted
ηn,2/ηs = λ2 ηn/ηs and have chosen φc = 0.585 as found experimentally by Boyer et al. (2011b)
but have also plotted the correlation of Morris & Boulay (1999) with their originally chosen
φc = 0.68.

and the difference between the two measurements provides estimation of the particle
pressure. Other configurations, such as viscous resuspension of an initially settled layer
of negatively buoyant spheres, also provide indirect information on the particle pressure,
see figure 11 (c) and (d). Measurement can be conducted in the plane of shear using an
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annular parallel geometry (Leighton & Acrivos 1986) or in the plane perpendicular to the
plane of shear (i.e. in the vorticity direction) using a Couette device (Acrivos et al. 1993).
When the suspension is sheared, particle normal stresses develop, leading to a dilatation
of the sediment layer. An equilibrium resuspension height is reached when the gravity
force which pulls the particles downwards is balanced by the divergence of the particle
normal stresses which tend to dilate the sediment. Viscous resuspension will be treated in
more details in § 3.3.2. Along the same lines, shear-induced migration that we introduce
in figure 8 (a) can also give some indirect information on particle normal stresses, as the
divergence of the normal stresses becomes zero when the flow is fully developed. This
migration phenomenon will be addressed more fully in § 3.3.1.
Using the same dimensional arguments as those used in § 2 for the viscosity and the

normal stress differences, particle normal stresses are also found to scale viscously and
are linear in the modulus of the shear rate, since they must be independent of the sign
of the shear rate as previously noted for the normal stresses of the whole suspension.
As suggested by the physical discussions of the previous paragraphs of this section § 3.1,
particle pressures are positive meaning that normal stresses are negative. The particle
normal stress along the direction perpendicular to the shearing flow direction can be
thus written as −σp

22 = ηn,2ηf |γ̇|. We introduce here a so-called relative normal viscosity,
ηn,2(φ), which is again a sole function of φ and presents the same divergence with φ as
ηs(φ) when approaching the critical volume fraction φc, i.e. ηs and ηn,2 both diverge as
∼ (φc −φ)−2 at jamming. Note that, for the moment, only the normal stress component
along the flow-gradient direction is discussed; the other components are discussed in the
following.
Figure 12 shows a collection of most of the available experimental data obtained

by using the methods presented earlier and sketched in figure 11. As for the normal
stress differences of the whole suspension presented in § 2.2, we have plotted the ratio of
particle pressure to shear stress, −σp

22/τ . This ratio is also that of the normal and shear
viscosities and is related to an effective friction coefficient, µ, as −σp

22/τ = ηn,2/ηs = 1/µ
(the frictional approach to suspension rheology will be further discussed in § 4.1). It
is important to emphasise that µ is a ‘macroscopic’ effective friction coefficient of the
suspension and thus differs from the ‘microscopic’ friction coefficient between particles,
µp, introduced earlier in § 2.1. Despite some scatter, the data coming from different
methods and using different fluid-particle combinations show a reasonable collapse onto
the same curve (with the exception of the correlation of Zarraga et al. 2000, which
presents deviations at large φ). Importantly, the ratio ηn,2/ηs tends toward a constant
value (≈ 3, i.e. µc ≈ 0.3) when φ reaches φc(≈ 0.58−0.59), implying that the divergences
of the two viscosities are similar. In the dilute limit, this ratio is seen to vanish, meaning
that ηn,2 also vanishes since ηs stays finite (ηs = 1 at φ = 0). Whether there exists a
critical volume fraction below which the particle pressure disappears remains an open
question. We have also reported in this graph the contact contributions to the normal
stress coming from the simulations of Gallier et al. (2014) presented earlier for the
viscosity and normal stress differences in § 2 (see figures 4 and 7). These simulations
which account for particle roughness and frictional contacts between the particles agree
well with the experiments. This suggests that contact may act as the dominant component
in the particle pressure in particular at large φ (this will be further discussed in § 5.2).
Up to now, only the component of the particle stress along the gradient direction,

i.e. −σp
22, has been addressed. In some configurations, it is also possible to measure

the other components, −σp
11 and −σp

33, and to show that differences in particle normal
stresses exist. However experimental data are scarce and often rely on measurements
of the differences in normal stresses of the bulk suspension presented in § 2.2. This is
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for instance the case for the different components given by Zarraga et al. (2000) who
use the resuspension data of Acrivos et al. (1993) to infer σp

33 and their measurement
of N1 and N2 (see figure 7) as well as for those given by Dbouk et al. (2013) who use
their measurement of σp

22 (see figure 12) and of N1 and N2 (see figure 7). Whether the
differences in normal stresses of the bulk suspension and of the particle phase coincide
is not completely deciphered and is a question related to the origin of the stresses that
we will try to address in the following § 3.2. In the dense regime, where contacts between
the particles are preeminent, it is likely that the two may be similar.
The particle normal stresses can be written in a tensorial form as

−ηf |γ̇|





ηn,1(φ) 0 0
0 ηn,2(φ) 0
0 0 ηn,3(φ)



 , (3.1)

where the normal viscosities in each direction, ηn,i(φ) (with i = 1, 2, and 3), tend toward
zero in the dilute limit and diverge in a similar way as ηs(φ) when approaching φc. While
having similar high and low concentration limits, the different components of the particle
normal stress may not vary exactly in the same way with φ (Dbouk et al. 2013). However,
there is not enough observations to yield firm conclusions on their respective behaviours.
In the literature, a simplified form of this particle normal stress tensor has often been
used, assuming a similar φ-dependence in all the directions (Morris & Boulay 1999). The
particle normal stress tensor (3.1) takes then the simpler form

−ηn(φ) ηf |γ̇|





1 0 0
0 λ2 0
0 0 λ3



 , (3.2)

with

ηn(φ) = Kn
φ2

(φc − φ)2
, (3.3)

which gives an O(φ2) dependence at small φ and a divergence in (φc − φ)−2 similar
to that of ηs near φc. This is a practically useful simplification as the particle normal
stress tensor is only determined by a single scalar function, ηn(φ), and two constant
anisotropy coefficients, λ2 and λ3, and thus amenable to computation, e.g. for shear-
induced migration or resuspension calculations as will be seen in § 3.3. The coefficients
were found to beKn ≈ 0.75, λ2 ≈ 0.8, and λ3 ≈ 0.5 by Morris & Boulay (1999) who chose
them to match experimental results on shear-induced migration, and Kn ≈ 1, λ2 ≈ 0.95,
and λ3 ≈ 0.6 by Boyer et al. (2011a) and Couturier et al. (2011) who inferred them from
pressure-imposed rheological and normal stress difference measurements. The correlations
proposed by Morris & Boulay (1999) as well as Boyer et al. (2011a) and Couturier et al.
(2011) are reported in figure 12 with φc = 0.585. The equations used for ηs are similar to
that of Eilers that we give at the end of § 2.1. While quantitative difference is observed
at high concentrations, in particular for the values at φc as 1/µ(φc) = λ2/µ1 ≈ 2.97 in
the Boyer et al. (2011a) rheology while 1/µ(φc) = λ2Kn/Ks ≈ 6 in the Morris & Boulay
(1999) rheology, similar trends are observed over the lower range of φ. Note that Morris
& Boulay (1999) originally used φc = 0.68; this original correlation is also plotted in
figure 12.

3.2. Two-phase modelling of viscous suspensions

In principle, a complete calculation of the motion of solid particles in a Newtonian
fluid is given by solving the Newton equations of motion for the translation and the
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rotation of each particle and the Navier-Stokes equations, or the Stokes equation in the
absence of inertia, for the fluid with the no-slip conditions on the surface of each particle
and on the walls. Such type of direct calculation can now be done numerically as we
have seen in the above sections although this may prove to be quite a complex task.
An alternative route is to use continuum two-phase modelling which assumes that the
interstitial fluid and the particles are two intertwined continuous phases and to derive
the governing equations which describe the system in an average sense for each phase.
This has important practical interest as it provides the knowledge of average quantities,
e.g. the average values of the fluid velocity, particle velocity, and fluid pressure over
some small region in the surrounding of each point of the system of interest, which is
all that may be required in most of the flow situations. Different ways of performing the
averaging process have been used: (i) local space averaging over regions smaller than the
macroscopic length scale but larger than the particle size or (ii) ensemble averaging at
each point of space over “macroscopically equivalent” systems. Each type of averaging
is purely a formal process and should lead to essentially the same equations if properly
done. It generates averaged quantities more numerous than the available equations and
therefore there is a closure problem, i.e. a need for some constitutive relations, which is
a central issue in the modelling.
We do not provide here the details of the formal derivation of the governing equations

but give some hints on how to proceed. For this purpose, we follow Jackson (1997)
by using local space averages which are closer to the way quantities are measured
experimentally. The basic idea behind this approach is to replace the point variables by
local mean variables by averaging the point variables over a representative region which
contains enough particles but is still smaller than the length scale of macroscopic spatial
gradients. The formal averaging process is performed using a weighting function having
a radius of precisely the size of the representative region so that the obtained volume
average of a property is the reflection of its value only in the vicinity of a given location,
x. Considering a suspension of non-colloidal rigid spheres of density ρp suspended in
a Newtonian fluid of density ρf and viscosity ηf , we can then define at each point,
x, the volume fraction of the solid and fluid phase, φ and 1 − φ respectively, and the
local mean particle and fluid velocity, up and uf respectively. We can also derive the
stresses of each phase and the interphase force. As in any continuum treatment, the
forces are divided into body forces and surface forces and this needs to be done in a way
that reflects the fact that the particles are dispersed in the fluid phase. Considering the
interphase force first, the way to proceed to obtain the quantity of interest for a dispersed
mixture of particles is (i) to integrate the fluid stress on the boundary of a particle to
obtain the force exerted by the fluid on a particle, fh, (i.e. the zeroth moment of the
fluid traction about the particle centre) and then (ii) to average over all the particles
present in the same representative volume to obtain the net fluid force acting through
the centre of mass of this assembly of particles, n〈fh〉p, where n is the particle number
density (number of particles per unit volume). The hydrodynamic force on the particle
phase is thus a particle-averaged force as it is intuitively reasonable for a dispersed
mixture. Because of the partition into body and surface forces already mentioned above,
the effective continuum stresses of the two phases cannot involve this hydrodynamic
force anymore. The effective stress of the particulate phase, σpp, is found to comprise
solely of terms coming from non-hydrodynamic inter-particle (contact) interactions (i.e
the particle-averaged first moment of the contact traction and higher order terms), while
that of the fluid phase contains the mean fluid stress tensor, (1 − φ)〈σ〉f , but is also
augmented by terms coming from fluid-particle interactions (i.e. the particle-averaged
first moment of the fluid traction and higher order terms), σfp. Further details of the
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derivation can be found in Jackson (1997) and Nott et al. (2011). We give below the
obtained governing averaged equations.
The equations of continuity for the fluid and the particles are respectively

∂(1− φ)

∂t
+∇ · [(1− φ)uf ] = 0, (3.4)

∂φ

∂t
+∇ · (φup) = 0. (3.5)

Adding (3.4) and (3.5), the suspension, i.e. the mixture of fluid and particles, is found
to be incompressible as previously noted

∇ ·U = 0, (3.6)

where U = φup + (1− φ)uf is the volume average velocity.
In the absence of inertia, the momentum equations for the fluid and particle phases

are found to be respectively

∇ ·
[

(1− φ)〈σ〉f + σ
fp
]

− n〈fh〉p + ρf (1− φ)g = 0, (3.7)

∇ · σpp + n〈fh〉p + ρpφg = 0, (3.8)

where g is the specific gravity force vector. Comparing (3.7) and (3.8), the interphase
force is seen to appear in the same form but with opposite signs. If the fluid is Newtonian,
the mean fluid stress tensor can be written as (1−φ)〈σ〉f = −(1−φ)pfI+2ηfE where pf

is the mean fluid pressure, E the mean strain rate of the whole suspension, and I is the
identity tensor. Adding (3.7) and (3.8) yields the momentum equation for the suspension
as a whole, i.e. for the mixture,

∇ ·
[

−(1− φ)pfI+ 2ηfE+ σ
fp + σ

pp
]

+ [ρf (1− φ) + ρpφ] g, (3.9)

which is simply the balance between gravity and the divergence of the stress tensor of
the whole suspension mixture. This total stress tensor can be written as

Σ = −(1− φ)pfI+ 2ηfE+Σ
(p), (3.10)

where the first term is a purely isotropic contribution, the second term is the deviatoric
stress that would be present in the absence of particles, and the third corresponds to the
particle contribution to the whole suspension stress, Σ(p) = σ

fp+σ
pp, which arises from

moments of the whole (fluid and contact) traction. This latter contribution corresponds
to the ‘particle stress’ defined by Batchelor (1970) for the bulk stress of a suspension.
Note that the particle contribution of Batchelor (1970) just encompasses the first moment

called the ‘stresslet’ while in the present approach Σ
(p) includes higher order terms to

account for a non-uniform suspension state. However, as noted before, the ‘particle phase
stress’ contains only the inter-particle (contact) portion, σpp, whereas the ‘fluid phase
stress’ comprises the hydrodynamic portion, σfp.

The averaged equations have been written for the two phases and for the whole
suspension but only two sets are really needed. In the particulate flow community, one
commonly uses the equations for the two phases while in the suspension community, one
favours the equations for the whole suspension seen as a continuum as presented in § 2
and complements them by those for one phase when two phase modelling is needed as
described in the present § 3. This latter description which uses the averaged equations for
the suspension, (3.6) and (3.9), supplemented by those for the particle phase, (3.5) and
(3.8), has been, in particular, developed to describe the phenomenon of shear-induced
migration introduced in figure 8 (a) that will be considered in the following § 3.3.1.
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However, at this stage, the averaged momentum balances are formal equations, and do
not form a closed set of equations together with the continuity equations. The closure
problem requires constitutive laws giving expressions for the interphase force and for the
stresses of the bulk suspension and particle phase in terms of the local averaged variables
and their derivatives.

The interphase hydrodynamic force contains the buoyancy force, the interphase drag,
but also a non drag part (Lhuillier 2009; Nott et al. 2011)

n〈fh〉p = −ρfφg + 〈fh〉pdrag + n〈fh〉pnondrag (3.11)

The interphase drag can generally be approximated by the drag force proportional to
the relative velocity between the phases, which can be written for spherical particles of
diameter d as

n〈fh〉pdrag = −
18ηf
d2

φ

f(φ)
(up −U), (3.12)

where one can use the empirical hindered settling function

f(φ) = (1− φ)nv , (3.13)

(with nv ≃ 5 at low Reynolds numbers) proposed by Richardson & Zaki (1954). The non
drag portion is more difficult to capture. It is related to forces acting on the particles
and involving gradients in the velocity field (Jackson 1997; Lhuillier 2009). An attempt
for a rigorous derivation by Nott et al. (2011) has shown that this non drag portion can
be written as a divergence of a hydrodynamic stress, σhp. This stress has been found to
be related to the moments of the interphase force taken at midpoint between particles. It
differs from the particle contribution to the hydrodynamic part of the whole suspension
stress, σfp, which is related to the moments of the fluid traction on the surface of the
particles about their centres.

We can then revisit the particle-phase momentum equation (3.8) and rewrite it as

∇ · σp + n〈fh〉pdrag + (ρp − ρf )φg = 0, (3.14)

where the stress of the particle phase, σp = σ
pp+σ

hp, comprises an inter-particle contact
stress, σpp, and an hydrodynamic stress, σhp, coming from the non drag portion of the
interphase force. This stress can be inferred from the measurements and proposed ex-
pressions discussed in the preceding § 3.1. However, as noted earlier, it is unclear whether
these measurements capture completely σ

p. For instance, the pressure grid measurement
may only capture the contact portion, σ

pp, and it is also unclear whether the pore
pressure measurements can seize the hydrodynamic portion, σhp. We however expect
that at large φ, σpp may be the dominant portion as suggested by the comparison with
the numerical simulations of Gallier et al. (2014) reporting only the contact contribution
in figure 12. Along the same lines, the proposed expression (3.3) for the normal viscosity
may not be valid for the whole range of φ and may only be realistic for large φ.

Lastly, we come back to the suspension momentum equation (3.9). The measurements
and proposed correlations discussed in § 2 provide some information on the stress tensor
of the whole suspension, Σ, (in particular on the shear viscosity, ηs(φ), and normal stress
differences, N1 and N2) but there are still some uncertainties and we do not yet possess
a full tensorial form.
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3.3. Two-phase flows of suspensions

3.3.1. Shear-induced migration

This phenomenon was first clearly identified in a Couette rheometer, such as that shown
in figure 3 (c), where the particles were seen to migrate from the high shear rate region
in the gap to the low shear rate region in the cavity beneath the inner cylinder (Gadala-
Maria 1979; Leighton & Acrivos 1987) and motivated a large body of research due to its
implication on the characterisation of suspension rheology. In pressure-driven Poiseuille
flow, the particles are seen to migrate toward the centerline, as illustrated in figure 8
(a). Again, since the first observation of such suspension inhomogeneities in pipe flows
by Karnis et al. (1966) and in channel flows by Koh et al. (1994), several experimental
studies have been performed to measure migration in pressure-driven flow in a pipe or
a channel. Earlier simulations of the pressure-driven flow in a two-dimensional channel
of a suspension were conducted using Stokesian Dynamics (Nott & Brady 1994). The
important output of these simulations were to show that the phenomenon was not due to
inertial effect since Stokesian Dynamics imposed a zero Reynolds number. More recent
methods such as the force coupling method of Yeo & Maxey (2011) wherein the flow
disturbance induced by each particle is represented by a low order multipole expansion
are now also providing effective information on the migration process.
Since the first observation of shear-induced migration, two types of migration models

have been proposed. Early efforts used a diffusion model, in which the particle migration
flux was expressed in terms of the gradients of the particle concentration and shear
rate. This diffusion model is successful in predicting migration in wide-gap Couette and
pressure-driven Poiseuille flows, but fails to predict the absence of migration in curvilinear
torsional flows (Morris & Boulay 1999). A more recent and rather successful model,
termed the suspension balance model, relates the migration flux to the divergence of the
normal stress of the particle phase (Nott & Brady 1994; Morris & Boulay 1999; Lhuillier
2009; Nott et al. 2011) and uses the two-phase approach described in the preceding
§ 3.2. We will now use this two-phase modelling to give some indication of the physical
mechanisms involved and to its connection to the suspension rheology.

To derive the migration equation, we combine the continuity equation for the particles
(3.5) with the incompressibility of the suspension (3.6),

∂φ

∂t
+U · ∇φ = −∇ · φ(up −U), (3.15)

to exhibit the migration flux φ(up −U). For neutrally buoyant particles (ρ = ρp = ρf ),
this flux can be inferred from the particle-phase momentum equation (3.14) together
with the expression for the drag (3.12),

φ(up −U) =
d2f(φ)

18ηf
∇ · σp. (3.16)

This modelling thus predicts that particle migration is driven by the divergence of the
normal components of the particle phase stress.
Considering a pressure-driven flow in a two-dimensional channel of width H as a basic

example, the migration equation can be written as

∂φ

∂t
= −

d2

18ηf

∂

∂x2

[

f(φ)
∂σp

22

∂x2

]

=
d2

18

∂

∂x2

{

f(φ)
∂ [ηn,2(φ)ηf |γ̇|]

∂x2

}

, (3.17)
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where x2 is the flow-gradient axis (note that the above expression assumes U · ∇φ ≈ 0,
since the cross-stream migration is much slower than the mean flow dynamics and the
volume averaged velocity U is considered to be mostly along the flow direction 1, and
not to depend on x1). To solve the problem, this equation needs to be complemented by
the momentum equation for the whole suspension along x1,

−G+
∂ [ηs(φ)ηf γ̇]

∂x2
= 0, (3.18)

which means that the gradient of shear stress across the channel, τ = ηs(φ)ηf γ̇, is
constant (G is the pressure gradient along the flow direction, x1).
When the flow is fully developed, the particle pressure is constant across the channel

as

−
∂σp

22

∂x2
=
∂ [ηn,2(φ)ηf |γ̇|]

∂x2
= 0. (3.19)

Since γ̇ varies in the gradient direction (zero at the centre and large at the wall), ηn,2(φ)
and thus φ must also vary to keep σp

22 constant. Consequently, where the shear rate
is low, the concentration is high and vice versa and the particles must have migrated
to the centre. To go a little bit further and obtain the concentration variation, we can
circumvent singularities arising at the centre of the channel by computing the friction
coefficient using equations (3.18) and (3.19),

µ(φ) =
ηs(φ)

ηn,2(φ)
= µw|x2|, (3.20)

where µw is the friction coefficient at the channel wall (the origin 0 is taken at the centre
of the channel). The volume fraction φ reaches the maximum packing fraction, φc, in a
central region of the channel delimited by xplug = ±µ(φc)/µw. Outside of this plugged
region, the concentration profile is given by inverting the friction function (3.20) while
ensuring that the total volume fraction in the channel corresponds to the initial (uniform)
volume fraction φ0 (therefore setting the value of µw).

To obtain the dynamics of the migration, equation (3.17) needs to be integrated
numerically using the shear rate given by equation (3.18). There are some difficulties
at the centreline of the channel where the shear rate approaches zero and the volume
fraction reaches φc, which can be resolved either by adding a minuscule constant offset
to relieve the singularity or by placing a constraint on the fluxes that prevents φ from
exceeding φc as used in the preceding frictional approach used for the steady state. Having
a phenomenological form for the normal and shear viscosities (or for the effective friction
coefficient) is essential if one wishes to use this modelling.
Evolution of the concentration profiles are depicted in figure 13 for different initial

uniform concentrations, φ0, and confinements, H/d, using the correlations proposed by
Morris & Boulay (1999) and Boyer et al. (2011a) that we introduced at the end of § 3.1
(with a realistic φc = 0.585) and displayed in figure 12. Shear-induced migration is seen
by the progressive increase in particle volume fraction at the centre of the channel and
its decrease near its edges. The fully developed profiles show a central plug where the
volume fraction is equal to φc. This steady profile, given by solving equation (3.20), is
independent of the confinement H/d and only depends on the initial bulk volume fraction
φ0, as evidenced by the similar steady profiles obtained for φ0 = 0.3 at two different values
of H/d (= 11 and = 20) in figure 13. The dynamics to achieve steady state is much faster
for the smaller confinement (typically four times larger) in agreement with the scaling
of d2/H2 given by the migration equation (3.17). The two rheological laws of Morris &
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Figure 13. Shear-induced migration in a channel flow. Evolution of the concentration profiles
for different confinement, H/d = 11 in the top graphs (a) and (b) and = 20 in the bottom
graphs (c) and (d), and different initial bulk volume fraction, φ0, from solving the migration
equation (3.17) using the rheological laws (with a realistic φc = 0.585) of Morris & Boulay
(1999) (green solid lines) and Boyer et al. (2011a) (blue dashed lines) at different dimensionless
times (made dimensionless by using the channel half width H/2 as the length scale and
the mean velocity of the channel flow as the velocity scale) = 0, 10, 50, 200, 500 (top) and
= 0, 10, 50, 100, 1000, 2000 (bottom); thicker lines indicate the steady solutions. Also shown are
fully developed concentration profiles from the numerical simulations of Yeo & Maxey (2011)
and the experimental measurements of Lyon & Leal (1998) at similar values of H/d and φ0.
Comparison is also provided in graph (b) with the experiments of Snook et al. (2016) in a pipe
flow at a similar value of D/d = 8.21 where D is the diameter of the pipe.

Boulay (1999) and Boyer et al. (2011a) give similar trends with however a slightly wider
central plug obtained in the case of the correlations of Boyer et al. (2011a).

Comparisons are also provided with steady profiles obtained in the numerical sim-
ulations of Yeo & Maxey (2011) and the experimental measurements of Lyon & Leal
(1998). The main disagreement is that the two-phase modelling always predicts a cen-
treline concentration at maximum packing φc(= 0.585) while experiments and numerical
simulations present a maximum central volume fraction which decreases with decreasing
volume fraction (this central volume fraction decreases down to 0.4 at φ0 = 0.2). To
remedy this failure of the modelling, a non-local correction has been used to reduce the
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concentration in the middle of the channel. However, this non local approach relies on ad
hoc parameters and can lead to a faulty shape of the profile at the centre (see e.g. Snook
et al. 2016). Another difference is that the continuum modelling is of course unable to
predict the formation of particle layers near the wall observed in the simulations of Yeo
& Maxey (2011). While not seen in the channel flow experiments of Lyon & Leal (1998),
this layering due to the confinement of the particles has been reported in the pipe flow
experiments of Snook et al. (2016) that are shown for comparison in figure 13.
We have made comparison for the steady state regime but not for the transient dynam-

ics as there is a lack of numerical simulations and experiments which have addressed this
issue. Experiments measuring the transient dynamics of the migration process have been
performed in an oscillating pipe flow (Snook et al. 2016) and present a slower dynamics
than the predictions for a steady pressure-driven pipe flow using the rheological laws of
Morris & Boulay (1999) and Boyer et al. (2011a) (see § 6.2 for a discussion of oscillatory
flows of suspensions). Another point which is still unclear is whether there is a threshold
in bulk volume fraction, φ0, below which migration ceases. Some experiments did not
detect migration for φ0 . 0.1 while others did. This is of course linked to the open
question of the existence of a critical volume fraction below which the particle pressure
disappears that we addressed earlier in § 3.1.
The suspension balance model presented here gives a physical understanding of the

migration process through the concept of the particle normal stress which produces the
driving force for the motion of the particles. The predictions are reasonable at large
volume fractions but discrepancies regarding the centreline concentration and the rate of
migration are seen at lower volume fractions. This modelling relies heavily on having well
founded rheological laws. The two rheological laws of Morris & Boulay (1999) and Boyer
et al. (2011a) may not be valid for the whole range of volume fractions and certainly
do not account for variation in the rheology between the bulk region and the near-wall
region where layering occurs. More work is needed to obtain the proper stress functions.

3.3.2. Viscous Resuspension

The phenomenon of viscous resuspension was first discovered by Gadala-Maria (1979)
while measuring the rheological properties of suspensions of coal particles in viscous
Newtonian fluids using a parallel plate device. Under shear, the initially settled bed of
heavy, non-Brownian particles, was observed to re-suspend and the flowing suspension
was seen to achieve a non-uniform concentration profile. The study was pursued by
Leighton & Acrivos (1986) who used an annular parallel plate geometry to measure
resuspension in the plane of shear. They showed that the equilibrium resuspension height
achieved by the initially settled bed of particles could be modelled as a diffusive flux
process balancing the downward gravitational flux of particles, both fluxes acting in the
shear gradient direction as depicted in figure 11 (c). Measurements were later performed
by Acrivos et al. (1993) using a narrow gap Couette device where the shear rate was
approximatively constant across the gap, and unlike the later case, the fluxes were normal
to the plane of shear, i.e. along the vorticity direction as sketched in figure 11 (d).
Resuspension can be treated equivalently as a process caused by the divergence of particle
normal stresses using again the two-phase modelling introduced in § 3.2.
We analyse here the situation described by Acrivos et al. (1993) where the resuspension

of particles is in the vorticity direction, along x3 opposing gravity, while the shear has a
constant value in the horizontal 1-2 plane, as shown in figure 11 (d). Initially, the spheres
are settled and form a layer of height h0 having an uniform volume fraction φ0 ≈ φc.
Under shear, the settled layer of particles re-suspends and eventually adopts a steady
concentration profile varying from an unknown volume fraction φb at the bottom of the



Dense granular suspensions 27

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

x3/h0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

φ
A =0.001

A =0.01

A =0.1

A =1

A =2

10−4 10−3 10−2 10−1 100

A = ηf |γ̇|/(ρp − ρf) gh0

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(h
−

h
0)
/h

0

Two-phase model with ηn,3 ∝ φ2/(φc − φ)2

d = 68 µm in Dow 200

d = 139 µm in Dow 200

d = 387 µm in Dow 200

d = 139 µm in Mineral oil

(a) (b)

Figure 14. Viscous Resuspension. (a) Theoretically determined concentration profile for various
A and (b) height of the resuspended layer as a function of A. The two-phase model uses
ηn,3(φ) ∝ φ2/(φc−φ)2 with a proportionality coefficient chosen to be = 0.6 and with φc = 0.585.
The symbols of graph (b) correspond to the experimental data of Acrivos et al. (1993) with
different combinations of fluids and particles.

suspension, at x3 = 0, to a zero concentration at the interface between the resuspended
layer and the pure fluid, at x3 = h. In the fully developed state, the particle-phase
momentum equation (3.14) in the direction of gravity becomes

∂σp
33

∂x3
= −

∂ [ηn,3(φ)ηf |γ̇|]

∂x3
= −ηf |γ̇|

∂ [ηn,3(φ)]

∂x3
= (ρp − ρf )φ g, (3.21)

which, by rewriting it as

A
1

φ

dηn,3
dφ

dφ = −
dx3
h0

, (3.22)

and by integrating from the bottom to a given position, provides direct information on
the concentration profile, and by integrating across the whole resuspended layer, gives
the normalised resuspension height, h/h0. Equation (3.22) exhibits the dimensionless
parameter of the problem, A = ηf |γ̇|/(ρp − ρf ) gh0, which represents the ratio between
viscous and buoyancy forces. It must be complemented by the conservation of the total
volume of particles,

h0φ0 =

∫ h

0

φ dx3, leading toφ0 = Aηn,3(φb) from (3.22), (3.23)

to infer the particle volume fraction φb at the bottom.
As in shear-induced migration, the model relies on having a reliable correlation for the

normal viscosity (here along the vorticity direction, ηn,3). We have again chosen to use the
correlations proposed by Morris & Boulay (1999) and Boyer et al. (2011a) introduced at
the end of § 3.1. They both give ηn,3(φ) ∝ φ2/(φc−φ)

2 with a proportionality coefficient
here chosen to be = 0.6 (as predicted by the correlation of Boyer et al. 2011a) and
φc = 0.585, see equation (3.3). Fully developed concentration profiles are displayed in
figure 14 (a). For low A, they are consistent with the existence of a sharp interface between
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(a) (b)

Figure 15. Examples of gravity-driven flows of suspensions of negatively-buoyant particles.
Flows of immersed heavy particles (a) down an inclined plane and (b) in a tumbler. In both
cases, the driving force is gravity; it controls the level of stress experienced by the particle phase
whereas the volume fraction is free to adjust to the flow condition.

the clear fluid and the resuspended layer. The interface grows softer as the parameter
A and thus the resuspended layer depth increases. Unfortunately, no experimental data
are available for comparison. The only available information from the experiments of
Acrivos et al. (1993) is the normalised height of the resuspended layer, h/h0, plotted
versus A in figure 14 (b). The experimental data coming from combinations of different
fluids and particles are seen to collapse onto a single curve, thus evidencing that A is
the single parameter of the problem. The model however agrees well with the data only
at low values of A, i.e. when the resuspension front is not very wide. It may be that
the correlation used for ηn,3 may not be adequate at low φ. This correlation however
presents a realistic divergence as (φc − φ)−2 in the high-φ limit, i.e. near maximum
packing. It is worth mentioning that these experimental data were the basis for Zarraga
et al. (2000) to propose an ηn,3 which diverges at maximum packing with an exponent −3;
this correlation is shown in figure 12 and does not agree well with other measurements of
the particle pressure and more importantly does not agree with the −2 divergence of the
viscosity. Clearly, this needs further exploration to seek the origin of the disagreement.

4. An alternative frictional approach

The classical approach to the rheology of suspensions presented in § 2 and § 3 considers
that the ruling parameter is the particle volume fraction, φ. The rheological laws for the
viscosity, for the normal stress differences, and for the particle stresses are thus expressed
solely as functions of φ. However, under some flow configurations, the volume fraction is
not controlled and is a free adjustable parameter. This situation occurs in particular in
the case of gravity-driven flows. The flow of heavy particles down an inclined plane (a
configuration of interest for the understanding of submarine avalanches in geophysics) or
the flow of heavy grains in a tumbler (a configuration of interest for mixing processes),
depicted in figure 15 (a) and (b) respectively, are examples of immersed granular flows
in which φ is not imposed. Gravity is the driving force; it controls the level of stress
experienced by the particle phase whereas the volume fraction is free to adjust to
the flow condition. This suggests a description of the constitutive laws in which the
control parameter is the stress imposed to the particle phase and no longer the volume
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fraction. This alternative description, coined “pressure-imposed rheology” by contrast
to the classical “volume-imposed rheology”, is derived from the rheological approach
developed to describe dry granular flows and hinges on a frictional view of the problem
(see e.g. Forterre & Pouliquen 2008).
The pressure-imposed rheology of suspensions is presented in § 4.1. The alternative

scaling laws are first introduced by dimensional arguments, as was done in § 2 for the
classical volume-imposed rheology, and then compared to those found for dry granular
material. Experimental and numerical data available in the literature are also presented.
The two pressure-imposed and volume-imposed approaches are shown to be equivalent
representations of the suspension constitutive laws. The relevance of the pressure-imposed
description is finally seen in § 4.2 when applied to two flow configurations where gravity
controls the stress experienced by the particle phase, namely flows down inclined planes
and sediment transport.

4.1. Pressure-imposed rheology of viscous suspensions

The basic configuration for studying pressure-imposed rheology is sketched in fig-
ure 16 (b). Neutrally-buoyant particles of mean diameter d suspended in a fluid of
viscosity ηf are confined and sheared between two (roughened) plates. The top plate
of the shearing device is a grid which enables fluid to flow through it but not particles
as the grid mesh openings are smaller than the particle sizes. This device, which has
been introduced in § 3 as one method to measure particle pressure, see also the sketch
in figure 11 (a), is described more fully here. The grid is moved horizontally to impose
a shear rate γ̇ but more importantly its vertical position is not fixed, in contrast to the
volume-imposed case depicted in figure 16 (a). A constant force is applied to the grid and
its vertical position adjusts to the flow conditions. The control parameter is no longer the
volume fraction, φ, but is the normal stress imposed by the top plate on the particles. In
this configuration, increasing the shear rate induces more collisions between particles, i.e.
a higher particle pressure exerting a larger thrust on the top plate. As a consequence, the
fluid can flow through the grid inside the cell and this leads to dilating the suspension,
i.e. a decrease in volume fraction. At steady state, the applied normal stress on the grid
is balanced by the shear-induced granular pressure, −σp

22. For the sake of simplicity, we
note P p = −σp

22, the particle pressure imposed on the grid, in the following.
In this configuration, the shear rate γ̇ and the particle pressure P p are imposed, and

the unknowns are the shear stress, τ , on the top plate and the particle volume fraction,
φ. Two constitutive laws are then needed to express τ and φ as functions of P p and
γ̇. The same assumptions as those made in section 2.1 hold, namely: (i) the particles
are rigid, i.e. no elastic stress scale linked to the deformability of the particles is taken
into account, (ii) the regime considered here is viscous (no inertia), i.e. the problem
does not involve the density of the particles, (iii) the particles interact only through
hydrodynamics or frictional contact interactions, which again do not introduce any stress
scale other than the imposed stress P p, (iv) the system size is large enough for the distance
between the two plates, h, (much larger than the particle size d) to play any role. Under
these assumptions, dimensional analysis implies that the system is controlled by a single
dimensionless number called the viscous number,

J =
ηf γ̇

P p
. (4.1)

This dimensionless shear rate, J , can be also interpreted as the ratio of the typical
viscous stress, ηf γ̇, to the imposed pressure, P p, or as the ratio of the time scale of
the deformation, 1/γ̇, to a viscous time scale, ηf/P

p. Considering that J is the single
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(a) (b)

Figure 16. Volume-imposed versus pressure-imposed rheometry. (a) Volume-imposed
rheometry: A suspension of neutrally-buoyant particles is confined between two (roughened)
plates; the suspension is sheared at a constant shear rate; the gap between the plate is
kept constant; the suspension is thus sheared at a given shear rate and constant volume
fraction. (b) Pressure-imposed rheometry: Neutrally-buoyant particles are confined between a
(roughened) fixed lower plate and a (roughened) porous, top plate which enables fluid to flow
through it but not particles; the top plate is moved horizontally, shearing the suspension at a
constant rate, but is free to move vertically; a constant, vertical force is applied to the top plate,
the height of which can adjust in response to dilation or compaction of the sheared suspension;
the assembly of immersed particles is thus sheared at a given shear rate under a confining
pressure.

dimensionless number, and that P p is the only stress scale in the system, the constitutive
laws can be written as

τ = µ(J)P p and φ = φ(J), (4.2)

where the shear stress τ is proportional to the imposed P p through a coefficient of
proportionality, the macroscopic friction coefficient µ, which is a single function of J ,
and where the volume fraction φ is also a sole function of J . At first glance, the frictional
character of these constitutive laws contrasts with the viscous nature of the suspension
rheology discussed in section 2.1. In fact, the two approaches are fully reconcilable as
discussed in the following.
Before connecting these two views of the rheology of viscous suspensions, it is worth

comparing the predicted forms of the constitutive laws for viscous, immersed granular
media to those found in the dry case. In this latter situation, the influence of the
interstitial fluid is negligible and the viscosity ηf is thus irrelevant. Conversely, since
particle motions are controlled by inertia, the particle density ρp is pertinent to the
problem. Dimensional analysis is also sufficient to infer the form of the constitutive laws
and a single dimensionless number can be constructed from the imposed parameters, P p

and γ̇, and from the particle properties, d and ρp. This number is called the inertial
number and is given by

I =
γ̇d

√

P p/ρp
. (4.3)

The constitutive laws adopt the same expressions as (4.2), with the inertial number I
in place of the viscous number J . Note that, in the viscous case, the constitutive laws
do not involve the particle size d, meaning that, under the same shear rate and same
confining pressure, τ and φ are kept the same independently of the particle size, whereas,
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in the dry case, the inertial number, I, explicitly depends upon d, meaning that particle
size plays a crucial role in dry granular media.

Returning to viscous suspensions, we examine the friction and volume fraction laws,
µ(J) and φ(J) respectively, obtained using pressure-imposed rheometry measurements.
The experiments were conducted using a custom-built rheometer that was originally
designed by Boyer et al. (2011a) and then modified by Dagois-Bohy et al. (2015). This
rheometer consists in an annular shearing cell covered by a porous top plate free to
move vertically. The force applied on the top plate controls the particle pressure whereas
the volume fraction is free to adjust during the shear, as sketched in figure 16 (b).
The advantage of this pressure-controlled device where the suspension is free to dilate
(or to contract) is to provide rheological measurements extremely close to the jamming
transition, in a range of concentration where conventional rheology usually fails. The
drawback is that the measurements are less accurate for dilute suspensions as the particle
pressure becomes very small and thus difficult to evaluate.

The graphs (a) and (b) of figure 17 present a collection of data for J . 0.1 (φ & 0.45)
using different combinations of particles and fluids. We have supplemented these graphs
with the simulation data of Gallier et al. (2014) obtained for a higher range of J
(lower range of φ), using the contact contribution of the normal stress as the confining
pressure. These data coming from experiments and from simulations of frictional particles
reasonably collapse onto the same constitutive curves. There are some discrepancies for
the µ(J) curve at high J , i.e. low φ. The friction coefficient, µ, is found to be an increasing
function of the viscous number J , starting from a finite value µc ≈ 0.3 at vanishing J and
continuously increasing with increasing J . The volume fraction is a decreasing function
of the viscous number J , starting from a critical value φc ≈ 0.58 − 0.59 at vanishing
J and rapidly decreasing with J at larger J . The limit of vanishing J corresponds
to γ̇ going to zero, that is commonly called the ‘quasi-static’ limit in the granular
community. Interestingly, this limit for granular suspensions and dry granular media
seems to coincide. The critical values for the friction coefficient, µc, and for the volume
fraction, φc, are found to be identical in suspensions at vanishing J and in dry granular
media at vanishing I. This may suggest that, in this limit, the interstitial fluid and
therefore the hydrodynamics interactions do not have a significant role.

To be comprehensive, we have also plotted in figure 17 the rheological models proposed
by Morris & Boulay (1999) and Boyer et al. (2011b) introduced in § 3. The correlations
of Morris & Boulay (1999) were deduced from matching experimental results on shear-
induced migration while that of Boyer et al. (2011b) is based on their experimental results
(plotted in figure 17) and include two contributions: one coming from hydrodynamic
stresses, and one due to contact stresses similar to that found in dense granular flow.
The trend is correct even though the model of Morris & Boulay (1999) underestimates the
values of µ (in particular in the quasi-static limit) as previously noted when discussing
figure 12. Again, these correlations are both plotted using the experimentally measured
φc = 0.585 but we have also shown the original correlation of Morris & Boulay (1999)
using φc = 0.68 in the upper graphs (a) and (b) of figure 17.

To sum up, the rheology of dense granular suspensions under imposed-pressure flow
conditions is well described by the constitutive laws (4.2) and shares similar features with
dry-granular rheology as long as the viscous number J defined by (4.1) is substituted
for the inertial number I given by (4.3). On the other hand, in the classical description
of the rheology of suspensions (presented in § 2 and § 3) in which the particle volume
fraction is imposed, the shear stress and the particle pressure are linear function of the
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Figure 17. Pressure-imposed, µ(J) and φ(J) (a) and (b) respectively, and volume-imposed,
ηs(φ) and ηn,2(φ) (c) and (d) respectively, rheologies. Insets of the graphs (c) and (d): logarithmic
plots of ηs(φ) and ηn,2(φ) versus φc − φ. Experiments of Boyer et al. (2011a) with polystyrene
(PS) spheres of diameter d = 580µm suspended in polyethylene glycol-ran-propylene glycol
monobutylether as well as poly(methyl methacrylate) (PMMA) spheres of diameter d = 1100µm
suspended in a Triton X-100/water/zinc chloride mixture and of Dagois-Bohy et al. (2015) with
polystyrene (PS) spheres of similar sizes. Numerical simulations of Gallier et al. (2014) using
only the contact contributions of −σp

22
as the confining pressure (with µp = 0.5). Rheological

models proposed by Morris & Boulay (1999) and Boyer et al. (2011a) and correlation of Eilers.
These data were used to infer the variation of 1/µ (ratio of particle pressure in the gradient
direction to shear stress) as a function of φ in figure 12 where they are plotted together with
other measurements of the particle pressure.
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shear rate,

τ = ηs(φ) ηf γ̇ and P p = ηn,2(φ) ηf γ̇, (4.4)

where ηs(φ) and ηn,2(φ) express the rheological functions for the shear and normal
viscosities. These two descriptions, equations (4.2) and (4.4), are equivalent and are
two different ways of writing the same rheological laws. For a steady simple shear, it is
easy to show that the two functions ηs(φ) and ηn,2(φ) are related to the two functions
µ(J) and φ(J) by the two following relations

ηn,2(φ) =
1

J(φ)
and ηs(φ) =

µ(φ)

J(φ)
(4.5)

where J(φ) is the inverse function of φ(J) which is unambiguously defined since φ is a
monotonic function of J .

Using these relations (4.5) for the µ(J) and φ(J) data of the graphs (a) and (b) of
figure 17, the viscosity laws, ηs(φ) and ηn,2(φ), can be be inferred, as shown in the
graphs (c) and (d) of the same figure 17. Both viscosities are increasing with increasing
φ and diverge at φc, as previously discussed in § 2 and § 3 (see figures 4 and 12).
It is important to emphasise again that the shear and normal viscosities present the
same divergence (φc − φ)−2 as evidenced in the insets of graphs (c) and (d) and also
stressed by the finite value of µ for vanishing J . The divergence of the viscosities at φc
in the volume-imposed approach corresponds to the quasi-static limit at vanishing J in
the pressure-imposed view. This latter frictional approach is particularly well suited to
study the jamming transition, because it circumvents the divergence of the viscosities.
Decreasing the shear rate while keeping the confining particle pressure constant is indeed
a more amenable way to approach the jamming than increasing the volume fraction in a
fixed volume configuration.
A last remark is that, although the two configurations are equivalent when considering

the averaged values of the variables, they are not fully equivalent for the fluctuations. In
the pressure imposed configuration, the volume fraction is free to adjust, meaning that it
may fluctuate during shear under constant particle pressure, whereas in a volume imposed
configuration, the volume fraction is strictly constant and the pressure fluctuates. These
differences may influence behaviours like finite size effects in small systems and explain
why the study close to the jamming transition in a pressure-imposed rheometer is easier
than in a conventional rheometer, as some freedom is given to the system to dilate
transiently and avoid transient jamming. The question of the fluctuations and their role
close to the maximum volume fraction remains an important and open question.

4.2. Flow of immersed granular media

4.2.1. Flows down an inclined plane

To illustrate the difference between pressure-imposed and volume-imposed situation,
it is worth starting by discussing the flow of a suspension down an inclined plane. Two
different configurations have been studied in the literature, which should not be confused
as they correspond to the two different rheological approaches. The first configuration
is illustrated in figure 18 (a). It corresponds to the classical case of granular flows down
inclined planes extensively studied in dry granular media (see e.g. Forterre & Pouliquen
2008). Heavy (i.e. negatively-buoyant) particles are released at the top of an inclined
plane totally immersed in a viscous liquid (Cassar et al. 2005). The second configuration
depicted in figure 18 (b) corresponds to the flow of a layer of a neutrally-buoyant
suspension on an inclined plane (Bonnoit et al. 2010) that was introduced as a mean
of measuring suspension viscosity in § 2.1. Although both configurations are seemingly
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Figure 18. Flows down an inclined plane: (a) Flow of heavy particles released at the top of
an inclined plane totally immersed in a viscous liquid, corresponding to a pressure-imposed
condition (typical values for glass beads are θc ≈ 20 degrees and φc ≈ 0.59); (b) Flow of a layer
of a neutrally-buoyant suspension on an inclined plane, corresponding to a volume-imposed
condition. For both cases, evolutions of the flow rate Q and of the volume fraction φ as function
of the inclination θ are sketched for different thicknesses h.

similar, their flow properties are different as, in the first case, the granular phase is free
to dilate but is confined by the gravity, whereas in the second case, the volume fraction
is prescribed.
We first analyse the granular situation of figure 18 (a). Dense particles of density ρp
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are released at the top of a rough plane inclined at an angle θ, the whole system being
immersed in a liquid of viscosity ηf and density ρf < ρp. We consider that a steady
uniform regime can be achieved, with a layer of particles of thickness h flowing with a
steady velocity and concentration profiles, u(x2) and φ(x2) respectively, where x2 is the
flow-gradient axis. In this steady uniform regime, neglecting the drag force between the
flowing layer and the fluid at rest above, the momentum balance of the particle phase,
(3.14), imposes that the shear stress of the particle phase, τp, and the particle pressure,
P p, at each position x2 are given by

∂τp

∂x2
= (ρp − ρf )φ(x2)g sin θ,

−
∂P p

∂x2
= (ρp − ρf )φ(x2)g cos θ. (4.6)

After integrating between the position x2 and the free surface h where the particle stresses
vanish, τp and P p are given by

τp(x2) = −(ρp − ρf )g sin θ

∫ h

x2

φ(x′2)dx
′
2,

P p(x2) = (ρp − ρf )g cos θ

∫ h

x2

φ(x′2)dx
′
2. (4.7)

In the dense regime controlled mainly by contacts between the particles, the bulk shear
stress coincides with the particulate shear stress τ ≈ τp and the above equations thus
imply that the friction coefficient µ = τ/P p ≈ τp/P p is constant across the layer and
is equal to the tangent of the inclination, i.e. µ = tan θ. A first consequence of this
result is that flow is possible only if tan θ > µc, i.e. only above a critical angle θc =
tan−1(µc), where µc is the critical friction coefficient. Above this critical angle, the flow
characteristics can be derived from the pressure imposed rheology stipulating that µ and
φ are function of the viscous number J only. The friction coefficient µ being constant
across the layer, the viscous number J is also constant, and subsequently the volume
fraction φ is independent of x2. The rheology thus predicts that the volume fraction
across the immersed granular avalanche is constant in the steady uniform regime. As a
consequence, the stresses, τp(x2) and P

p(x2), given by equations (4.7) vary linearly with
h − x2. From the definition of the viscous number, J = ηf γ̇/P

p, a constant J implies
that γ̇ is proportional to P p and thus to h− x2, leading to a parabolic velocity profile,

u(x2) ∝ F (θ)
(ρp − ρf )g

ηf
[h2 − (h− x2)

2], (4.8)

where F (θ) is a function of the inclination vanishing at the critical angle θc. The flow rate

Q =
∫ h

0
u(x2)dx2 varies asQ ∝

(ρp−ρf )g
ηf

F (θ)h3. The qualitative behaviour of the granular

avalanche is sketched in the bottom graphs of figure 18 (a). As previously noted, no flow is
possible below θc. When the inclination θ is increased above θc, the particles flow. In the
steady regime, the volume fraction decreases and the flow rate increases when increasing
θ. Increasing the thickness h has no influence on the volume fraction but increases the
flow rate. Experimental measurements reported by Cassar et al. (2005) partially agree
with these predictions. The observed scalings for the flow rate are consistent with the
above theoretical description. However, the flow threshold is found to depend on the
thickness of the layer and not only on the inclination, an observation not captured by
the simple rheology used above.
We now turn to the second configuration depicted in figure 18 (b). The particles
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have now the same density as the fluid (ρf = ρp) and the average volume fraction
cannot change owing to surface tension preventing the grains from popping out of the
interface. In this case, the system can be described as a flowing film of a viscous liquid
of effective viscosity ηfηs(φ). The momentum balance for the suspension mixture as a
whole, equation (3.9), implies that the suspension shear stress, τ , is given by

∂τ

∂x2
= ρfg sin θ. (4.9)

Using a zero-stress condition at the surface of the suspension layer, i.e. τ(h) = 0, the
integration of this equation leads to τ = ρfg(h − x2) sin θ which according to the
constitutive law introduced in § 2.1 should also be equal to τ = ηfηs(φ)γ̇(x2). This
implies that the shear rate γ̇ varies linearly with x2 and with sin θ. Flow is then possible
at any inclination and the velocity profile is parabolic,

u(x2) =
ρfg

2ηfηs(φ)
[h2 − (h− x2)

2] sin θ, (4.10)

leading to a flow rate Q =
ρfg

3ηfηs(φ)
h3 sin θ and a surface velocity u(h) =

ρfg
2ηfηs(φ)

h2 sin θ.

The rheological measurements of Bonnoit et al. (2010) are based on this principle and
provide the value of the viscosity ηs(φ) from the measurement of the suspension layer
thickness and surface velocity, see figures 3 (d) and 4. It is important to notice that the
above prediction only holds in the first instant of the flow. Because of the existence of
gradients of shear rate, the particles migrate towards the regions of low shear at the free
surface, as discussed in § 3.3.1. Therefore, the volume fraction does not stay uniform
across the layer. However, the migration being a slow process (with a typical scaling of
d2/h2 given by the migration equation as explained in § 3.3.1), the volume fraction can
be considered as uniform in the first instant of the flow.
In conclusion, despite the similarity between these two configurations and the physics

involved, a change in experimental conditions (pressure-imposed condition for heavy
particles without a free surface versus volume-imposed condition for neutrally-buoyant
particles with a free surface) can dramatically influence the flowing behaviour by intro-
ducing the existence of a critical angle. In many geophysical problems such as debris
flows or landslides, the situation is intermediate between these two simplified situations.
In debris flows, particles heavier than the surrounding fluid are entrained by a free
surface flow of liquid. In this case, the fluid phase and the solid phase move at different
velocities and a full two-phase approach is necessary to capture the richness and diversity
of behaviours encountered in these complex flows (Pitman & Le 2005).

4.2.2. Bedload sediment transport

Sediment transport involves the erosion, entrainment, and deposition of sediment
particles and can give rise to self-formed morphologies such as ripples and dunes. This is
a vast area of research in which a considerable amount of experimental and theoretical
studies have been carried out. We do not pretend here to cover the whole extent of the
problems encountered in this field and restrict the discussion to a situation in which beds
constituted of sedimented spheres (ρp > ρf ) are submitted to viscous shearing flows as
depicted in figure 19 and that we introduced at the beginning of § 3 as an example of two-
phase suspension flows. In this situation which has been referred as bedload transport,
the motion of the bedload particles is due to the shearing forces exerted by the fluid at
the surface of the particle layer and the particle packing is confined by gravity but is free
to dilate, corresponding to a pressure-imposed configuration.
In the steady regime of parallel shearing flows, the particle momentum equation
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Figure 19. Bedload sediment transport: Bedload describes particles that are transported along
the bed in a mode of motion in which particles roll, bounce, and slide but stay in continuous
contact within the bed. The situation depicted in the sketch corresponds to a bed of sedimented
spheres submitted to viscous shearing flows. The bedload motion is due to the shearing forces
(along the flow direction x1) exerted by the fluid at the surface of the particle layer and the
particle packing is confined by gravity (opposing the flow gradient direction x2) but is free to
dilate. The mobile particle layer of thickness hc, given by equation (4.13), is delimited by the
two horizontal dashed lines.

(3.14) along the vertical direction, x2, shows that the pressure of the particle phase
is proportional to the apparent weight of the solid phase and increases when penetrating
inside the bed,

P p = −(ρp − ρf )φgx2, (4.11)

where the origin is taken at the bed interface and x2 is opposing gravity. The momentum
equation for the whole suspension mixture (3.9) along the flow direction, x1, can be
integrated from the bed interface position to an arbitrary vertical position x2 inside the
sediment and leads to

τ(x2) = τ(0) ≡ τf (0). (4.12)

Equation 4.12 evidences the transfer between the stress of the fluid phase at the top of
the bed, τf (0), and the whole stress, τ(x2) = τf (x2)+ τp(x2), inside the bed (there is in
fact an exchange between the stresses of the fluid and solid phase, as τf decreases while
τp increases inside the bed). This constant shear stress, equation (4.12), together with
the increasing granular pressure, equation (4.11), implicate that the effective friction
coefficient µ = τ/P p = τf (0)/P p decreases with increasing depth. As a result, there
exists a critical depth inside the bed where µ reaches its critical value µc. This critical
depth for which motion stops (φ ≈ φc and µ ≈ µc) implies that the thickness of the
mobile particle layer is

hc =
τf (0)

µc(ρp − ρf )φcg
. (4.13)

Equation (4.13) also provides information on the threshold of motion, even though the
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validity of using a continuum approach in that case could be questioned. The initiation of
motion is controlled by a dimensionless number, the Shields number, which is constructed
as the ratio of the shear stress at the top of the bed to the hydrostatic pressure difference
across the grains of diameter d. Assuming that incipient motion corresponds to a particle
monolayer in motion, i.e. hc ≈ d, the critical Shields number is given by Θc = τf (0)/(ρp−
ρf )gd ≈ µcφc, in reasonable agreement with experiments in the viscous regime (Θc is
predicted to be ≈ 0.18 with φc ≈ 0.59 and µc ≈ 0.3 while it is found to be ≈ 0.12 in
experiments, see e.g. Ouriemi et al. 2009).
Finding the complete motion of the particle and fluid phases is more challenging as

this needs fully solving the two-phase equations presented in § 3.2. The difficulty then
is to have the correct constitutive laws that account for the rheological behaviour of
each phase. The problem has been tackled by using a granular frictional rheology for
the particle phase and a Newtonian rheology for the fluid phase (Ouriemi et al. 2009).
Some further simplification can be obtained by noticing that there is no (or little) slip
between the fluid and particle phase (uf = up = U) shortly after penetrating inside the
bed (typically after one layer of particle), as the drag term is dominant in the fluid phase
equation (3.7). This last assumption is significant as the problem is reduced to solving
solely the mixture equation (4.12). This type of modelling using a granular frictional
rheology has been compared successfully to experiments in the case of a Poiseuille
geometry (Aussillous et al. 2013). The choice of a Poiseuille over a Couette flow (chosen
here for its simplicity) is more realistic if one is interested in sediment transport in pipes
or in rivers (of course the Reynolds number may be much larger in these flows). Another
point is that the pressure gradient that drives the flow can produce a larger particle
flux involving a much thicker mobile layer which better justifies the use of a continuum
modelling.

5. Microscopic origin of the rheology

The previous §§ 2, 3, and 4 have been devoted to the macroscopic properties of a
suspension seen as a continuum or as a two-phase mixture, and have described the
constitutive laws obtained from volume- or pressure-imposed rheological approaches.
Relating the mechanics of the particles at the microscopic scale to these macroscopic
or bulk properties is still quite a challenge. The difficulty in tackling this issue is
twofold. First, the particles interact through complex hydrodynamic interactions (long
range hydrodynamic interactions as well as lubrication forces) but also through frictional
contacts. Second, the typical multi-body nature of the problem leads to nonlinear and
irreversible dynamics which share features with far-from-equilibrium and chaotic systems.
The microscopic origin of the observed macroscopic rheological properties has been
previously mentioned but mostly in passing. The present § 5 is dedicated to pointing
to the basic mechanisms at the grain scale that are important in the understanding of
the suspension macroscopic properties. It starts by discussing the microstructure that
develops under shear in granular suspensions in § 5.1 and then moves to the role of
frictional contact § 5.2. The last § 5.3 presents theoretical attempts at explaining the
divergence of the viscosities when approaching the jamming transition.

5.1. Microstructure

When a suspension of neutrally-buoyant hard spheres is sheared, the particles follow
the mean motion imposed by the shear but also interact with each other leading to
fluctuating motions which result in a random walk and ultimately to a diffusion process.
(We do not intend to discuss this irreversible dynamics but will touch on the subject
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(a) (b) (c)

Figure 20. Experimental pair distribution function, g(r), in the plane of shear. Data of Blanc
et al. (2013) for three different particle volume fractions, (a) φ = 0.05, (b) φ = 0.35, and (c)
φ = 0.55. The suspensions consisting of neutrally buoyant particles dispersed in a fluorescent
index-matched Newtonian liquid were sheared in a wide-gap Couette rheometer. A thin laser
sheet, perpendicular to the cell axis, illuminated the suspension. Owing to an index-matching
of high quality, Blanc et al. (2013) were able to detect accurately the relative position vectors
of particle pairs and, by averaging over different images, to compute the normalised probability
(plotted in colour scale) of finding particles at position (x1, x2) away from the reference particle
(the white disk) at position (0, 0), in the plane of shear.

in § 6.2). However, a certain organisation exists in the averaged position of the particles
relatively to each other and the particle microstructure which develops is anisotropic as
previously mentioned in § 2.
A convenient way of characterising this structure is to introduce the pair distribution

function, g(r), which indicates how the particle density varies as a function of distance
from a reference particle at the origin. Note that this probability is normalised by the
number density and that g(r) is a correlation function giving the probability of finding
a particle at position r away from the reference particle, relative to the probability of
finding a particle at any position without the knowledge of any particle positions.
The experimental determination of g(r) is difficult, and particularly challenging in the

dense regime because it requires a very accurate determination of the positions of all
the particles. Averaging also needs to be performed in order to accumulate enough data
for accurate statistics. The first attempt at obtaining g(r) in concentrated suspensions
measured the relative arrangement of the particles located near the top layer of a
concentrated suspension sheared in a Couette cell (Parsi & Gadala-Maria 1987). More
recent experimental determinations of g(r) use non-intrusive methods, such as refractive-
index matching technique or X-ray tomography, to explore the microstructure inside the
bulk of the suspension (see e.g. Blanc et al. 2013). The function g(r) can also be estimated
from numerical simulations, in particular using the Stokesian dynamics method (see e.g.
Blanc et al. 2013).
The pair distribution function of granular suspensions is expected to be independent

of the shear rate, γ̇, and to depend only on the volume fraction, φ. This again comes
from dimensional analysis and from the lack of any intrinsic time scale in the system, as
previously discussed in § 2. Studying the sole variation of g(r) with volume fraction φ is
then appropriate. Two-dimensional maps of g(r) in the plane of shear, obtained by Blanc
et al. (2013) using an index matching technique of high quality, are shown in figure 20
for different volume fractions, ranging from the dilute to the dense regime.

In the dilute regime (φ = 0.05), the pair distribution function is fore-and-aft asymmet-
ric. There is a strong pair correlation zone at contact in the approach side of the reference
particle (near |r| ≈ 2a) and a depletion of pairs close to the velocity direction (at a small
angle ≈ 6◦) in the receding side. There is also a tail-like high particle concentration
zone in the recession quadrant, that is not present in the approach quadrant. In this
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dilute regime, the interactions are mainly two-body interactions, and thus g(r) mostly
results from the dynamics of single collisions between pairs, as sketched in figure 5.
As already discussed in § 2.2, the observed asymmetry is the signature of the existence
of nonhydrodynamic forces acting between the spheres. Whereas, for perfectly smooth
spheres, the reversibility of the Stokes flow leads to reversible and symmetric trajectories
and thus to a symmetric g(r), particle surface roughness creates irreversibility leading
to asymmetric collisional trajectories (with collisional contact in the approach side and
separation in the receding side) and to non-isotropic g(r).
As φ is increased, the pair distribution function, g(r), becomes more peaked at close

contact (|r| ≈ 2a) but the depleted zone that is close to the velocity direction for φ = 0.05
rotates toward the dilatation axis direction (i.e. the π/4 direction). At high concentration
(φ > 0.45), a secondary depletion zone in the compressional quadrant and a new high
pair correlation zone near the mean flow direction are observed. Stokesian dynamics
simulations wherein repulsive forces between particles have been tuned to reproduce the
particle roughness effects present the same qualitative features as those experimentally
observed (Blanc et al. 2013).
The essential point is that the microstructure loses isotropy, establishing a preferred

direction for finding the close-contact pairs that control the observed rheology of concen-
trated suspensions. In the dilute regime controlled by pair interactions, the knowledge
of the position of the particles given by the pair distribution function provides enough
information to compute the stresses and to obtain information about the rheology (see
e.g. Wilson 2005). However, in the dense regime for which multi-body interactions
are dominant and frictional contact forces start to prevail over hydrodynamic forces,
analytic calculations are not possible and one must rely on numerical simulations as
previously noted in § 2. An important issue is then to assess the relative importance of
the hydrodynamic and contact contributions to the stresses. This cannot be accessed in
experiments as it is impossible to discriminate between true contacts or tiny open gaps
between particles, and thus inferring contact forces is difficult, but can be accessed in
simulations as discussed in the following § 5.2.

5.2. Role of contact

The development of numerical methods taking into account both hydrodynamic and
frictional contact interactions between particles that can possess some roughness repre-
sents an important advance in the study of dense suspensions as previously discussed in
§ 2. In these simulations, from the direct computation of the forces between particles, it
is possible to estimate the relative importance of the stresses carried by the contacts and
those due to hydrodynamics forces, and thus to determine what contribution controls
the observed rheological behaviours.
Figure 21 (a) reports the results of Gallier et al. (2014) showing the relative contribu-

tion of the contacts (red square) and of the hydrodynamics interactions (blue circle) to
the shear viscosity, ηs, of a suspension. A first observation is that the contribution of the
contacts remains negligible when the volume fraction is relatively low, typically φ . 0.25.
For larger φ, the contact contribution rapidly increases with increasing φ and becomes
dominant for φ & 0.4 for frictional particles (for φ & 0.48 for frictionless particles). The
hydrodynamic contribution also increases with increasing φ but at much slower rate,
showing that the rheology of suspensions is dominated by contacts in the dense regime
and in particular close to the jamming transition.
Same analysis can be made for the normal stress differences to gain insights about their

origin. For the first normal stress difference coefficient, α1 = N1/|τ |, plotted in figure
21 (b), the hydrodynamic contribution is always negative with a magnitude increasing
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Figure 21. Relative contribution of the frictional contact (red square) and of the hydrodynamic
(blue circle) stresses to the (a) viscosity, and the (b) first and (b) second normal stress differences
as a function of the volume fraction, φ. Data from the numerical simulation of Gallier et al. (2014)
including particle roughness (the dimensionless roughness, normalised by the particle radius d/2,
is 5 10−3) as well as frictional contacts between the particles (the friction coefficient between the
particles is µp = 0.5).

with increasing φ at moderate φ and then slightly decreasing at φ & 0.4, whereas
the contact contribution changes sign for φ ≈ 0.4. For moderate φ, the hydrodynamic
contribution slightly dominates while for larger φ both contributions are of the same
order of magnitude. The scenario strongly differs for the second normal stress difference
coefficient, α2 = N2/|τ |, shown in figure 21 (c). This second coefficient is dominated
by the contact contribution which presents a strong negative value. These findings show
that the first and second normal stress differences have difference physical origin, as
already discussed in § 2.2. The second normal stress difference is mainly controlled by
the contacts, whereas hydrodynamic interactions play a role in the first difference and
may be decisive in explaining the sign of N1.
To be complete on this issue, we must also recall that contact may act as the dominant

component in the normal stress of the particle phase, in particular at large φ, as noted in
§ 3.1. This is evidenced by the good agreement between experiments and the sole contact
contribution of the simulations of Gallier et al. (2014) shown in figure 12 of § 3.1.

5.3. Origin of the divergence of the viscosity

The numerical studies, discussed in § 5.2, show that, close to φc, where the suspension
viscosity diverges, the dynamics is mainly controlled by contact interactions and hydro-
dynamics becomes of minor importance. In this extreme regime of concentration, the
rheology results from geometrical constraints and interlocking between the particles and
not from long range hydrodynamics interactions or lubrication forces. This represents a
change of paradigm as the prediction of the rheological behaviour in this regime cannot
come from a better account of the multi-body hydrodynamic interactions but rather from
the understanding of the contact interactions. A promising approach (Lerner et al. 2012;
Trulsson et al. 2017) takes inspiration from theoretical developments on the jamming
transition (O’hern et al. 2003; Olsson & Teitel 2007). The theory focuses on the properties
of the contact network between the particles and on the analysis of the possible modes
of deformation of the granular packing close to jamming. Deriving the complete theory
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(a) (b)

(c) (d)

Figure 22. (a) and (b) Fluctuating particle motions from the two-dimensional simulations of
Trulsson et al. (2017) at (a) φ = 0.791 and (b) φ = 0.812. The blue scale indicates the number
of contacts between particles and the size of the arrows the magnitude of the velocities around
the imposed mean shearing velocity. (c) and (d) Cartoons explaining the lever effect for a pair of
spheres. When a horizontal velocity Vx (in red) is imposed to the left particle, the motion occurs
with a higher velocity V (in green) when closer to φc (d) owing to geometrical constraints.

is beyond the scope of this review, and we restrict the discussion to the key concepts
introduced in this approach.
To gain insight into the origin of the divergence of the viscosity, we first introduce

the concept of a local shear rate, γ̇local, which is linked to the magnitude of shear rate
experienced by the interstitial fluid between the particles (e.g. the standard deviation of
the modulus of the shear rate). Because of the presence of the rigid particles, this local
shear rate, γ̇local, is larger than the macroscopic shear rate, γ̇, imposed to the whole
suspension mixture. Dimensional analysis for rigid spheres implies that this averaged
local shear rate has to be proportional to the macroscopic shear rate,

γ̇local = L(φ) γ̇, (5.1)

with an amplification factor called the lever function, L(φ), depending solely on φ. A
relation can then be derived between the viscosity of the suspension, ηs(φ), and the lever
function, L(φ), by using dissipation argument, i.e. by estimating the energy dissipated
per unit of time and volume, P (Chateau et al. 2008). Considering the whole suspension
mixture, the dissipated energy is equal to the shear stress times the shear rate, i.e.
P = ηs(φ) ηf γ̇

2. Assuming that the dissipation mainly occurs in the interstitial fluid
and not at the contact between the particles (which is exact in the limit of frictionless
particles), P can also be related to the local shear rate, such as P = (1 − φ)ηf γ̇

2
local.

Equating these two expressions leads to the following relation between the shear viscosity
and the lever function,

ηs(φ) =
(1− φ)γ̇2local

γ̇2
= (1− φ)L(φ)2. (5.2)

This simple homogenisation argument states that the increase in viscosity is related to
the lever function, i.e. to the amplification in local shear rate when approaching φc.
To understand the evolution of the lever function in the very dense regime, it is thus
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Figure 23. Averaged fluctuating velocity of the particles, δV , scaled by the imposed velocity,
γ̇d, as a function of the volume fraction, φ, for frictionless and frictional particles (from the
two-dimensional simulations of Trulsson et al. 2017).

necessary to focus on the motion of the particles themselves, as illustrated in figure 22.
In the dense regime, the particles do not merely follow the imposed macroscopic shear
but experience highly fluctuating motions. When approaching φc, the possible mode of
deformation of the grain assembly, the so called floppy modes, becomes highly constrained
by the non-overlapping condition, leading to a dramatic increase in the fluctuating
motions. This effect is illustrated in figure 22 (a) and (b) which displays the particle
motions obtained in the simplified simulations of two-dimensional sheared suspensions
performed by Trulsson et al. (2017) for two volume fractions with that shown in the (b)
illustration being very close to the jamming point. When approaching φc, the fluctuations
increase by a strikingly large amount, as the modes of deformation compatible with the
imposed mean shear are more and more tortuous.

A cartoon illustrating this amplification effect for a pair of spheres is proposed in
figure 22 (c) and (d). If an horizontal velocity Vx is imposed to the left particle, the
geometrical constraint closer to φc, sketch (d), imposes a larger vertical motion and thus
an actual velocity V > Vx as the left particle needs to climb over the right particle. In
this cartoon, increasing φ to approach φc is equivalent to rotating the pair of particles
in order for their centres to become more closely aligned with the horizontal line. The
total velocity V induced by the imposed horizontal velocity Vx increases and diverges
when the two particles becomes aligned with the horizontal line, which can be seen as
a “lever” effect: V varies as Vx/ cos θ, where θ is the angle of the plane of contact with
the horizontal direction. In the real packing, a similar rigidity transition occurs. The
geometrical constraint becomes more stringent when approaching the jamming point,
φc, under shear. This results in particle fluctuating motion becoming faster and stronger
and this eventually leads to a divergence of the averaged fluctuating velocity when
approaching φc, shown in figure 23, and hence to a divergence of the lever function L(φ).

The theoretical challenge then lies in predicting how the fluctuating velocity scales
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with the distance to the jamming point, (φc − φ). Exact theoretical results have been
obtained in the case of frictionless particles and the viscosity has been found to diverge
as ηs ∼ (φc − φ)−2.8 (Düring et al. 2016), with an exponent of 2.8 in agreement with
numerical simulations for frictionless particles but which happens to be larger than that
measured in experiments for frictional particles, see § 2.1 as well as § 4.1. In the case
of frictional particles, the sliding contacts can indeed produce an additional source of
dissipation, and the relation (5.2) between the lever function and the viscosity becomes
debatable. It is possible in numerical simulations to discriminate between conditions
wherein the dissipation is dominated by the interstitial fluid or by the sliding contacts.
The dissipation occurs in the interstitial liquid for low friction coefficient as expected,
but also at high friction coefficient, because particles no longer slide but roll relatively
to each other. However, in the intermediate range of inter-particle friction coefficients,
dissipation due to the sliding contacts becomes important, which may lead to a change
in scaling relations.
Although not quantitative for frictional particles, this scenario based on the lever

function provides a physical explanation for the origin of the viscosity divergence by
linking it to an amplification of the particle fluctuating motions due to geometrical
constraints induced by the proximity to a rigidity transition. This is clearly a promising
path but much remains to be discovered.

6. Beyond steady flows

The rheology discussed up to now (i.e. in §§ 2, 3, 4, and 5) is only valid in steady
and uniform flows. However, in many situations, the shear rate may vary, both in
direction and intensity as well as in time or space. In those situations, the underlying
microstructure no longer coincides with the equilibrium microstructure discussed in § 5.1,
and additional complexities in the rheological behaviour are observed. There is not yet
a solid and unified framework which can encompass the diversity of the phenomena seen
in unsteady shear flows of suspensions. In this section § 6, our aim is to give a flavour of
the observed problems by discussing three typical cases: (i) the response of a suspension
when undergoing a shear reversal in § 6.1, (ii) the response of a suspension to a periodic
shear flow in § 6.2, and (iii) the transient dynamics observed during the initiation of
immersed granular flows in § 6.3.

6.1. Shear reversal

The shear reversal situation that we first address consists in shearing initially the
suspension in a constant direction at a constant shear rate, γ̇, during a long enough time
for a steady regime to be achieved and then suddenly reversing the flow, at t = 0, in the
opposite direction. The first experimental measurements were obtained by Gadala-Maria
& Acrivos (1980) in a Couette cell and the problem has been revisited more recently using
local measurements and numerical simulations (Blanc et al. 2011; Peters et al. 2016). The
response of the suspension to the sudden change in shearing direction that emerges from
these studies is sketched for large φ (i.e. typically φ & 0.4) in figure 24 where the viscosity
is plotted as a function of the accumulated strain, γ = γ̇t. During the first phase before
shear reversal, the viscosity is constant and equal to its steady value, as represented by
the blue path in figure 24. When the shear is reversed, the viscosity experiences a sudden
drop and then further increases to reach eventually the same plateau steady value after
a strain typically equal to γ ≈ 2, as shown by the red path in figure 24. Note that the
minimum of viscosity is less pronounced and the strain necessary to reach the plateau
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Figure 24. Sketch of the evolution of the viscosity as a function of the accumulated strain,
γ = γ̇t, during a shear reversal experiment at large φ, i.e. typically φ & 0.4 (from the data of
Blanc et al. 2011). The suspension is initially sheared in one direction with γ̇ < 0 (blue path),
and suddenly sheared in the reverse direction γ̇ > 0 (red path). The viscosity exhibits a sudden
drop, corresponding to the loss of the contacts, and then increases to return to its steady value
as the contact arrangement slowly rebuilds.

value of the viscosity slightly larger for smaller φ; the effect is not detectable in the dilute
regime (i.e. φ . 0.25).
The evolution of the viscosity can be interpreted in terms of the evolution of the

microstructure. Under steady shear condition, the particles organise into a microstructure
where the contacts are predominantly oriented along the compressional direction, as
discussed in § 5.1. When the shear is reversed, the contacts open, and the contribution
of the inter-particle contact forces to the suspension stress suddenly vanishes, leading to
the sudden drop in viscosity observed in experiments. The initial microstructure is then
destroyed but slowly rebuilds in the reversed direction, leading to the further increase
in viscosity. Ultimately, the steady equilibrium microstructure is recovered in the new
shearing direction, with contacts mobilised in the new compressional zones. Consequently,
the viscosity returns to its steady value. It is important to emphasise that the evolution
of the microstructure in this experiment is controlled by the strain and not by the shear
rate, as no intrinsic time scale exists in the problem. In an experiment performed twice
faster, the microstructure evolves twice faster, but reaches the steady state at the same
strain. The curve plotted in figure 24 showing the evolution of the viscosity as a function
of the strain is thus independent of the shear rate.
These observations during shear reversal of a suspension yielded the first macroscopic

evidence of the existence of a shear-induced anisotropic microstructure in a sheared
suspension (Gadala-Maria & Acrivos 1980). From the measured evolution of the viscosity
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in figure 24, it is possible to go further and to acquire information about the origin of
the stress in suspension. Assuming that the drop in viscosity just after shear reversal is
induced by the loss of contact between particles, the shear reversal experiment provides
a direct access to the hydrodynamic contribution to the suspension stress and enables to
distinguish between the two (contact and hydrodynamic) contributions. The minimum
viscosity corresponds to the sole hydrodynamic contribution whereas the plateau value
stands for the total, and thus the difference between the steady and minimum values
gives the contact contribution. By a systematic analysis in volume fraction, Blanc et al.

(2011) showed that both hydrodynamic and contact contributions to the viscosity diverge
when approaching φc, but with contrasting divergences. The hydrodynamic contribution
diverges as ∼ (φc − φ)−1 whereas the contact contribution as ∼ (φc − φ)−2. The
shear reversal experiment provides thus another evidence that the rheology of granular
suspensions in the dense regime is mainly controlled by the contacts between particles
as previously discussed in §§ 5.2 and 5.3.

6.2. Periodic shear flows

Another type of unsteady flow widely used for characterising the rheological behaviour
of complex fluids is the oscillatory shear flow, where a periodic strain γ = γ0 sinωt is
applied to the material. For a viscous suspension, the frequency ω of the oscillation plays
no role as long as inertial effects remain negligible and the only important parameter is
the strain amplitude γ0.
If the amplitude is sufficiently large (typically larger than the strain necessary to

recover the plateau value of the viscosity depicted in figure 24), the oscillatory shear flow
can be seen as a succession of shear reversal events as described in the previous § 6.1.
At the end of each oscillation, the arrangement coming from the contact interactions
between the particles is fully reconstructed and the suspension has recovered its steady
state configuration. Consequently, oscillating the flow with sufficiently high amplitude
compares well with a constant flow as seen for the shear-induced migration of a suspension
in a pipe (see e.g. Snook et al. 2016). The fully developed flows seem to be equivalent but
there may be some difference in the dynamics as the microstructure takes some strain
units to rebuild after each oscillation (see § 3.3.1).
For smaller amplitudes, the particles may not be able to recover completely the

microstructure produced by their irreversible contact interactions and the oscillatory
flow can be used as a mean of probing the onset of irreversibility in sheared suspensions
(see e.g. Pine et al. 2005; Corte et al. 2008; Metzger & Butler 2012). This threshold
characterisation is undertaken by recording the position of the particles once each cycle.
Particles that undergo perfectly reversible periodic trajectories stay at the same position
in successive recorded images while particles that have encountered irreversible contact
interactions are displaced. The particles that experience irreversible displacements are
called “active”; their irreversible motion under oscillatory shear is chaotic and leads to
a diffusive behaviour. If the strain amplitude is small enough, complete reversibility can
be achieved. After some initial rearrangements, the fraction of active particles decreases
and eventually appears to vanish, meaning that the suspension has self-organised into
a quiescent absorbing state wherein the particles avoid each other, see figure 25 (a).
Conversely, for higher amplitudes, the fraction of active particles initially decreases but
then saturates at a finite value, meaning that the suspension has reached a steady
state wherein a finite fraction of particles experiences random diffusive motions. The
transition between the quiescent and fluctuating states is characterised by a critical
strain amplitude, γ0c , which is a decreasing function of the volume fraction, see figure 25
(b) and (c).
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Figure 25. Threshold of irreversibility in a oscillatory shearing flow of a suspension (sketches
inspired from Pine et al. 2005; Corte et al. 2008; Metzger & Butler 2012). (a) Evolution of
the fraction of active particles as a function of the number of oscillations for two different
strain amplitudes, γ0

1 < γ0
c (blue) and γ0

2 > γ0
c (red), where γ0

c is the critical strain amplitude
controlling the transition between the reversible and fluctuating states. (b) Steady value (reached
after a large number of oscillations) of the fraction of active particles as a function of the
strain amplitude showing the existence of a critical strain, γ0

c . (c) Phase diagram showing
the volume-fraction-dependent strain threshold separating the reversible (blue region) and
fluctuating (red region) states.

A suspension submitted to a periodic shearing flow is thus another example where
contact interactions play a crucial role, leading to a transition between a quiescent
absorbing state and a fluctuating state. The irreversible contact interactions produce
random fluctuating motions in the irreversible state but also cause the suspension to
self-organise in order to minimise the interactions in the reversible state. The structure
reached in this latter regime (close to the transition) is sometimes called hyper-uniform, as
the distribution of the particles, although random, presents very low density fluctuations.
This property might be of interest in the design of new materials.

6.3. Initiation of immersed granular flows

In the shear reversal and periodic shear cases discussed above in §§ 6.1 and 6.2, the
transient dynamics is controlled by the evolution of the microstructure, the particle
volume fraction remaining constant. However, as discussed in § 4.2, in many configura-
tions like submarine avalanches or sediment transport, the controlled parameter is the
confining stress and not the volume fraction, meaning that the volume fraction may
vary and adjust when flow conditions change. The variation of the volume fraction may
induce relative motion between the interstitial fluid and the granular phase, which may
dramatically alter the dynamics. The main effect of this coupling is called the “pore
pressure feedback” mechanism (Iverson et al. 2000). It is illustrated in figure 26 in the
case of the simple pressure-imposed shearing device introduced in § 4.1, see also figure
16 (b). A layer of neutrally-buoyant suspension having a thickness h is sheared by a top
porous plate which enables the fluid to flow through it but not the particles. This top grid
is moved horizontally to impose the shear but is free to move vertically. A pressure P0 is
applied to the grid, the height of which can adjust in response to dilation or compaction
of the sheared suspension.

In the steady regime discussed in § 4.1, the system reaches an averaged volume fraction,
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Figure 26. Transient dynamics in a pressure-imposed shearing device. An initially dense packing
dilates when sheared, inducing an inward flow of fluid and a transient increase of the granular
pressure P p. A loose packing compacts when sheared, inducing an outward flow and a transient
decrease of the granular pressure. The intensity of the inter-particle contacts is indicated by the
red lines.

which is a function of the viscous number, φsteady(J), see equation (4.2). However, before
reaching this stationary state, one observes a transient dynamics which depends on the
initial preparation of the granular layer. If the suspension is prepared in a dense state (e.g.
by applying some vibration before starting the experiment), the layer has to dilate before
achieving steady state. During the dilatation, the fluid is sucked into the cell, creating
an inward flow through the granular medium. This creates an additional pressure on
the granular skeleton and a negative pore pressure in the fluid. Since the shear stress
necessary to shear the material is proportional to the granular pressure, a strong peak in
the shear stress is thus observed. Conversely, if the suspension is prepared in a very loose
state (e.g. by a slow sedimentation process), the layer needs to compact before reaching
steady state. During the compaction, the fluid is expelled from the granular medium,
and the viscous stress induced by the outward flow leads to an increase in pore pressure
which consequently screens the imposed granular pressure. The shear stress presents then
a minimum.
To quantify this pore pressure feedback effect, it is essential to have a constitutive law

which describes the relaxation of the initial volume fraction towards the steady state
value. A simple model has been proposed by introducing the idea of a dilatancy angle,
ψ (Pailha & Pouliquen 2009). This angle ψ is defined as the angle of the trajectory of
the top plate of the shear cell during an incremental horizontal displacement dX, i.e.
tanψ = dh/dX, as sketched in figure 26. This dilatancy angle can be either positive
(dilatation) or negative (compaction) and, as a first approximation, can be assumed to
depend only on the departure of φ from steady state, i.e. tanψ = K(φ − φsteady) with
a constant coefficient K. The time evolution of the volume fraction can be computed
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Figure 27. Three examples of transient flows affected by the variation of the volume fraction.
(a) Collapse of a granular column immersed in a viscous fluid (from Rondon et al. 2011). The
dynamics differs depending on the initially dense or loose preparation. White lines are the
predictions of a model based on the dilatancy law (6.1). (b) Impact of a sphere on an immersed
granular packing for a dense and a loose case (from Jerome et al. 2016). (c) Flow of a suspension
through a constriction; for certain conditions, a pulsating flow is observed wherein a negative
pore pressure develops at the outlet (from Kulkarni et al. 2010).

by considering the mass conservation equation, d(φh)/dt = 0, which can be written as
(1/φ)(dφ/dt) = −(1/h)(dh/dt). Since dh/dt = tanψ dX/dt and γ̇ = (dX/dt)/h, the
relaxation equation for φ is found to be

dφ

dt
= −φK(φ− φsteady)γ̇. (6.1)

Equation (6.1) shows that the relaxation of φ toward its steady value is controlled by a
critical strain (typically 1/K) since the time derivative of φ is proportional to γ̇.
Knowing the evolution of the volume fraction, the variation of the granular pressure



50 É. Guazzelli and O. Pouliquen

during the transient can be obtained by considering the two-phase flow model described
in § 3.2. From the momentum equation of the particle phase (3.14) with the drag equation
(3.12), the vertical gradient of the particle normal stress ∂P p/∂x2 at each position in the
layer is found to be simply related to the vertical velocity of the granular phase up2,

∂P p

∂x2
= −

18ηf
d2

φ

f(φ)
up2. (6.2)

Note that in the drag equation (3.12) the average velocity U has been taken equal to
zero as imposed by the impermeable bottom plate. A rough estimate of the variation of
the particle pressure during the transient is obtained using the following approximations.
First, the order of magnitude of the pressure gradient is given by ∂P p/∂x2 ≈ ∆P p/h
where ∆P p is the particle pressure difference between the bottom and the top of the cell.
Secondly, the order of magnitude of the vertical velocity is the displacement of the top
plate up2 ≈ dh/dt = tanψ Ux. Finally, assuming that in the expression of the permeability
in equation (6.2) the volume fraction can be approximated by the critical volume fraction
φc, an estimate of the departure of the particle pressure from the imposed P0 is given by

∆P p ∝
ηfh

d2
∆φUx, (6.3)

using tanψ = K∆φ where ∆φ = φi − φc is the difference between the initial volume
fraction, φi, and the critical volume fraction, φc. This estimation shows that the sign of
the excess granular pressure is given by the sign of ∆φ and that its amplitude is large
when the particles diameter d is small, the fluid is viscous, the layer is thick, or when
the imposed motion is rapid.

Beyond the simple shear case, other configurations have been studied to illustrate the
striking effect of the pore pressure feedback. The initiation of granular avalanches is a first
example shown in figure 27 (a). A sudden release of a heap of grains in a fluid presents
different dynamics depending on its initial preparation (Rondon et al. 2011). An originally
loose heap collapses much more rapidly and flows much further than an initially dense
heap. The pore pressure that can be measured below the granular layer during the flow
happens to be positive for the loose case, meaning that fluid is expelled from the granular
medium and partially fluidises the material. Conversely, it becomes negative during the
collapse of the dense pile, meaning that the fluid is sucked and partially stabilises the
heap. These physical mechanisms based on the pore pressure feedback are proposed
to explain the wide variety of landslide dynamics observed in nature. A second example
shown in figure 27 (b) is the impact of an object on an immersed granular packing (Jerome
et al. 2016). The impactor drowns into the packing when the packing is prepared in a
loose state, whereas it is abruptly stopped when the packing is dense. The two different
dynamics are due to the compaction or dilation induced by the impact, which again either
fluidises or stabilises the packing. A last example showing the importance of the variation
of volume fraction is observed during the drainage of a suspension through a constriction
(Kulkarni et al. 2010). When approaching the outlet, the suspension is sheared provoking
a dilatation, which sucks the fluid and reduces the flow rate. In some regime, this self-
filtration process induces periodic oscillations of the flow rate as illustrated in figure 27
(c). These phenomena coming from the change in φ may look like shear thickening or
thinning (see § 7.2) but in fact are transient effects.



Dense granular suspensions 51

7. Toward more complex suspensions

The important message that we hope we have been able to convey in the preceding
pages is that the rheology of dense granular suspensions of spheres is mainly controlled by
the contact interactions between particles. While long range hydrodynamics interactions
or lubrication forces are essential in the dilute regime, they become of lesser importance
as the concentration is increased to a point that the sole contact interactions matter
to predict realistically dense suspension dynamics. This is a major change in paradigm
as the prediction of the rheological behaviour close to the jamming transition can only
come from the understanding of the contact network interactions and not from a better
account of the hydrodynamic interactions.
Another point that we expect to have been able also to relate is that dense suspension

rheology can be approached in different ways which are not contradictory but can
be considered as complementary and compatible. The suspension can be seen as an
effective fluid but also as a two-phase system when there is some slip between the fluid
and the solid phases. The rheometry of dense granular suspensions under volume- or
pressure-imposed flow conditions are two different but equivalent ways of accessing to
the suspension constitutive laws. Choosing the appropriate approach then depends on
the flow configuration that one considers but also on the parameters that one wishes to
obtain. We hope that we have been able to provide some guidance to select the most
suited approach.
Many of the problems that we have discussed are close to being understood although

there maybe some issues (e.g. obtaining the full tensorial form of the suspension stress or
understanding transient or nonuniform flows of dense suspensions) which still need to be
addressed more thoroughly. But beyond the problem of dense granular suspension of hard
spheres, there are entirely novel avenues of study concerning more complex mixtures of
particles and fluids. In the following, we discuss the open areas of research that come first
to our mind. We are probably touching the most obvious subjects and do not want to
suggest that the different topics that we are mentioning are the sole paths to undertake
as we may be overlooking some important other questions.

7.1. Non-spherical particles

The previous §§ 2 to 6 deal with spherical particles, but in practice particles happen
to be of a large variety of forms. Studies regarding the rheology of suspensions of non-
spherical particles are scarce relative to the case of spheres. Most of what can be found
in the literature concern fibres or platelets which represent the two basic deviations
from sphericity. The major additional difficulty is that the rheology strongly depends
on the particle orientation during the flow since motion and orientation are coupled for
non-spherical bodies. The case of suspensions of elongated particles is the most advanced
because of its importance in industrial applications such as pulp and paper as well as fibre-
reinforced materials but also because there are some specific methods, such as slender
body dynamics, that can be used. We certainly cannot cover the whole research area but
we would like to give some hints of the recent findings in the case of dense suspensions
of fibres.
Rod-like particles, i.e. fibres, are bodies of revolution which possess two typical lengths,

a length, L, along their axis of symmetry and a diameter, d, along their minor axis. For
elongated objects, their aspect ratio, Ar = L/d, is supposed to be much larger than one.
The dilute regime is usually defined as nL3 ≪ 1 where n is the fibre number density,
see figure 28. The mean spacing between the fibres is then large compared to their
length and interactions between particles are thus negligible in this limit. Describing the
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Figure 28. The different regimes of fibre suspensions: from left to right, the dilute (n ≪ 1/L3),
semi-dilute (1/L3 . n ≪ 1/L2d), concentrated (n & 1/L2d) regimes and ordered nematic state
(n ≫ 1/L2d).

rheology is essentially carried out in the same way as for the case of spheres as it is
necessary to compute first the particle motion, then the microstructure, and finally the
average particle contribution to the whole suspension stress. But in the case of fibres, the
rheological properties strongly depend on the microstructure as the particle contribution
to the suspension stress depends on the fourth moment of the particle orientations. This
means that it is unavoidably necessary to determine the microstructure of the fibres
even in the dilute limit. This contrasts with the case of spheres for which the rheology
depends upon the relative arrangement between the spheres exclusively in the non dilute
regime, see § 2.1. Suspensions of fibres become semi-dilute when free fibre rotations are no
longer maintained, i.e. nL3 ≃ 1. Hydrodynamic interactions then need to be accounted
for in order to predict the fibre dynamics and rheology. For larger concentrations,
typically nL2d & 1, fibre suspensions become concentrated. The mean spacing between
the particles falls below the fibre diameter and the rotation of a given fibre within
the suspension is strongly hampered by the collisions with its neighbours. Including
hydrodynamic interactions in calculating the microstructure becomes of lesser importance
for these concentrated suspensions as the collisional contacts between the fibres dominate
the dynamics (see e.g. Butler & Snook 2018). At much higher concentrations, the fibres
can undergo orientational alignment reminiscent of a nematic phase ordering.
The rheology of fibre suspensions is much less explored in the concentrated regime.

The viscosity is seen to increase with increasing concentration and to diverge at a critical
volume fraction depending on the fibre aspect ratio, Ar. However, there is a great
variability among experiments and many studies indicate a shear thinning behaviour
which is even more notable for larger φ (see e.g. Butler & Snook 2018). Similar non-
Newtonian phenomenon has been reported for suspensions of spheres at large φ (see
§ 2.3) but the effect is much enhanced in the case of fibres. For suspensions of elongated
particles that are rigid and large enough to be free of colloidal forces, the viscosity
can vary with the strain when the orientation distribution evolves, e.g. from an initial
isotropic distribution to a more oriented distribution, but when steady state is reached,
the viscosity should not depend upon the shear rate. Different explanations have been
advocated to explain the origin of the departure from a Newtonian behaviour, such as
some flexibility of the fibres under the imposed conditions, imperfect neutral buoyancy
of the particles, or the existence of adhesive forces between the fibres.
The recent use of pressure-imposed rheometry which enables us to approach closely the

jamming transition (see § 4.1) has shed light on the issue for suspensions of large, non-
colloidal, rigid, neutrally-buoyant fibres (Tapia et al. 2017). The apparent shear-thinning
has been found to be due to the existence of yield-stresses that increase with increasing
volume fraction. Subtracting this yield stress effect leaves a purely Newtonian viscous
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response. It is debatable that attractive forces can be responsible for the observed yield
stresses for the large particles used in this experiment nor the flexibility can be blamed
as the fibres are extremely rigid. Another explanation that has been proposed is the
occurrence of transient jamming due to finite size effects. The resulting large fluctuations
close to the jamming transition may impact the averaged rheological measurements which
consequently reveal yield stresses. The problem is far from being deciphered and in
particular more should be done in understanding the structure of the suspension but this
study provides some information on the rheology close to the jamming transition. The
critical volume fraction, φc, is found to decrease with increasing aspect ratio, Ar, and
when rescaling is done using φc(Ar), the shear and normal viscosities present a divergence
∼ (φc − φ)−1 in stark contrast with the divergence ∼ (φc − φ)−2 observed for spheres.
Dissimilarity with the case of spheres is also seen for normal stress differences (Snook

et al. 2014). The second normal stress coefficient, α2 = N2/τ , is found to be negative and
its magnitude increases as the concentration is raised and the aspect ratio is lowered.
The first normal stress coefficient, α1 = N1/τ , is positive and approximately twice
the magnitude of the second normal stress coefficient (α1 ≈ −2α2), and its magnitude
increases as the concentration is raised and aspect ratio is lowered as for α2. This differs
from the results obtained for spheres presented in § 2.2 for which α2 is indeed negative
but α1 is small and found negative in the bulk suspension (for φ . 0.5). An important
point revealed by the three-dimensional, slender-body, numerical simulations of Snook
et al. (2014) is that contact interactions are primarily accountable for these observed
normal stress differences. The simulations also show that the fibres strongly align with
the flow direction. The repulsive contact interactions act primarily in the gradient
direction and weakly in the flow direction, making N1 positive. They are also more
important in the vorticity direction than in the flow direction, but not as intense as in
the gradient direction, making N2 negative. These results are obtained using unbounded
simulations and surface deflection measurements in rotating or tilted trough flows where
the particles are relatively unconfined by the boundaries, see figure 6 (d) and (e). For
confined geometry, e.g. the parallel plate measurements of Bounoua et al. (2016) and the
confined simulations reported by Snook et al. (2014), very different (in fact much larger)
values are observed. Confinement has a strong influence for concentrated suspensions of
fibres, well past the usually alleged limit of a few fibre lengths.

7.2. Colloidal interactions and non-linear rheology

In §§ 2 to 6, we have restricted the discussion to large, non colloidal particles. The
particles were non Brownian and the interactions were dominated by hydrodynamic
interactions and frictional contacts. The absence of a time scale besides the imposed shear
rate γ̇−1 implied a linear rheology. However, when the particles become smaller, other
interactions come into play, such as electrostatic forces, Van Der Walls interactions, or
forces induced by some coating on the particles. For particles smaller than a micrometer,
thermal fluctuations are also non negligible. In these colloidal suspensions, additional time
scales are present. They are at the origin of complex non linear rheological behaviours
such as the existence of a minimum stress to flow (a yield stress), a shear rate dependence
of the viscosity (shear thinning or thickening when the viscosity decreases or respectively
increases with γ̇), or a time dependence of the viscosity (thixotropy). Describing the
diversity of behaviours observed in a unified framework is a real challenge as the rhe-
ology strongly depends on the precise nature of the particle interactions. However, a
crude classification can be made depending on the repulsive or attractive nature of the
interactions and on the existence or absence of Brownian motion.
Suspensions of particles interacting though attractive forces are mainly controlled by
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aggregation processes. Aggregation being a slow process, a first characteristic is that the
rheological properties depends on the age of the suspensions, i.e. the waiting time before
shear is applied. A second consequence is that aggregates percolating throughout the
whole sample may form, leading to the occurrence of a yield stress. A last effect is that
aggregates are broken when the suspension is sheared, giving rise to a shear thinning
behaviour. The rheological properties under steady conditions are thus controlled by the
competition between the aggregation process induced by the attractive forces and the
disaggregation induced by the shear.

Suspensions of particles interacting through repulsive forces have recently attracted a
lot of attention in the context of shear thickening fluids; we devote the discussion to this
latter subject. Repulsion can be due either to electrostatic forces or to polymers brushes
grafted on the particles. The archetype of a shear thickening fluid is the suspension of
cornstarch particles, which exhibits a violent discontinuous transition between a fluid
behaviour at low shear rate and a solid behaviour at high shear rate, a property which
enables running on a pool full of cornstarch. The elucidation of this striking phenomenon
has been long sought and has been the matter of an active scientific debate. Several
explanations, such as the formation of hydroclusters (Wagner & Brady 2009), the role
of granular dilatancy (Brown & Jaeger 2014), or the importance of inertial effects (Fall
et al. 2010), have been proposed. Here we discuss a promising modeling that has recently
emerged, based on the crucial role of contacts and friction between the grains (Mari et al.
2014; Wyart & Cates 2014). The proposed scenario is the following. At low shear rate,
the short range repulsive force Fre prevents the particles from coming into contact, as
depicted in figure 29 (a). The rheology corresponds to that of a suspension of frictionless

particles, with a viscosity diverging at a critical volume fraction φ
µp=0
c . When the shear

rate increases, the particle pressure increases and eventually becomes strong enough
to overcome the repulsive forces and to create contacts between the grains, see figure
29 (b). Friction is mobilised and the rheology at high shear rate switches to that of a
suspension of frictional particles, with a viscosity diverging at a critical volume fraction

φ
µp 6=0
c < φ

µp=0
c . Note that these difference in viscosity curves corresponding to frictionless

and frictional suspensions has been previously discussed in § 2.1, see the numerical data
of Mari et al. (2014) plotted in figure 4. The transition between these two rheological
regimes is illustrated in figure 29 (c) and (d) (see also the theoretical description of
Wyart & Cates 2014). At low φ, the transition is continuous, with a viscosity gently
evolving when increasing γ̇ from values on the frictionless and frictional viscosity curves
which are not far apart. At intermediate φ, a discontinuous transition is observed when
increasing γ̇ and the viscosity abruptly switches from one branch to the other. Finally

at high φ (for φ
µp 6=0
c < φ < φ

µp=0
c ), the suspension flows at low γ̇ but suddenly jams

when the shear rate increases and the suspension becomes frictional since the volume

fraction is larger than the maximal volume fraction for frictional particles, φ > φ
µp 6=0
c .

Cracks and fractures are observed when this transition occurs. The shear thickening
transition is thus a transition from a frictionless to a frictional suspension occurring
when the stresses overcome the repulsive forces (Wyart & Cates 2014). This scenario
is supported by different experimental observations (see e.g. Clavaud et al. 2017) and
numerical simulations (see e.g. Mari et al. 2014). The transition occurs at a critical stress
which only depends upon the repulsive force and the particle size, τc, and a critical shear
rate which is a decreasing function of the volume fraction, γ̇c, given by

τc = β
Fre

d2
and γ̇c = β

Fre

η
µp=0
s (φ)d2

, (7.1)
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Figure 29. A scenario for the shear thickening transition. (a) At low shear rate, repulsive
forces (sketched in dotted lines) prevent the particles from touching whereas, (b) at high shear
rate, contacts form and friction comes into play. (c) The two viscosity curves corresponding
to frictionless and frictional behaviours with the arrows indicating the different rheological
transitions. (d) The three types of rheological responses: (i) at low volume fraction, the shear
thickening is continuous (orange curve), (ii) at intermediate volume fraction, the viscosity
discontinuously switches from the frictionless to the frictional branch (black curve), and (iii)

at higher volume fraction φ > φ
µp 6=0

c , the suspension suddenly jams (green curve).

with β ≈ 0.04 as inferred in the numerical simulations of Mari et al. (2014).
A similar scenario also applies when the particles are Brownian. Numerical and

theoretical studies have shown that the fluctuating thermal motion also prevents the
formation of frictional contacts and thus plays a role similar to that of a repulsive
force. The rheology of Brownian suspensions can then be divided in three regimes. The
first regime at very low shear rate is a viscosity plateau, corresponding to a suspension
of hard spheres at thermal equilibrium. The viscosity of the plateau increases when
increasing the volume fraction and diverges close to the glass transition (not to be
mistaken for the jamming transition). The plateau is observed at low Péclet number,
i.e. Pe (∝ ηf γ̇d

3/kT ) << 1 (k is the Boltzmann constant and T the temperature), where
the Péclet number measures the ratio of the rate of advection to the rate of diffusion.
At larger Péclet number, Brownian effects become less predominant and the viscosity
decreases, leading to shear thinning behaviour. In this regime both thermal agitation
and repulsive forces prevent the particles from coming into contact. At larger shear rate,
a discontinuous shear thickening is observed when the particle pressure becomes large
enough to induce frictional contacts between the particle. In this Brownian repulsive
suspension, the transition has been shown to be controlled by a critical stress with two
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additive contributions (Mari et al. 2015),

τc = β
Fre

d2
+ 40

kT

d3
, (7.2)

one coming from the repulsive force, and one from the thermal fluctuations, The Brownian
component prevails only for very small particles, typically less than 0.1µm. For larger
particles, the shear thickening transition is controlled by the repulsive forces, although
thermal agitation may modify the rheology prior to the transition.
Although many issues of the rheology of colloidal suspensions remain to be deciphered,

the recent progress reported above regarding shear thickening fluids conveys the same
message as that expressed across the present paper, i.e. that for dense suspensions (even
in the colloidal regime) contact interactions are of central importance.

7.3. Non-Newtonian fluids

We have previously considered that the suspending fluid was Newtonian. In many
industrial or even natural suspensions, particles are dispersed in a non-Newtonian fluid
which can be shear-thinning, shear thickening, viscoplastic, viscoelastic, thixotropic
or rheopectic. Examples include cosmetic or food products, composites, cement and
concrete, drilling mud, slurries, debris flows, lavas. The non-Newtonian nature of the
suspending fluid affects the dynamics of the particles which can differ in a significant
manner from the corresponding motion in a Newtonian medium. Covering the diversity
of behaviours observed is obviously beyond the scope of the present § 7.3 and we just
limit the discussion to pointing to the problems that are encountered in tackling the
rheology of these complex suspensions in the dense regime.
The major difficulty lies in the fact that additional stress or time scales enter into the

problem aside from the time scale imposed by the shear rate, γ̇−1, and that consequently
dimensional arguments cannot provide the complete form of the constitutive laws. As a
typical example, the rheology of viscoplastic suspensions is no longer described by a single
dimensionless parameter as seen for a Newtonian suspension in § 2.1 as the yield stress
introduces an additional stress scale. One then needs to rely on additional assumptions to
infer the detailed rheological laws. In the dense regime (in particular close to jamming),
one can use the fact that the rheology is dominated by steric constraints as sketched in
the following.
Many of the rheological properties of non-Newtonian suspensions are observed to be

qualitatively similar to those of the non-Newtonian suspending fluid but the addition of
particles usually induces an intensification of these properties similarly to those seen
for the increase in shear viscosity for a Newtonian suspension in § 2.1. Again as a
typical example, adding spherical particles to a viscoplastic fluid leads to a gradual
augmentation of the viscosity and the yield stress (see e.g. Chateau et al. 2008; Dagois-
Bohy et al. 2015). This rheological intensification caused by the addition of particles
can be addressed by the homogenisation approaches introduced in § 5.3. The main idea
is that this is a purely steric effect due to the presence of the particles which locally
enhances the shear rate in the suspending fluid. This amplification effect is thus linked
to the lever function, L(φ), which is a sole function of φ and relates the magnitude of
the local shear rate (that develops in the fluid interstices between the particles) to the
macroscopic shear rate (imposed to the whole suspension mixture), see equation (5.1).
This type of mean-field approach is successful in addressing smooth increases such as
seen in viscoplastic suspension (see e.g. Chateau et al. 2008; Dagois-Bohy et al. 2015)
but cannot grasp sharper amplifications such as the enhancement of the shear-thickening
transition by the addition of large spherical particles to a dense cornstarch suspension
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(Madraki et al. 2017). Further theoretical studies are needed to tackle these nonlinear
rheological particulate systems.

7.4. Inertial suspensions

In the preceding pages, the discussion has been limited to the viscous regime, assuming
that inertia was negligible. However, when the viscosity of the suspending fluid becomes
smaller or the size of the particles larger, inertia comes into play and the rheological
constitutive laws are impacted by new sources of dissipation. In the dilute regime, the
dissipation in the interstitial fluid can be modified when inertial or turbulent flows
develop. For dense suspensions of interest in this paper, the main new source of dissipation
when entering the inertial regime comes from the inelastic collisions between the grains.
In the fully inertial limit, the viscosity of the suspending fluid no longer plays a role and
dimensional analysis implies that, for a suspension made of particles of diameter d and
density ρp sheared at a constant volume fraction φ, the shear stress τ scales with the
square of the shear rate γ̇,

τ = ρpd
2ηI(φ)γ̇

2. (7.3)

where ηI(φ) is a dimensionless function of the volume fraction, which diverges when ap-
proaching the maximum volume fraction, φc. The normal particle stress scales identically.
This scaling is called the Bagnold scaling, in reference to the pioneering experimental
work of Bagnold (1954) who first discovered the existence of two different regimes for the
rheology of suspensions. In the dual description of pressure-imposed rheology discussed in
§ 4.1, the relevant dimensionless parameter for the inertial regime is no longer the viscous
number, J , but is the inertial number, I = γ̇d/

√

P/ρp, and the friction coefficient µ(I)
and the volume fraction φ(I) are function of I. The limit when the interstitial fluid plays
no role corresponds to the flow of dry granular media, which has been extensively studied
and for which empirical correlations have been proposed for the constitutive laws (see
e.g. Forterre & Pouliquen 2008).
The question of the transition between the viscous and the inertial regime has been less

investigated. Assuming that the transition occurs when the viscous stress τ = ηfηs(φ)γ̇
and the collisional stress (7.3) are of the same order of magnitude (Lemâıtre et al. 2009)
provides an estimate of the critical shear rate above which inertia dominates,

γ̇c(φ) =
ηf
ρpd2

ηs(φ)

ηI(φ)
. (7.4)

This critical shear rate, γ̇c, decreases with decreasing fluid viscosity or with increasing
particle size and density. Its variation with φ depends on the relative φ-dependence of
the two functions ηs(φ) and ηI(φ). However, no consensus can be found in the literature
regarding the behaviour of γ̇c(φ) close to the maximum volume fraction. Some studies
suggest that both functions diverge as ∼ (φc−φ)

−2 close to jamming, leading to a critical
shear rate independent of the volume fraction (Trulsson et al. 2012; Amarsid et al. 2017)
while some others find that the divergence of ηs(φ) is slower than that of ηI(φ) and thus
that γ̇c(φ) goes to zero when φ reaches φc (Fall et al. 2010; DeGiuli et al. 2015). Further
investigations are clearly necessary to grasp the important parameters controlling this
transition between the viscous and inertial regime of dense suspensions.

7.5. And more . . .

There are some more domains that are completely open for future research. A tentative
list of these areas wherein questions are left quite open contains:

• Dense suspensions of polydispersed particles: While only monodispered systems have
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been considered in the preceding pages, the dispersion in size is particularly relevant in
practice. Polydispersity certainly affects the critical packing fraction at jamming but
could also lead to segregation phenomena. Much needs to be comprehended on these
issues.
• Dense suspensions of deformable particles: These particles comprise capsules, vesi-

cles, flexible bodies, or soft particles. The single body flow problem is quite advanced but
the dense regime is quite unexplored.
• Dense suspensions of active particles: The research on swimming microorganisms

has been exploding lately and many studies focus now on the collective dynamics of
these swimmers wherein the mode of propulsion seems to be a determining factor.
• Dense suspensions at interfaces: The formation of drops and their dynamics as well

as the behavior of free surface flows are problems which have attracted a lot of interest
in the fluid mechanics community. They start to be revisited for suspensions wherein the
presence of particles at interfaces raises new questions which are left quite unexplored
and in needs to be addressed.
• Elongational rheology of dense suspensions: To describe some flow configurations

like the pinchoff of suspension threads, a better knowledge of the suspension elongational
rheology is necessary, which remains to be developed.
• Non-locality: Close to the maximum volume fraction, the particles experience highly

correlated motions which are not taken into account by the local rheological models
discussed in this paper, as shown for example in § 3.3.1 when discussing shear-induced
migration in pipe flows. Development of more elaborated non-local models is an active
domain of research for dry granular flows, which should be also relevant for a better
understanding of dense suspensions flows.
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