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1.1

Introduction

The rheology of disperse systems is an important processing parameter. Being able

to characterize and manipulate the flow behavior of dispersions one can ensure

their optimal performance. Waterborne automotive coatings, for example, should

exhibit a distinct low-shear viscosity necessary to provide good leveling but to avoid

sagging at the same time. Then, a strong degree of shear thinning is needed to

guarantee good pump- and sprayability. The rheological properties of dispersions,

especially at high solids content, are complex and strongly dependent on the

applied forces and flow kinematics. Adding particles does not simply increase the

viscosity of the liquid as a result of the hydrodynamic disturbance of the flow; it

also can be a reason for deviation from Newtonian behavior, including shear rate

dependent viscosity, elasticity, and time-dependent rheological behavior or even the

occurrence of an apparent yield stress. In colloidal systems particle interactions play

a crucial role. Depending on whether attractive or repulsive interactions dominate,

the particles can form different structures that determine the rheological behavior

of the material. In the case of attractive particle interactions loose flocs with fractal

structure can be formed, immobilizing part of the continuous phase. This leads

to a larger effective particle volume fraction and, correspondingly, to an increase

in viscosity. Above a critical volume fraction a sample-spanning network forms,

which results in a highly elastic, gel-like behavior, and an apparent yield stress.

Shear-induced breakup and recovery of floc structure leads to thixotropic behavior.

Electrostatic or steric repulsion between particles defines an excluded volume that

is not accessible by other particles. This corresponds to an increase in effective

volume fraction and accordingly to an increase in viscosity. Crystalline or gel-like

states occur at particle concentrations lower than the maximum packing fraction.

Characterization of the microstructure and flow properties of dispersions is

essential for understanding and controlling their rheological behavior. In this

chapter we first introduce methods and techniques for standard rheological tests

and then characterize the rheology of hard sphere, repulsive, and attractive particles.

The effect of particle size distribution on the rheology of highly concentrated
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dispersions and the shear thickening phenomenon will be discussed with respect

to the influence of colloidal interactions on these phenomena. Finally, typical

features of emulsion rheology will be discussed with special emphasis on the

distinct differences between dispersion and emulsion rheology.

1.2

Basics of Rheology

According to its definition, rheology is the science of the deformation and flow of

matter. The rheological behavior of materials can be regarded as being between two

extremes: Newtonian viscous fluids, typically liquids consisting of small molecules,

and Hookean elastic solids, like, for example, rubber. However, most real materials

exhibit mechanical behavior with both viscous and elastic characteristics. Such

materials are termed viscoelastic. Before considering the more complex viscoelastic

behavior, let us first elucidate the flow properties of ideally viscous and ideally

elastic materials.

Isaac Newton first introduced the notion of viscosity as a constant of proportion-

ality between the force per unit area (shear stress) required to produce a steady

simple shear flow and the resulting velocity gradient in the direction perpendicular

to the flow direction (shear rate):

σ = ηγ̇ (1.1)

where σ = F/A is the shear stress, η the viscosity, and the γ̇ = v/h is the shear rate.

Here A is the surface area of the sheared fluid volume on which the shear force

F is acting and h is the height of the volume element over which the fluid layer

velocity v varies from its minimum to its maximum value. A fluid that obeys this

linear relation is called Newtonian, which means that its viscosity is independent

of shear rate for the shear rates applied. Glycerin, water, and mineral oils are

typical examples of Newtonian liquids. Newtonian behavior is also characterized by

constant viscosity with respect to the time of shearing and an immediate relaxation

of the shear stress after cessation of flow. Furthermore, the viscosities measured

in different flow kinematics are always proportional to one another.

Materials such as dispersions, emulsions, and polymer solutions often exhibit

flow properties distinctly different from Newtonian behavior and the viscosity

decreases or increases with increasing shear rate, which is referred to a shear

thinning and shear thickening, respectively. Figure 1.1a,b shows the general shape

of the curves representing the variation of viscosity as a function of shear rate and

the corresponding graphs of shear stress as a function of shear rate.

Materials with a yield stress behave as solids at rest and start to flow only when

the applied external forces overcome the internal structural forces. Soft matter,

such as, for example, dispersions or emulsions, does not exhibit a yield stress in

this strict sense. Instead, these materials often show a drastic change of viscosity by

orders of magnitude within a narrow shear stress range and this is usually termed

an ‘‘apparent’’ yield stress (Figure 1.2a,b). Dispersions with attractive interactions,
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Figure 1.1 Typical flow curves for Newtonian, shear thinning and shear thickening (dila-

tant) fluids: (a) shear stress as a function of shear rate; (b) viscosity as a function of shear

rate.
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Figure 1.2 Flow curve of a material with an apparent yield stress σ y: (a) shear stress as a

function of shear rate; (b) viscosity as a function of shear stress.

such as emulsions and foams, clay suspensions, and ketchup, are typical examples

of materials with an apparent yield stress. Note that there are various methods for

yield stress determination and the measured value may differ depending on the

method and instrument used.

The flow history of a material should also be taken into account when making

predictions of the flow behavior. Two important phenomena related to the time-

dependent flow behavior are thixotropy and rheopexy. For materials showing

thixotropic behavior the viscosity gradually decreases with time under constant

shear rate or shear stress followed by a gradual structural recovery when the

stress is removed. The thixotropic behavior can be identified by measuring the

shear stress as a function of increasing and decreasing shear rate. Figure 1.3

shows a hysteresis typical for a thixotropic fluid. Examples of thixotropic materials

include coating formulations, ketchup, and concentrated dispersions in the two-

phase region (Section 1.4.1.1). The term rheopexy is defined as shear-thickening

followed by a gradual structural recovery when the shearing is stopped. Tadros

pointed out that rheopexy should not be confused with anti-thixotropy, which is the

time dependent shear thickening [1]. However, rheopectic materials are not very

common and will not be discussed here.
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Figure 1.3 Flow curve of a thixotropic material.

So far we have considered the flow behavior of viscous fluids in terms of Newton’s

law and a nonlinear change of viscosity with applied stress that can occur either

instantaneously or over a long period of time. At the other extreme is the ideal

elastic behavior of solids, which can be described by Hooke’s law of elasticity:

σ = Gγ (1.2)

where γ is the shear deformation (also termed strain) and G is the shear modulus

characterizing the rigidity of a material. The shear modulus of an ideal elastic solid

is independent of the shear stress and duration of the shear load. As soon as a

deformation is applied a constant corresponding stress occurs instantaneously. In

viscoelastic materials stress relaxes gradually over time at constant deformation

and eventually vanishes for viscoelastic liquids. When the stress relaxation is pro-

portional to the strain we are talking about the so-called linear viscoelastic regime.

Above a critical strain the apparent shear modulus becomes strain dependent.

This is the so-called nonlinear viscoelastic regime. The linear viscoelastic material

properties are in general very sensitive to microstructural changes and interactions

in complex fluids.

A dynamic test or small amplitude oscillatory shear (SAOS) test is the most

widely used rheological measurement to investigate the linear viscoelastic behavior

of a fluid, since it has a superior accuracy compared to step strain or step stress

experiments. When a sinusoidal oscillatory shear strain is applied with amplitude

γ 0 and angular frequency ω the deformation γ (t) can be written as:

γ (t) = γ0 sin(ωt) (1.3)

where t denotes the time. The shear rate is the time derivative of the shear strain

and then reads as follows:

γ̇ (t) =
dγ (t)

dt
= γ0ω cos(ωt) (1.4)

A linear viscoelastic fluid responds with a sinusoidal course of shear stress σ (t)

with amplitude σ 0 and angular frequency ω, but is phase shifted by an angle δ

compared to the imposed strain:

σ (t) = σ0 sin(ωt + δ) (1.5)
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Depending on material behavior, the phase shift angle δ occurs between 0◦ and

90◦. For ideal elastic materials the phase shift disappears, that is, δ = 0, while for

ideal viscous liquids δ = 90◦. The shear modulus can be written in complex form:

G∗(ω) = G′(ω) + iG′′(ω) (1.6)

with the storage modulus G′ and loss modulus G′′. G′ is a measure of the energy

stored by the material during a cycle of deformation and represents the elastic

behavior of the material, while G′′ is a measure of the energy dissipated or lost as

heat during the shear cycle and represents the viscous behavior of the material.

The terms G′ and G′′ can be expressed as sine and cosine function of the phase

shift angle δ:

G′(ω) =
σ0

γ0

cos δ (1.7)

G′′(ω) =
σ0

γ0

sin δ (1.8)

Hence the tangent of the phase shift δ represents the ratio of loss and storage

modulus:

tan δ =
G′′(ω)

G′(ω)
(1.9)

Analogous to the complex shear modulus we can define a complex viscosity η*:

η∗(ω) =
σ (t)

γ̇ (t)
= η′(ω) + iη′′(ω) (1.10)

with:

η′(ω) =
G′′(ω)

ω
and η′′(ω) =

G′(ω)

ω
(1.11)

The viscoelastic properties of a fluid can be characterized by oscillatory measure-

ments, performing amplitude- and frequency-sweep. The oscillatory test of an

unknown sample should begin with an amplitude sweep, that is, variation of the

amplitude at constant frequency. Up to a limiting strain γ c the structure of the

tested fluid remains stable and G′ as well as G′′ is independent of the strain

amplitude. The linear viscoelastic range may depend on the angular frequency ω;

often, γ c decreases weakly with increasing frequency.

Frequency sweeps are used to examine the time-dependent material response.

For this purpose the frequency is varied using constant amplitude within the linear

viscoelastic range. At an appropriately high angular frequency ω, that is, short-term

behavior, the samples show an increased rigidity and hence G′ > G′′. At lower

frequencies (long-term behavior) stress can relax via long-range reorganization

of the microstructure and the viscous behavior dominates and, correspondingly,

G′′ > G′.
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1.3

Experimental Methods of Rheology

Rheometers can be categorized according to the flow type in which material prop-

erties are investigated: simple shear and extensional flow. Shear rheometers can

be divided into rotational rheometers, in which the shear is generated between

fixed and moving solid surfaces, and pressure driven like the capillary rheometer,

in which the shear is generated by a pressure difference along the channel through

which the material flows. Extensional rheometers are far less developed than shear

rheometers because of the difficulties in generating homogeneous extensional

flows, especially for liquids with low viscosity. Many different experimental tech-

niques have been developed to characterize the elongational properties of fluids

and predict their processing and application behavior, including converging chan-

nel flow [2], opposed jets [3], filament stretching [4], and capillary breakup [5, 6]

techniques. However, knowledge about the extensional rheology of complex fluids

like dispersions and emulsions is still very limited.

1.3.1

Rotational Rheometry

Rotational instruments are used to characterize materials in steady or oscillatory

shear flow. Basically there are two different modes of flow: controlled shear rate

and controlled shear stress. Three types of measuring systems are commonly used

in modern rotational rheometry, namely, concentric cylinder, parallel plate, and

cone-and-plate. Typical shear rates that can be measured with rotational rheometers

are in the range 10−3 to 103 s−1.

1.3.1.1 Concentric Cylinder Measuring System

As shown in Figure 1.4a, a cylinder measuring system consists of an outer cylinder

(cup) and an inner cylinder (bob). There are two modes of operation depending

on whether the cup or the bob is rotating. The Searle method corresponds to a

Ra
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ω, Md

Rp

ω, Md

L

H

r
r

h (r)ϕ

(a) (b) (c)

Figure 1.4 Schematic representation of (a) concentric cylinder, (b) parallel-plate, and (c)

cone-and-plate measuring system.
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rotating bob and stationary cup, while in the Couette mode the cup is set in motion

and the bob is fixed. The gap between the two concentric cylinders should be small

enough so that the sample confined in the gap experiences a constant shear rate.

This requirement is fulfilled and the gap is classified as ‘‘narrow’’ when the ratio

of the inner to the outer cylinder radius is greater than 0.97.

When the bob is rotating at an angular velocity ω the shear rate is given by:

γ̇ = 2ω
R2

a

R2
a − R2

i

(1.12)

where Ri and Ra are the radii of the bob and the cup, respectively. If the torque

measured on the bob is Md, the shear stress σ in the sample is given by:

σ =
Md

2πR2
i L

(1.13)

where L is the effective immersed length of the bob.

Having the shear rate γ̇ and shear stress σ , the sample viscosity η can be

calculated according to Equation 1.1 For these calculations we ignore any end

effects, which are actually likely to occur as a result of the different shearing

conditions in the liquid covering the ends of the cylinders. To minimize the end

effect the ratio of the length L to the gap between cylinders is maintained at greater

than 100 and the shape of the bottom of the bob is designed as a cone with an

angle α, which is chosen so that the shear rate in the bottom area matches that in

the narrow gap between the concentric cylinders.

The concentric cylinder measuring system is especially suitable for low-viscous

liquids, since it can be designed to offer a large shear area and at high shear

rates the sample is not expelled from the gap. Other advantages of this geometry

are that sample evaporation is of minor relevance since the surface area is small

compared to the sample volume, the temperature can be easily controlled due to

the large contact area, and even if suspensions exhibit sedimentation and particle

concentration varies along the vertical direction the measured viscosity is a good

approximation of the true value.

1.3.1.2 Parallel-Plate Measuring System

The parallel plate geometry is shown in Figure 1.4b. The sample, confined within

the gap of height H between the two parallel plates, is sheared by the rotation of one

of the plates at angular velocity ω. Thereby, the circumferential velocity v depends

on the distance from the plate at rest h and the distance r from the rotational axis:

v(r, h) = rω
h

H
(1.14)

and thus:

γ̇ (r) =
v

h
=

rω

H
(1.15)

The shear rate γ̇ at constant ω is not constant within the gap. Typically, the

calculations and analysis of rheological results in parallel-plate measuring systems

are related to the maximum shear rate value at the rim of the plate (r = Rp). The
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shear rate can be varied over a wide range by changing the gap height H and the

angular velocity ω.

The shear stress σ is a function of the shear rate γ̇ , which is not constant within

the gap. Thus, to relate the shear stress to the total torque an expression for the

σ (γ̇ ) dependence is necessary. For Newtonian liquids the shear stress depends

linearly on the shear rate and can be expressed as follows:

σ (R) =
2Md

πR3
p

(1.16)

This expression is called the apparent shear stress. For non-Newtonian fluids

Giesekus and Langer [7] developed a simple approximate single point method to

correct the shear rate data, based on the idea that the true and apparent shear stress

must be equal at some position near the wall. It was found that this occurs at the

position where r/Rp = 0.76 and this holds for a wide range of liquids.

The parallel-plate measuring system allows for measurements of suspensions

with large particles by using large gap heights. On the other hand, by operating at

small gaps the viscosity can be obtained at relatively high shear rates. Small gaps

also allow for a reduction of errors due to edge effects and secondary flows. Wall

slip effects can be corrected by performing measurements at different gap heights.

Rough plates are often used to minimize wall slip effects. Note that for sedimenting

suspensions the viscosity is systematically underestimated since the upper rotating

plate moves on a fluid layer with reduced particle loading.

1.3.1.3 Cone-and-Plate Measuring System

A cone-and-plate geometry is shown schematically in Figure 1.4c. The sample is

contained between a rotating flat cone and a stationary plate. Note that the apex of

the cone is cut off to avoid friction between the rotating cone and the lower plate.

The gap angle ϕ is usually between 0.3◦ and 6◦ and the cone radius Rp is between

10 and 30 mm. The gap h increases linearly with the distance r from the rotation

axis:

h(r) = r tan ϕ (1.17)

The circumferential velocity v also increases with increasing distance r:

v(r) = rω (1.18)

Hence the shear rate is constant within the entire gap and does not depend on the

radius r:

γ̇ =
dv(r)

dh(r)
=

ω

tan ϕ
≈

ω

ϕ
(1.19)

The shear stress is related to the torque Md on the cone:

σ =
3Md

2πR3
p

(1.20)

A great advantage of the cone-and-plate geometry is that the shear rate remains

constant und thus provides homogenous shear conditions in the entire shear gap.
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The limited maximum particle size of the investigated sample, difficulties with

avoiding solvent evaporation, and temperature gradients in the sample as well

as concentration gradients due to sedimentation are typical disadvantages of the

cone-and-plate measuring system.

1.3.2

Capillary Rheometer

Figure 1.5 shows a schematic diagram of a piston driven capillary rheometer. A

piston drives the sample to flow at constant flow rate from a reservoir through

a straight capillary tube of length L. Generally, capillaries with circular (radius

R) or rectangular (width B and height H) cross-sections are used. The measured

pressure drop 	p along the capillary and the flow rate Q are used to evaluate the

shear stress, shear rate, and, correspondingly, viscosity of the sample.

Pressure driven flows through a capillary have a maximum velocity at the center

and maximum shear rate at the wall of the capillary, that is, the deformation is

essentially inhomogeneous. Assuming Newtonian behavior and fully developed,

incompressible, laminar, steady flow, the apparent wall shear stress σ a in a circular

capillary with radius R is related to the pressure drop 	p by:

σa =
	pR

2L
(1.21)

and the apparent or Newtonian shear rate at the wall can be calculated on the basis

of measured flow rate according to:

γ̇a =
4Q

πR3
(1.22)

Therefore, we can evaluate the viscosity in terms of an apparent viscosity based on

Newton’s postulate (Equation 1.1).

To obtain the true shear rate in the case of non-Newtonian fluids the

Weissenberg–Rabinowitch correction [8] for non-parabolic velocity profiles should

Sample

Piston

Pressure 
transducer
∆p

Capillary

L, R

Q

Figure 1.5 Schematic representation of a controlled flow rate capillary rheometer.
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be taken into account. A simpler method to determine the true shear rate has been

developed by Giesekus and Langer [7] as well as Schümmer and Worthoff [9].

Their single point method is based on the idea that the true and apparent shear

rate must be equivalent at a certain radial position near the wall and thus the true

shear rate γ̇ is given simply by:

γ̇ = 0.83γ̇a (1.23)

Note that this approximation does no differ significantly from the Weissenberg–

Rabinowitch correction for weakly shear thinning fluids.

Other possible sources of error in capillary flow experiments are entrance effects,

slippage at the capillary wall, and viscous heating effects. Furthermore, the pressure

drop 	p is difficult to measure directly in the capillary. Therefore, it is usually

detected by a transducer mounted above the entrance of the capillary. Hence, the

measured pressure includes not only the pressure loss due to the laminar flow in

the die but also the entrance pressure loss due to rearrangement of the streamlines

at the entrance and the exit of the capillary. Bagley [10] proposed a correction

that accounts for these additional pressure losses but for practical purposes it is

sufficient to use a single capillary die with sufficiently large L/R ratio, typically

L/R ≥ 60 [8].

For highly concentrated suspensions wall slip effects, due to shear induced parti-

cle migration (only for very large particles), and specific particle–wall interactions

have to be considered. If the slip velocity is directly proportional to the applied stress

it is possible to correct the apparent wall shear rate according to the procedure

developed by Mooney [11], which compares the flow curves determined with dies

of different radii but similar L/R.

The major advantage of the capillary rheometer is that the flow properties of

fluids can be characterized under high shear conditions (up to γ̇ = 106 s−1) and

process-relevant temperatures (up to 400 ◦C). Another advantage is that the capillary

flow is closed and has no free surface so that edge effects, solvent evaporation, and

other problems that trouble rotational rheometry can be avoided.

1.4

Rheology of Colloidal Suspensions

The flow behavior of colloidal (often also termed Brownian) dispersions is controlled

by the balance between hydrodynamic and thermodynamic interactions as well as

Brownian particle motion. Thermodynamic interactions mainly include electro-

static and steric repulsion and van der Waals attraction. The relative importance of

individual forces can be assessed on the basis of dimensionless groups, which can

be used to scale rheological data. In this section we first consider dispersions of

Brownian hard sphere particles and elucidate the effect of particle volume fraction,

size, and shape of particles on dispersion rheology. Then, we take into account the

effect of repulsive and attractive interactions on the microstructure of suspensions
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and its corresponding rheological response. Special attention will be paid to the

rheological behavior of concentrated dispersions.

1.4.1

Hard Spheres

Hard-sphere dispersions are idealized model systems where no thermodynamic

or colloidal particle–particle interactions are present unless these particles come

into contact. In that sense, they represent the first step from ideal gases towards

real fluids. Even such simple systems can show complex rheological behavior. The

parameters controlling dispersion rheology will be discussed below.

1.4.1.1 Viscosity of Suspensions of Spheres in Newtonian Media

Hard-sphere dispersions exist in the liquid, crystalline, or glassy state depending on

the particle volume fraction similar to the temperature-dependent phase transition

of atomic or molecular systems. Figure 1.6 demonstrates schematically the hard-

sphere phase diagram in terms of particle volume fraction φ, constructed by means

of light diffraction measurements [12]. At a low volume fraction φ particles can

diffuse freely and there is no long-range ordering in particle position, that is,

the dispersion is in the fluid state, while with increasing concentration above

φ = 0.50 crystalline and liquid phases coexist in equilibrium and the fraction of

crystalline phase increases until the sample is fully crystalline at φ = 0.55. With

further increasing particle volume fraction, crystallization becomes slower due to

reduced particle mobility. At a critical volume fraction φ = 0.58 particle mobility is

so strongly reduced that no ordered structure can be formed and the dispersion

remains in the disordered glassy (immobile) state. Crystalline ordering only occurs

if all particles are of equal size, otherwise disordered gel-like structures form at

φ > 0.5.

The phase states of hard sphere dispersions are reflected in their characteris-

tic flow curves. Figure 1.7 demonstrates the general features of the shear rate

dependence of viscosity at various particle concentrations. At volume fractions

up to φ = 0.50 the dispersion is in the liquid state and a low-shear Newtonian

plateau is observed for the viscosity. The low-shear viscosity, as well as the shear

thinning, increases with increasing particle volume fraction φ. In the two-phase

region colloidal hard-sphere dispersions may show thixotropic behavior (see the

0 0.5 0.55 0.58 0.63 0.74
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Liquid

fcc 

crystal

Crystal- 
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Figure 1.6 Hard-sphere phase-diagram constructed from light diffraction measurements

[12].
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Figure 1.7 Viscosity versus shear rate for hard sphere dispersions at various volume frac-

tions φ. The downward and upward arrows indicate the viscosity measurement with increas-

ing and consequent decreasing shear rate, respectively.

curves in Figure 1.7 at φ = 0.52), due to the shear induced destruction and subse-

quent recovery of sample structure, associated with coexisting liquid and crystalline

domains. The degree of thixotropy, if any, depends on the measuring conditions.

For a particle volume fraction of φ ≥ 0.55 dispersions are in the crystalline or

gel-like state and show shear thinning behavior in the whole shear rate range

investigated. On the other hand, thixotropy vanishes since no long-range particle

rearrangements are possible due to the dense particle packing.

Viscosity in the low shear Newtonian plateau, referred to as zero-shear viscosity

η0, depends only on the total volume occupied by the particles and is independent

of particle size. The solvent viscosity ηs always acts as a constant pre-factor,

and in the following we will focus on the relative viscosity ηr = η/ηs. Various

models describing the volume fraction dependence of the zero-shear viscosity

have been proposed. The classical model of Einstein [13, 14] for infinitely dilute,

non-interacting hard spheres showed that single particles increase the viscosity of

the dispersion medium as a linear function of the volume fraction φ according to

the equation:

ηr = (1 + 2.5φ) (1.24)

The Einstein equation applies to φ < 0.01, assuring that the flow around a particle

does not influence the velocity field of any other particle. At higher particle con-

centration the hydrodynamic interactions between particles become important and

higher-order terms in φ have to be considered. The effect of two-sphere hydrody-

namic interactions on the suspension viscosity was calculated by Batchelor [15]:

ηr = 1 + 2.5φ + 6.2φ2 (1.25)

This equation is validated to φ < 0.1. For higher particle concentrations

multi-particle interactions become imperative and a prediction of viscosity from

first principles is still lacking. Numerous phenomenological equations have been
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introduced to correlate the viscosity of concentrated dispersions to the particle

volume fraction. Krieger and Dougherty [16] proposed a semi-empirical equation

for the concentration dependence of the viscosity:

ηr =

(

1 −
φ

φmax

)−2.5φmax

(1.26)

where φmax is the maximum packing fraction or the volume fraction at which

the zero shear viscosity diverges. This equation reduces to the Einstein relation

(Equation 1.24) at low particle concentration. Quemada [17] suggested another

phenomenological model to predict the ηr(φ) dependence:

ηr =

(

1 −
φ

φmax

)−2

(1.27)

This model suits best as φ → φmax. Figure 1.8 shows the volume fraction

dependence of relative viscosity, according to the models described above.

The absolute value for the maximum packing fraction φmax is determined by

the packing geometry, which depends on the particle shape and particle size

distribution but not on particle size. The volume fraction at maximum packing

has been calculated by theoretical models and different φmax values have been

found depending on the type of packing. The φmax value for hard spheres is

often taken as 0.64 [18], which is the value associated with random close packing.

However, experiments on colloidal hard sphere dispersions have shown that zero-

shear viscosity diverges at the volume fraction of the colloidal glass transition

φg = 0.58 [19–22]. Above φg, particle diffusion is restricted to small ‘‘cages’’ formed
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φ / φmax

100

101

102

103

104

Quemada

Batchelor

Einstein

Krieger- 
dougherty 

ηr

Figure 1.8 Schematic representation of the volume fraction dependence of relative viscosity

ηr according to the Einstein, Batchelor, Krieger–Dougherty, and Quemada models.
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by the nearest neighbors; correspondingly, the long-time self-diffusion coefficient

decreases to zero and the viscosity diverges. The latter two quantities are related to

each other by the generalized Stokes–Einstein equation:

D =
kBT

6πη(φ)a
(1.28)

Let us now consider the shear rate dependence of dispersion viscosity in the

liquid state. The transition from low shear to high shear plateau referred to as the

shear-thinning region depends on the balance between Brownian and hydrodynamic

forces. The Péclet number Pe is a useful dimensionless quantity to express the

relative importance of these two contributions:

Pe =
6πa3η

kBT
γ̇ =

a2

D0

γ̇ (1.29)

where a is the particle size, kBT is the thermal energy, and D0 = D (φ → 0) is the

diffusion coefficient.

The Péclet number is often called the dimensionless shear rate; equivalently, the

dimensionless shear stress σ r can be expressed as follows:

σr =
a3σ

kBT
(1.30)

The shear thinning region occurs around a characteristic Péclet number Pe ≈ 1 at

which Brownian and hydrodynamic forces are of similar relevance, which strongly

depends on the particle size a. A variation of particle size results in a shift of the

viscosity/shear rate curve on the γ̇ -axis with a shift factor proportional to the

particle radius cubed. Hence a plot of ηr as a function of Péclet number or

the dimensionless shear stress σ r should superimpose for hard sphere colloids

of different particle size at a given φ. This is illustrated in Figure 1.9a,b using

the example of poly(methyl methacrylate) spheres of different size, dispersed in

silicone oil , η0,r and η∞,r denote the low and high shear limiting values of the

relative viscosity.[23].

Figure 1.10a demonstrates schematically the effect of solvent viscosity ηs on the

viscosity of hard-sphere dispersions. The Pe number fully accounts for the effect

of viscosity of dispersion medium on the shear rate dependence of viscosity and

can be used to scale the data onto a master curve (Figure 1.10b) if again the relative

viscosity ηr = η/ηs.

1.4.1.2 Non-spherical Particles

Particles can deviate from the spherical form by either being axisymmetric or by

having an irregular shape. Typically, particles are approximated by prolate or oblate

spheroids (Figure 1.11) with a specified axis ratio rp:

rp =
a

b
(1.31)

where a corresponds to the length of the semi-major axis and b to the length

of the semi-minor axis. Some examples of spheroids are shown in Figure 1.11.
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Figure 1.9 Effect of particle size on the

shear rate dependence of relative viscosity.

(a) Schematic representation of the flow

curves of hard sphere dispersion, shifted

to high shear rates as the particle size

decreases; (b) relative viscosity ηr as a func-

tion of Péclet number Pe for sterically sta-

bilized poly(methyl methacrylate) particles

of different size. Redrawn from Choi and

Krieger [23].
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Figure 1.10 Effect of solvent viscosity on the shear rate dependence of relative viscosity.

(a) Schematic representation of the flow curves for hard spheres dispersed in solvents with

different viscosity; (b) relative viscosity ηr versus Pe number for polystyrene monodispersed

spheres in different media. Redrawn from the paper by Krieger [24].
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Figure 1.11 Prolate or oblate shaped particles and corresponding examples of typical parti-

cles. Taken from Macosko [8]. Copyright © 1994 John Wiley & Sons.

The rheology of suspensions of non-spherical particles is greatly influenced by

particle orientation with respect to the flow. The orientation in flowing suspensions

is governed by the balance between hydrodynamic forces, which tend to align

particles with flow, and Brownian motion randomizing the orientation. The relative

importance of each is given by a rotational Péclet number Perot:

Perot = τrotγ̇ (1.32)

For disk-like particles with radius b, the rotational relaxation time τ rot is:

τ−1
rot =

3kBT

32ηsb
3

(1.33)

and for rod-like particles with length 2a such that rp ≫ 1:

τ−1
rot =

3kBT(ln 2rp − 0.5)

8πηsa
3

(1.34)

At low shear rates for small particles and low fluid viscosity Perot → 0 and the

randomizing effect of Brownian motion dominates. For Perot > 1 the hydrodynamic

forces become enough strong to align the particles with the flow and the suspension

shows a considerable shear thinning behavior.
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Figure 1.12 Intrinsic viscosity [η] as a function of rotational Péclet number Perot, calculated

for diluted suspensions of (a) disc- and (b) rod-like particles of various aspect ratios [25].
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Figure 1.12a,b shows numerical results for the intrinsic viscosity [η] as a function

of Perot for dilute suspensions of disk- and rod-like particles at different aspect

ratios [25]. The intrinsic viscosity [η] is a dimensionless quantity defined as:

[η] = lim
φ→0

η − ηs

φηs

(1.35)

It can be seen from Figure 1.12a,b that the zero-shear intrinsic viscosity increases

with increasing aspect ratio rp, which is due to the effective enlargement of

the volume inaccessible for other particles. Elongated particles in highly diluted

suspensions can rotate freely about their center of gravity and thus occupy a

spherical volume with a diameter corresponding to the long dimension of the

spheroid. Therefore, particle interactions become relevant beyond a critical volume

fraction φ* ≪φmax at which these spheres start to interpenetrate. Hence, parti-

cle asymmetry has a strong effect on the concentration dependence of relative

viscosity.

In colloidal as well as non-colloidal suspensions axisymmetric particles could be

packed more densely than spheres, but the divergence of the zero shear viscosity

occurs at lower volume fraction, which decreases with increasing aspect ratio rp

(Figure 1.13).

For anisotropic particles random orientation leads to a higher barrier against

flow at low shear rates, that is, to an increase in zero-shear viscosity. However,
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Figure 1.13 Relative viscosity ηr versus particle volume fraction φ for non-colloidal glass

fiber suspension of various aspect ratios rp [26]. Taken from Barnes et al. [27].
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under shear, these elongated particles can orient in the direction of flow, resulting

in a lower high shear viscosity than for spherical particles with equivalent size.

1.4.2

Influence of Colloidal Interactions on Rheology

1.4.2.1 Repulsive Particles

So far we have considered suspensions of hard spheres for which the colloidal

or thermodynamic interactions did not play a role. In practice, dispersions are

stabilized by repulsive surface forces in order to prevent aggregation. Colloidal

interactions such as electrostatic or steric repulsion keep particles far enough apart

so that they cannot be attracted by the short-range van der Waals attraction force.

This corresponds to an excluded volume that is inaccessible to other particles. The

effective volume fraction of the dispersion φeff can be expressed as follows:

φeff = φ
(aeff

a

)3

(1.36)

where aeff is the effective particle radius defined as half the distance to which two

particle centers can approach each other under the action of colloidal forces. Many

rheological features are analogous to those of hard sphere dispersions and can be

quantitatively described by mapping the real system onto a hard sphere system

with φ =φeff. The effective increase of the volume occupied by the particles causes

an increase in the zero-shear viscosity as well as a shift of the liquid to crystalline

phase transition and the colloidal glass transition to lower volume fractions φ.

Note that hard sphere mapping is only valid if the range of repulsive interactions

is small compared to the particle radius, which is true for typical commercially or

technically relevant dispersions, especially at high particle loading.

Derjaguin–Landau–Verwey–Overbeek (DLVO) theory provides a good descrip-

tion of the interactions among electrostatically stabilized colloidal particles (see

Chapter 2 in Volume 1 [28]). The strength of the repulsion is given by the surface

charge or surface potential and the range of interaction by the so-called Debye

length κ−1, which is inversely proportional to the square-root of the ion concen-

tration in the liquid phase. Since the effective volume fraction φeff increases with

increasing κ−1, the viscosity of charge-stabilized dispersions depends strongly on

the ionic strength of the dispersion medium and diverges at lower volume fraction

than predicted for hard spheres. The concentration dependence of the zero-shear

viscosity for monodispersed charged polystyrene (PS) latices of different ionic

strength and particle size is shown in Figure 1.14a,b [29]. The data on the left-hand

side show that the relative zero-shear viscosity η0,r = η0/ηs diverges at a volume

fraction φmax,exp well below that for hard spheres and this experimental maximum

volume fraction φmax,exp decreases with decreasing ionic strength of the system.

Particle size is also an important parameter that influences φeff. Decreasing the

particle radius a, at a constant volume fraction φ and constant ionic strength,

corresponds to an increase of φeff and, thus, for smaller particles the zero-shear

viscosity diverges at a lower particle volume fraction φmax,exp [29], when keeping all

other conditions the same. The hard sphere mapping concept fully accounts for



1.4 Rheology of Colloidal Suspensions 25

0.1 0.2 0.3 0.4

φ

1

0.1

1

10

100 10

1

0.1

0.47
0.37

0.33

mM [KCI] φmax, exp

η0,r η0,r

0.0 0.2 0.4 0.6 0.8 1.0

φ / φmax,exp

1

10

100

K-D

Quemada

50 mM [KCI]
10

1

0.1

10 mM [KCI]

1

0.1

10 mM [KCI]

PS120

PS200

PS310

(a) (b)

Figure 1.14 (a) Relative zero-shear vis-

cosity η0,r versus particle volume frac-

tion φ for monodisperse polystyrene par-

ticles (PS200), 200 nm in diameter, dis-

persed in water with concentrations of

potassium chloride [KCl]; (b) master curve

for all the data including the polystyrene

dispersions at different salt concentra-

tion and particle size: 120, 200, and

310 nm [29].

the effects of particle size and ionic strength on the volume fraction dependence

of viscosity. The zero-shear viscosity data can be collapsed onto a universal master

curve by rescaling the volume fraction by φ/φmax,exp (Figure 1.14b). Furthermore,

the Quemada (Equation 1.27) and Krieger–Dougherty (Equation 1.26) equations

developed for hard sphere dispersions provide a good description of the zero-shear

viscosity data for electrostatically interacting systems if φ is replaced by φeff.

Electrostatic interactions have a strong impact on the phase behavior of colloidal

dispersions and hence on their flow properties. The hard sphere mapping concept

can also be applied to categorize different characteristic signatures of the flow

curves corresponding to different phase states. Figure 1.15 demonstrates the

viscosity as a function of shear rate for an electrostatically stabilized PS/acrylate

dispersion at various particle concentrations. Here the phase states typical for

hard sphere dispersions (schematically shown in Figure 1.7) can be recognized

but shifted to lower particle volume fractions. For repulsively interacting systems

the phase diagram may be mapped onto that of a hard-sphere system using the

effective radius concept. Accordingly, the transition volume fractions are lower

than that for hard-sphere dispersion. In the example presented here, for instance,

φ = 0.44 =φlc,exp corresponds to the liquid/crystalline phase transition occurring

at φ = 0.50 =φlc,HS for hard spheres. Thus all volume fractions in this case can be

rescaled as φeff:

φeff = φ

(

φlc,HS

φlc,exp

)

(1.37)
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The liquid/crystalline phase transition volume fraction φlc decreases as the range

of repulsive interaction increases.

The particle size can also influence the phase behavior of colloidal dispersions.

Increasing the particle radius a at constant φ and a constant range of the repulsive

colloidal interactions corresponds to a decreasing φeff. Thus, dispersions with the

same φ but different a may exist in different phases. This has a strong impact on
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symbols) shear rate for polystyrene/acrylate dispersions with different particle radii mea-

sured at fixed particle volume fraction.
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the shear rate dependent viscosity. Figure 1.16 demonstrates the phase transition

from the crystalline to the two-phase region upon an increase of particle size of an

electrostatically stabilized PS/acrylate dispersion at fixed volume fraction φ = 0.48.

At sufficiently high shear rates hydrodynamic interactions become dominant and

can overcome the electrostatic repulsive forces so that particles approach each

other closer and aeff decreases until the electrostatic contribution is completely

suppressed and the particles behave as hard spheres. As a consequence, the

viscosity becomes independent of particle size and the flow curves superimpose.

Charged stabilized dispersions show a strong shear thinning behavior until

the viscosity is close to that expected for hard spheres, that is, independent of

particle size and ionic strength. This is true for the high shear viscosity η∞ as

well as the high frequency viscosity η′
∞. Note that these quantities correspond

to different microstructures and η∞ is always larger than η′
∞. The Cox–Merz

rule η(γ̇ ) = |η∗(ω)| for γ̇ = ω, which is widely applicable for polymer melts and

solutions, can be applied to dispersion rheology only at low ω and/or φ.

Figure 1.17 shows the frequency dependence of the elastic modulus G′ and

viscous modulus G′′ for electrostatically stabilized suspensions at three different

particle volume fractions. At low volume fraction in the liquid state G′′ ≈ω

dominates over G′ ≈ω2, as expected for viscoelastic liquids. In the two-phase

region G′ and G′′ are essentially equal and increase weakly according to G* ≈ ωα

(power law exponent α < 1). In the highly concentrated gel-like or crystalline state

G′ ≫ G′′ and both moduli are more or less independent of frequency ω.

Let us now consider the rheology of sterically stabilized dispersions. Particle

repulsion in sterically stabilized dispersions results from the interactions between

polymer chains or surfactant molecules adsorbed or grafted onto the particle

surface. The formation of a hairy surface layer gives rise to an increase in the
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Figure 1.17 G′ and G′ ′ as a function of angular frequency ω for a concentrated electrostat-

ically stabilized dispersion at volume fractions around the phase transition region. The filled

symbols denote G′, open symbols G′′.
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hydrodynamic particle radius and a dispersions zero-shear viscosity, in a similar

way to the case of charged particles. Hence, the rheological behavior of such

systems is similar to that of hard spheres with aeff ≈ a + L. In particular, if

the particle radius a is small the stabilizing layer can contribute significantly to

the effective volume φeff =φ(1 + L/a)3; and thus give rise to a strong viscosity

increase. When using polyelectrolytes or ionic stabilizers with weak functional

acid groups, the thickness of the stabilizer layer L depends on the ionic strength

and pH of the dispersion medium, which determine the degree of dissociation

and range of electrostatic interactions among the functional acid groups. The

steric repulsion provided by this surface layer, which is activated and tuned by

short-range electrostatic interactions, is called electrosteric stabilization and is an

important mechanism for stabilization of commercial polymer dispersions. As was

the case for charged particles, electrosterically stabilized dispersions show universal

scaling independent of ionic strength, pH, or core particle size, but here the data

have to be rescaled versus φeff not only for the zero-shear viscosity η0 but also

for the high shear viscosity η∞ and high frequency viscosity η′
∞. However, the

hairy particles show the same η′
∞ as predicted for hard sphere dispersions up to

φeff = 0.5. Beyond this effective volume fraction strong deviations are observed due

to the permeability and interpenetration of the stabilizing layers [30].

1.4.2.2 Attractive Particles

Attractive particle interactions either result in large compact aggregates, which

rapidly phase separate, or in loose aggregates with fractal structure. Only the latter

case is relevant from a rheological point of view. Loose aggregates immobilize

water, leading to a larger effective volume fraction φeff and thus to an increase

in the zero-shear viscosity. When the shear rate is increased the flocs gradually

breakdown and/or align in the flow direction, resulting in a viscosity reduction.

Aggregate break-up in dilute dispersions can be estimated by the balance between

hydrodynamic forces FH = 6πηsa
2γ̇ and the van der Waals force FvdW = aAH/12h2

(where AH is the Hamaker constant and h interparticle separation distance). Hence,

in the colloidal domain (a < 1 µm) very large shear rates are required to break-up

the aggregates into primary particles.

The fractal structure of aggregates is characterized by the fractal dimension Df,

which characterizes the mass density of the flocs and is controlled by the aggregation

mechanism. The lower the Df value, the more open the aggregate structure is.

Reaction limited- and flow-induced aggregation lead to denser structures, while

diffusion limited aggregation results in low Df values, as confirmed by computer

simulation and scattering experiments [31–33]. Above a critical volume fraction

fractal aggregates can interconnect, forming a sample-spanning network, which

results in a highly elastic gel-like behavior (G′ > G′′) and an apparent yield stress.

The rest structure ruptures at a critical stress level and viscosity progressively

decreases with increasing applied stress. The shear induced breakdown and

recovery of flocs may require a finite amount of time, resulting in thixotropic

behavior.

Different flocculation mechanisms in disperse systems can be recognized:
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• Flocculation of charged particles can be caused by increasing the ionic strength and

or lowering the surface charge. Particles can then aggregate in the primary or the

secondary minimum of the potential energy. The latter gives rise to fairly weak

aggregates and a shear force can easily separate the particles again.
• Flocculation of sterically stabilized particles depends on the thickness of the stabi-

lizing layer. Particles aggregate, when the stabilizing layer is not thick enough

to screen the van der Waals attraction; as a rule of thumb, the thickness of

the stabilizing layer should be L ≈ a/10. This layer thickness strongly depends

on the solvent quality of the continuous phase, and may often be widely tuned

by variation of temperature. Systems with an upper or lower critical solution

temperature are described in the literature.
• Depletion flocculation results from the osmotic pressure induced by the addition

of non-adsorbing polymers. Attractive interactions in this case are easily tunable

by size and concentration of added polymer.
• Bridging flocculation occurs on dissolving high-molecular weight polymers with

a strong affinity to particle surface that attach to at least two particles. Strong

bridging-flocculated gels may be formed at high particle volume fraction when

the particle surface separation is small. Typically, the molecular weight of the

polymers is on the order of 106 g mol–1 so that they can bridge the gap between

particles without losing too much conformational entropy.
• Flocculation by capillary forces: the addition of small amounts of a secondary fluid,

immiscible with the continuous phase of the suspension, causes agglomeration

due to the capillary bridges and creates particle networks even at low particle

volume fraction.

Investigations of the rheology of strongly flocculated gels are difficult because

of the poor reproducibility of sample preparation, sensitivity to shear history, and

preparation conditions. On the other hand, weak or reversible flocculation allows

for breakup and re-formation of aggregates due to thermal forces and the structure

may reach a metastable thermodynamic state.

Rheology of Weakly Flocculated Gels Suspensions in which particles are reversibly

captured in a shallow primary or secondary minimum [typically (−
min/kBT) < 20,

where 
min is the minimum of interaction potential] are classified as weakly floc-

culated gels. To demonstrate some features of the rheology of these weakly

flocculated gels let us consider the results of the investigations of depletion floccu-

lated suspensions and the thermoreversible gelation of sterically interacting particle

suspensions. Figure 1.18a shows the shear rate dependence of the relative viscosity

of colloidal dispersions of octadecyl grafted silica spheres in benzene (φ = 0.367)

at several temperatures [34]. When the temperature is decreased below the theta

temperature (316 K) weak aggregates are formed, leading to an increase in viscosity

and shear thinning behavior. Buscall et al. [35] studied sterically stabilized acrylic

copolymer particles dispersed in ‘‘white spirit’’ (mixture of high-boiling hydro-

carbons). Adding non-adsorbing polyisobutylene above the critical free polymer

concentration for depletion flocculation causes a dramatic increase in viscosity with

increasing polymer concentration (Figure 1.18b).
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Figure 1.18 (a) Relative shear viscosity

versus shear rate for a dispersion of oc-

tadecyl grafted silica spheres in benzene

(φ = 0.367) at several temperatures [34]; (b)

relative viscosity versus shear stress σ for

a dispersion of acrylic copolymer particles

(a = 157 nm) grafted with hydroxystearic

acid–poly(methyl methacrylate) and dis-

persed in ‘‘white spirit’’ at volume frac-

tion φ = 0.4 with added polyisobutene

(Mw = 411 000 g mol–1) of different con-

centrations in weight per volume: 0.1, 0.4,

0.5, 0.6, 0.85, and 1% (from bottom to

top) [35].

Weakly flocculated systems are also characterized by an apparent yield stress.

Tadros [1] investigated depletion flocculated aqueous PS dispersions containing

free poly(ethylene oxide) (PEO) chains. It was found that the yield stress σ y

increases linearly with increasing PEO concentration φp and the slope of this linear

dependence increases with increasing particle volume fraction φ (Figure 1.19). The

following scaling relation applies:

σy ∼ φp (1.38)

where the power-law exponent p depends on the fractal dimension and is around

3 according to experimental investigations, while numerical simulations report

higher values: 3.5–4.4, depending on whether the aggregation is slow or rapid.

Figure 1.20 shows the elastic modulus G′ of the depletion-flocculated aqueous

PS dispersions as a function of the free polymer (PEO) volume fraction φp at

several particle volume fractions. Above the critical free polymer concentration G′

increases with increasing φp since the aggregates grow; G′ then reaches a plateau

value as soon as a sample-spanning network is formed. Furthermore, it can be

seen that at any given φp the elastic modulus G′ increases with increasing particle

volume fraction.

Rheology of Strongly Flocculated Gels Suspensions in which particles are captured

in a deep primary or secondary minimum with (−
min/kBT) > 20 are classified as
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Figure 1.19 Yield stress σ y versus free polymer (PEO, Mw = 20 000 g mol–1) volume frac-

tion φp for a polystyrene dispersion at several particle volume fractions φ [1].
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Figure 1.20 Elastic modulus G′ versus free polymer (PEO, Mw = 20 000 g mol–1) vol-

ume fraction φp for polystyrene dispersion (a = 77.5 nm) at three different particle volume

fraction φ [1].

strongly flocculated gels. Such systems are not at equilibrium and hence difficult

to investigate experimentally. Nevertheless, several studies [36–38] examined the

rheological properties of strongly flocculated gels and found some typical trends

for these materials. Strongly flocculated gels are highly elastic (G′ ≫ G′′) at small

amplitudes and have an extremely limited range of viscoelastic response. Above a

critical amplitude γ c the elastic modulus G′ rapidly decreases since the flocculated

structure breaks down. For strongly flocculated systems γ c is much lower than for
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stable dispersions with repulsive interactions or for polymer melts and solutions.

The frequency independent elastic modulus G′ of strongly flocculated gels is found

to be independent of particle size but strongly increases with particle volume

fraction φ according to the following scaling law:

G′ ∼ φα (1.39)

where the exponent α varies between 2 and 6 depending on the aggregation

conditions. If aggregation is slow (reaction limited) dense structures are formed

and gel formation sets in at a higher particle volume fraction and, correspondingly,

α is high. Figure 1.21 shows the volume fraction dependence of the G′ plateau

modulus for a sterically stabilized PS latex dispersion at various concentrations of

sodium sulfate (Na2SO4) [39]. The stable dispersion shows a strong increase of

G′ within a narrow concentration range above φ = 0.5, with an exponent α ≈ 30.

At Na2SO4 concentrations above the critical flocculation concentration α suddenly

decreases and reaches the value of 2.2 at 0.5 M Na2SO4, indicating that an open

sample-spanning network structure is formed at a particle volume fraction as low

as φ = 0.35.

Strongly flocculated dispersions are very sensitive to shear and are characterized

by an apparent yield stress. The yield stress σ y of an aggregated dispersion can be

related to the adhesion force Fadh between two particles [40]:

σy =
Fadh

a2
f (φ) (1.40)

The term Fadh/a2 is the stress per particle and for low particle concentration the

function f (φ), referring to the number of particle contacts, can be approximated as

the number of binary contacts, that is, f (φ) =φ2. The adhesion force is given by

the van der Waals attraction, that is, Fadh ≈ a and thus:

σy ∼
φ2

a
(1.41)
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Figure 1.21 Elastic modulus G′ versus particle volume fraction φ for a sterically stabilized

suspension with grafted PEO flocculated by adding Na2SO4 [39].



1.4 Rheology of Colloidal Suspensions 33

More elaborate models for f (φ) and the DLVO interaction potential result in the

same scaling law and provide good estimates for the absolute value of σ y and G′.

However, various experimental studies [38, 39] have revealed a different scaling for

the yield stress of strongly flocculated particulate gels with particle size and volume

fraction:

σy ∼
φ3

a2
(1.42)

Capillary Forces in Suspension Rheology Recently, Koos and Willenbacher [41]

reported that the addition of small amounts of a secondary fluid, immiscible with

the continuous phase of the suspension, can dramatically change the rheological

properties of suspensions. Capillary forces between particles lead to the formation of

a sample-spanning network structure resulting in a transition from predominantly

viscous to gel-like behavior. This phenomenon is observed for various different

fluid/particle systems, independent of whether the primary liquid or the secondary

immiscible liquid preferentially wet the solid particles. When the secondary fluid

creates isolated capillary bridges between particles the observed gel-like state is

termed the ‘‘pendular’’ state, analogous to the pendular state in wet granular media

(see Chapter 2, in Volume 1 [28]). Even if the second, immiscible fluid does not

preferentially wet the solid particles it can still attach to the particles and cause

agglomeration due to the negative curvature of the solid/liquid interface. This state

is analogous to the capillary state in wet granular media close to the saturation

limit. Figure 1.22 shows two examples demonstrating the effect of the fraction of
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Figure 1.22 Yield stress versus fraction of wetting liquid S. For the aqueous PVC disper-

sion with addition of DINP the yield stress shows a maximum in the capillary state. On

adding water to the suspension of hematite particles in DINP the yield stress shows a max-

imum in the pendular state.
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wetting liquid on the yield stress for both the pendular and the capillary state. The

increase in yield stress is greatest in the capillary state for the aqueous poly(vinyl

chloride) (PVC) dispersion with diisononyl phthalate (DINP) as a secondary fluid.

In contrast, the maximum in the yield stress for the dispersion of hematite particles

in DINP is in the pendular state where water is the secondary fluid.

SAOS measurements of suspension in the capillary state clearly demonstrate

the transition between the weakly elastic, predominantly viscous to highly elastic,

gel-like behavior with increasing amount of secondary fluid. Figure 1.23 shows

the frequency dependence of the complex shear modulus G* for hydrophobically

modified calcium carbonate (CaCO3) particles suspended in a silicone oil with

different amounts of added water as a secondary fluid. Without the secondary

fluid the magnitude of the complex shear modulus |G*| increases with increasing

frequency, whereas on addition of only 0.2% wt. water the complex shear modulus

G* becomes frequency independent. This transition in the rheological properties

of a suspension upon adding small amount of a secondary fluid is directly evident

from the images shown in Figure 1.24. Note that this phenomenon has been

observed at a particle volume fraction as low as about 10%.

This phenomenon has important potential technical applications. The formation

of a strong sample-spanning network prevents sedimentation. Furthermore, it

changes the rheological properties of the system, which is a reversible process and

may be tuned by temperature or addition of surfactant. Another field of application

is to use such suspensions as precursors for porous materials. The strong capillary

forces prevent the collapse of the network structure upon removal of the liquid

phase. A solid PVC foam has been already produced under laboratory conditions,

using PVC particles (φ = 0.2) dispersed in water, with DINP as a secondary fluid [41].
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Figure 1.23 Magnitude of complex shear modulus |G*| versus frequency ω for hydrophobi-

cally modified CaCO3 particles (a = 800 nm, φ = 0.173) dispersed in a silicone oil, with the

addition of various amounts of water.
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Fluidization of Highly Concentrated Dispersions Highly concentrated dispersions

with a particle volume fraction above the colloidal glass transition φg behave as

gel-like materials with finite plateau modulus G0. A classical method to keep

highly concentrated dispersions fluid and to minimize their viscosity is to shift the

maximum packing fraction by mixing of particles of different size (Section 1.4.3).

However, in this section we will consider an alternative concept of fluidizing dense

colloidal dispersions, based on the so-called re-entry glass transition in colloidal

dispersions [42–45].

Weak attractive interactions, for example, introduced by the depletion effect of

non-adsorbing polymers dissolved in the continuous phase, can shift the colloidal

glass transition φg to significantly higher values (up to φ ≈ 0.7), which can be used

to make freely flowing but highly concentrated dispersions. Figure 1.25 shows

the viscosity reduction upon addition of a non-adsorbing polymer to an aqueous

dispersion of a hard-sphere like polystyrene–(butyl acrylate), P(S-BA), dispersion

at a particle volume fraction above the colloidal glass transition [46]. It can be seen

0.00% H2O wt. 0.10% 0.20% 0.30% 0.40% 0.50%

Figure 1.24 Transition from weakly elastic, predominantly viscous to highly elastic, gel-like

behavior with increasing amount of water added to a suspension of hydrophobically modi-

fied CaCO3 (a = 800 nm, φ = 0.11) in DINP.
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Figure 1.25 Relative viscosity as a function of shear rate for an aqueous polystyrene–(butyl

acrylate) P(S-BA) dispersion at φ = 0.64 with and without added PEO (Mw = 20 000 g l–1) in

comparison with a commercial polymer dispersion (acrylate latex) with a broad multimodal

size distribution [46].
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(a) (b) (c)

Figure 1.26 Changes in the texture of an aqueous P(S-BA) latex (a) at φ =0.64 upon addi-

tion of different concentrations of PEO (Mw = 4000 g mol–1): (b) 5 and (c) 10 g l–1.

that the low-shear viscosity decreases by two orders of magnitude upon addition

of non-adsorbing polymer and the effect is comparable to that resulting from

broad multimodal particle size distribution. The fluidization of an aqueous latex

dispersion due to added non-adsorbing polymer is also evident in Figure 1.26, which

shows images of the suspension with different polymer concentration placed on a

glass plate. On adding different amounts of PEO to the aqueous P(S-BA) dispersion

the texture of the sample changes from gel-like, due to the particle caging at this

concentration (repulsive glass), to fluid like and again to gel-like but now due to

particle bonding (attractive glass).

1.4.3

Effect of Particle Size Distribution

Numerous experimental studies have been performed using bimodal and multi-

modal model systems and various phenomenological models have been developed

to describe the effect of particle size distribution on viscosity. Typically, a signifi-

cant viscosity reduction due to mixing particles with different size is observed at

particle volume fractions φ > 0.5 and the effect increases with increasing φ. For

bimodal systems the viscosity at a given particle loading goes through a pronounced

minimum at a relative fraction of small particles ξ s ≈ 0.3. This viscosity reduction

phenomenon is observed for dispersions of non-Brownian as well as Brownian

hard spheres. Typical examples are presented in Figure 1.27a,b. Viscosity reduction

has been observed at particle size ratios as low as χ = 1.7 and for hard sphere

suspensions the effect increases with increasing χ = alarge/asmall. This is no longer

true if repulsive colloidal interactions become relevant. At a fixed size of the large

particles an increasing χ value corresponds to a decreasing size of small particles

asmall and if the range of the repulsive interactions is constant this corresponds

to an increasing φeff. As a consequence the viscosity goes through a minimum

and then increases again if the size ratio χ is increased at a constant total particle

concentration and a fixed fraction of small particles. This is shown schematically

in Figure 1.28. Willenbacher and coworkers [47, 48] have investigated this phe-

nomenon intensively using a large number of polymer dispersions with different

particle size ratio and different range of repulsive interaction. They could show

that for typical commercial dispersions with short-range repulsive interactions the

viscosity reduction effect is most pronounced at a size ratio χ = 4–5. Furthermore,
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Figure 1.27 Relative zero-shear viscosity η0,r versus small particle volume fraction ξ s: (a)

for a suspension of non-Brownian hard spheres at different size ratios (b) For a suspen-

sion of Brownian particles with size ratio χ = 1.7 at different particle concentration φ (0.58

and 0.56). Redrawn from Rodriguez et al. [50].
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Figure 1.28 Schematic drawing of relative

viscosity as a function of particle size ra-

tio calculated according to Equation 1.43

for large particle radius alarge = 400 nm,

total particle concentration φ = 0.6, and

small particle volume fraction ξ s = 0.25.

The dashed line shows the results

for ε = 2, that is, hard sphere disper-

sions, and the solid line represents

the results for ε as a function of aver-

age particle size. Adapted from Dames

et al. [47].
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they proposed a generalized Quemada model:

η = η̃

(

1 −
φ

φmax

)−ε

(1.43)

with a shear rate dependent pre-factor η̃ and they could show that φmax can be

calculated solely from the particle size distribution according to a phenomenological

model derived from a large set of data for non-colloidal hard sphere packing [51], and

the colloidal interactions are parameterized by the exponent ε ≥ 2. The exponent ε

is equal to 2 in the hard sphere limit and increases with decreasing mean particle

size. This is attributed to the fact that colloidal interactions among particles become

more important as the mean particle separation diminishes and viscosity diverges

at lower volume fractions than expected for hard spheres.

The phenomenon of viscosity reduction due to bi- or multimodal particle size

distribution is often attributed to an optimized packing that fits small particles into

the interstitial volume between the large particles. Along these lines Farris [52] has

developed a model for bimodal dispersions with size ratio χ > 10, treating the small

particles together with the solvent as a homogeneous fluid with an effective viscosity

and assuming that small and large particles do not interact. This model predicts a

viscosity minimum at a small particle fraction ξ s = 0.27, which is in good agreement

with many experimental observations. But, on the other hand, a minimum value

of χ c = 6.46 [53] is required to fit a small particle into the interstitial volume within

a tetrahedron of large particles and for χ = χ c this packing concept corresponds

to a fraction of small particles ξ s < 0.01, which is by far not sufficient to induce a

viscosity reduction. However, a small particle volume fraction of ξ s ≈ 0.3, which is

needed to induce a significant viscosity reduction, corresponds to a number ratio

Nsmall/Nlarge ≈ 100 at a size ratio around χ c. These considerations demonstrate

that simple packing considerations are not sufficient to explain the observed

phenomena. Accordingly, the formation of ordered superlattice structures or phase

separation effects have also been discussed, but a satisfying theory explaining the

effect of particle size distribution on viscosity is still lacking.

1.4.4

Shear Thickening

Shear thickening describes the phenomenon of increasing viscosity with increasing

shear rate or shear stress. This phenomenon has been observed for a wide variety of

colloidal and non-colloidal particle suspensions. Shear thickening becomes impor-

tant at high shear rates and occurs beyond a critical volume fraction (Figure 1.29a).

The thickening effect increases with particle loading and depends on particle size,

particle size distribution, and interactions among particles [54].

Early rheological and light scattering results [56, 57] suggested that the shear

thickening phenomenon is due to a shear induced order–disorder transition

and the shear thinning observed at intermediate shear rates is attributed to the

formation of a layered structure. Repulsive interactions are assumed to stabilize

this layered structure. At sufficiently high shear rates spatial fluctuations of particle
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Figure 1.29 Shear thickening of charge

stabilized silica dispersions with vari-

ous particle radii (75, 167, 300, 600, and

1000 nm) and particle volume fraction

ranging between 0.31 and 0.59 [55]. (a)

Viscosity versus shear stress; (b) critical

shear stress σ c versus particle radius a.

The line fits the power law dependence

σ c ≈ a−2. Adapted from Maranzano and

Wagner [55].

position destabilize the ordered flow, which results in a strong increase in viscosity.

The onset of shear thickening is related to a critical shear rate, above which

the hydrodynamic lubrication forces exceed the repulsive colloidal forces [58].

However, comprehensive rheo-optical and small-angle neutron scattering (SANS)

experiments [59–62] have revealed that the shear thickening phenomenon may

or may not be accompanied by an order–disorder transition but this transition is

not a necessary condition. Instead, these investigations clearly revealed that shear

thickening is due to the formation of so-called hydroclusters, which form under

the action of hydrodynamic forces pushing particles together and instantaneously

disintegrate upon cessation of flow. The formation of clusters shows up in turbidity

and flow birefringence and has also been confirmed by stress jump experiments [63]

as well as Stokesian dynamics simulations of hard sphere dispersion flow [64–66].

Furthermore, Chow and Zukoski [67] investigated the shear thickening behavior

of electrostatically stabilized particles in very thin rheometer gaps and found that

the critical shear rate for shear thickening increases with increasing the gap size,

indicating formation of gap-spanning clusters. The increase in viscosity is attributed

to the anisotropic shape of the clusters and the enhanced effective particle volume

fraction due to trapped solvent. The hydroclusters can collide with each other and

thus ‘‘jam’’ the flow, leading to discontinuous shear thickening at a critical shear

stress. If the particle volume fraction is not high enough, hydrocluster formation

does not lead to jamming and the shear thickening effect is less pronounced.

The formation of hydroclusters is controlled by the balance of hydrodynamic

force needed to push particles together and the repulsive thermodynamic forces.

Accordingly, a critical stress σ c for the onset of shear thickening is predicted that

scales as σ c ≈ a−2 for electrostatically stabilized systems, which is consistent with
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experimental results [55, 58, 61] (Figure 1.29b). This scaling has also been observed

for sterically stabilized dispersions [68]. Note that σ c is almost independent of

particle volume fraction φ, while the corresponding critical shear rate γ̇c = σc/η(φ)

decreases with increasing φ.

Shear thickening can be suppressed or shifted to higher critical stresses by a

broad particle size distribution [54]. It has been shown that for bimodal mixtures

with size ratio χ ≈ 3 the critical shear stress σ c increases with increasing fraction

of small particles ξ s [55, 61]. Particle shape also has a strong influence on the shear

thickening behavior. Beazley [69] demonstrated that anisotropic clay suspensions

exhibit shear thickening behavior at lower volume fractions and the effect increases

with increasing aspect ratio. Bergstrom [70] investigated aqueous suspensions of

rod-shaped silicon carbide whiskers with aspect ratio rp ≈ 10 and reported shear

thickening behavior at volume fraction as low as 17%. More recently, Egres and

Wagner [71] investigated systematically the effect of particle anisotropy on shear

thickening using a poly(ethylene glycol) based suspensions of acicular precipitated

calcium carbonate (PCC) particles with aspect ratio varying between 2 and 7. Two

important results have been pointed out: the critical volume fraction for the onset

of shear thickening decreases with increasing aspect ratio but the critical shear

stress σ c is independent of the aspect ratio and follows the scaling laws proposed

for hard sphere dispersions with a size corresponding to the minor axis dimension.

1.5

Rheology of Emulsions

The rheology of emulsions exhibits many qualitative analogs to the rheology of

solid spherical particle dispersions. Differences arise from the deformability of

liquid drops, which is especially relevant at high shear rates and/or high volume

fraction of the disperse phase. However, even at low shear rates and low droplet

concentrations the relative viscosity of emulsions differs from that of solid sphere

dispersions. This is due to circulation of the flow inside the droplets, which leads

to deformation of the external streamlines around the fluid spheres such that the

flow is less disturbed and viscous dissipation is lower [72]. The degree of this effect

depends on the viscosity ratio M:

M =
ηd

ηs

(1.44)

where ηd is the viscosity of the droplet liquid. For high droplet viscosity the viscosity

ratio M approaches infinity and the distortion of the stream lines approaches that

of rigid spheres. This effect is measurable even in very dilute emulsions and is

captured by the Taylor equation [73]:

η = ηs

[

1 +

(

1 + 2.5M

1 + M

)

φ

]

(1.45)

which reduces to the Einstein equation (Equation 1.24) for M → ∞. Taylor’s

hydrodynamic theory assumes no deformation of droplets, which is satisfied at low
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enough shear rates. In typical oil-in-water (O/W) emulsions the interfacial tension

Ŵ is high enough to counteract the effect of hydrodynamic forces and leads to fast

shape relaxation. The droplet relaxation time τ d is given by:

τd =
aηs

Ŵ
(1.46)

and droplet deformation is not relevant for emulsion rheology as long as γ̇ < τ−1
d .

The balance between surface tension and shear forces is often expressed by the

dimensionless capillary number (Ca):

Ca =
aηsγ̇

Ŵ
(1.47)

Droplet deformation and rupture occur at Ca > 1. A closer look at the phenomenon

reveals that the critical Ca at which droplet rupture occurs depends strongly on the

viscosity ratio M and can vary by orders of magnitude [74, 75]. Flow kinematics also

plays a role and, generally, droplet rupture is easier in elongational than in shear

flow.

Experimental results on model emulsions of different viscosity ratios M, reported

by Nawab and Mason [76] demonstrated excellent agreement with Taylor’s hydro-

dynamic theory (Figure 1.30). Nawab and Mason pointed out that in some cases

adsorbed surfactant layers can reduce the internal circulations and thereby cause

an increase of intrinsic viscosity to the rigid sphere limit.

With increasing concentration above the Einstein limit, hydrodynamic inter-

actions become significant and Taylor’s equation cannot describe the volume

fraction–viscosity dependence. Pal [77] has proposed a phenomenological viscosity

equation for concentrated emulsions that takes into account the effect of viscosity

ratio M and reduces to the generalized Krieger–Dougherty equation (Equation 1.26)
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Figure 1.30 Intrinsic viscosity [η] versus droplet volume fraction φ for monodisperse emul-

sions of butyl benzoate oil droplets in different water solutions in order to vary the viscosity

ratio M [76]. Taken from Macosko [8]. Copyright © 1994 John Wiley & Sons.
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when M → ∞:

ηr

[

2ηr + 5M

2 + 5M

]3/2

=

[

1 −
φ

φmax

]−2.5φmax

(1.48)

This equation as based on a large set of experimental data for emulsions covering

a broad range of droplet volume fractions φ and viscosity ratios M.

The effect of dispersed phase volume fraction on rheology of typical technical

emulsions is less severe in comparison to colloidal dispersions. Since droplet size is

usually in the micron range technically relevant shear rates correspond to very high

Pe numbers and the measured viscosity data correspond to the upper Newtonian

plateau regime. Viscosity is further reduced at high droplet volume fractions due

to the usually broad droplet size distributions. As a consequence such emulsions

behave as Newtonian fluids up to volume fractions close to dense packing (φ ≈ 0.6)

[78]. Emulsions with an average droplet radius in the range of several 100 nm exhibit

a flow behavior resembling very much that of colloidal hard sphere suspensions.

Note that increasing the volume fraction of the dispersed phase does not necessarily

result in a monotonic increase in viscosity. At a critical droplet volume fraction,

phase inversion may occur that is accompanied by a drastic drop in viscosity.

However, emulsions are usually stabilized by surfactants adsorbed onto the droplet

surface that prevent the coalescence of droplets at contact.

Repulsive and attractive colloidal interactions as well as droplet deformation

and rupture during flow can cause a deviation from the hard sphere behavior of

emulsions. The effect of repulsive droplet interactions due to surface charge or

adsorbed polymer can be captured by hard sphere mapping (φ → φeff) similar to

that for suspensions of repulsive solid particles. Attractive droplet interactions lead

to flocculation and gelation analogously to attractive particle suspensions. Emulsion

rheology can be tuned over a wide range by adding thickeners to the continuous

phase or by excess surfactant providing self-assembling gel-like structure to the

continuous phase, which is particularly relevant for stabilization against creaming.

Emulsions can exhibit distinct viscoelastic properties even if both constituents are

Newtonian fluids due to the contribution of the interfacial tension, which opposes

droplet deformation. This is particularly important for polymer blends, where

the viscosity of both components is high and deformed interfaces relax slowly.

Various models have been established to describe the complex shear modulus G*

of emulsions. When both phases are Newtonian the Oldroyd model [79, 80] suits:

G∗ = iωηs

(

1 + 3
2
φ E

D

1 − φ E
D

)

(1.49)

with:

E = 2iω(ηd − ηs)(19ηd + 16ηs) +
8Ŵ

a
(5ηd + 2ηs)

D = iω(2ηd + 3ηs)(19ηd + 16ηs) +
40Ŵ

a
(ηd + ηs) (1.50)
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For emulsions with viscosity ratio M → ∞, droplets behave like solid particles and

the droplet relaxation time is so short that the ratio E/D reduces to:

E

D
=

0.4 + M

1 + M
(1.51)

In the dilute limit with φ → 0, Equation 1.49 simplifies to:

G∗ = iωηs

(

1 +
5

2
φ

E

D

)

(1.52)

For emulsions where both continuous and dispersed phase are viscoelastic with

frequency dependent complex moduli G∗
s and G∗

d, respectively, the Palierne [81]

model provides a good description for the complex modulus G* of the emulsion:

G∗ = G∗
s

(

1 + 3
2
φ E

D

1 − φ E
D

)

(1.53)

with:

E = 2(G∗
d − G∗

s )(19G∗
d + 16G∗

s ) +
8Ŵ

a
(5G∗

d + 2G∗
s )

D = (2G∗
d + 3G∗

s )(19G∗
d + 16G∗

s ) +
40Ŵ

a
(G∗

d + G∗
s ) (1.54)

Kitade et al. [82] investigated the viscoelastic properties of polymer blends consisting

of polydimethylsiloxane (PDMS) and polyisoprene and demonstrated that the
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Figure 1.31 Comparison of the Palierne model (lines) with measured G′(ω) dependence

for a blend of 11% polyisoprene (η0 = 60.9 Pa s) in PDMS (η0 = 73.7 Pa s) with Ŵ = 3.2 mN

m–1, pre-sheared at four different shear rates [82].
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experimentally determined frequency dependence of G′ is in agreement with the

Palierne model (Figure 1.31). The contribution of the interfacial term results in a

pronounced shoulder in the G′(ω) curve in the low frequency range. Figure 1.31

shows that with increasing pre-shear rate, which corresponds to a decrease of

the average droplet size [82], the ‘‘shoulder’’ in the G′(ω) dependence shifts to

higher frequencies. This is due to an increased interfacial area and hence a more

pronounced interfacial contribution for smaller droplets. In the high frequency limit

the interfacial terms can be ignored and G′ is determined only by the viscoelasticity

of the dispersion medium. Then, if G∗
d/G∗

s ≈ 1, the Palierne emulsion model

further simplifies to:

G∗ ≈ (1 − φ)G∗
s + φG∗

d (1.55)

Emulsions exhibit unique flow properties that are not observable in suspensions

when a critical volume fraction φc is exceeded. For colloidal systems φc may

be associated with the glass transition and for non-Brownian systems with the

volume fraction of close packing. At volume fractions φ > φc dispersions of solid

particles can no longer flow. In contrast, emulsions still flow even at φ >φc since

droplets start to deform and take a polyhedral shape. Such emulsions exhibit an

apparent yield stress, strong shear thinning, and pronounced elasticity. In the linear

viscoelastic regime the storage modulus G′ is much larger than G′′ and essentially

independent of frequency; this G′ value is known as the plateau modulus G0. Steady

shear flow curves are usually well described by the Herschel–Bulkley model:

σ = σy + kγ̇ (1.56)

where k is the consistency parameter and n the power law index. The apparent

yield stress, the degree of shear thinning (here expressed in terms of n), and

the plateau modulus increase with increasing volume fraction of internal phases

and decreasing droplet size. A thermodynamic model developed by Princen [83]

related the droplet compression to the osmotic pressure in the system, which

increases with increasing droplet volume fraction φ. When the osmotic pressure

exceeds the Laplace pressure Ŵ/a droplets start to deform and pack more tightly

with increasing φ. The elasticity of the system then arises from the surface tension

acting to resist the deformation. The plateau modulus G0 gradually develops when

φc is approached and then increases linearly with effective volume fraction [84]:

G0 =
3Ŵ

2a
(φeff − φc) (1.57)

where φeff accounts for the excluded volume due to repulsive forces. G0 is also

proportional to the Laplace pressure Ŵ/a and when φeff approaches unity the

plateau modulus approaches the limiting value G0 ≈Ŵ/2a.

Densely packed emulsions with φ >φc are characterized by an apparent yield

stress σ y at which the rest structure breaks down. In oscillatory shear measure-

ments, yielding occurs at a critical deformation amplitude, called the yield strain

γ y = σ y/G0. For highly concentrated emulsions this yield strain increases linearly

with increasing droplet volume fraction [85]:

γy ∼ (φeff − φc) (1.58)
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Figure 1.32 (a) Yield strain γ y versus
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apparent yield stress σ y scaled by the
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[85].

Figure 1.32a demonstrates this linear dependence for monodispersed emulsions

having different droplet size. Obviously, the volume fraction dependence of γ y is

independent of droplet size and γ y reaches its minimum at φc. The yield stress σ y

can be approximately expressed as σ y = G0γ y and together with Equation 1.57 this

yields the following relationship:

σy =
3

2

Ŵ

a
(φeff − φc)2 (1.59)

which nicely fits the experimental data in Figure 1.32b. For φeff ≈ 1 Equation 1.59

roughly reduces to:

σy(φeff = 1) ≈ 0.1
Ŵ

a
(1.60)

These experimental findings are also captured by the Princen–Kiss model [86]:

σy =
Ŵ

a
φ

1
3 Y(φ) (1.61)

This model is based on the affine deformation of a hexagonal structure and Y(φ)

can be expressed in analytical form for two-dimensional systems; however, for

three-dimensional emulsions Y(φ) is an empirical function:

Y(φ) = −0.080 − 0.114lg(1 − φ) (1.62)

Also distinct in a mathematical sense, the absolute numerical values of the terms

φ1/3(φ) and (φeff −φc) are not very different and φeff does not differ much from φ

if the layer immobilized by the surfactant is small compared to the droplet size,

as for many technically relevant emulsions. Equations 1.59 and 1.61 include the

linear relationship between σ y and the Laplace pressure Ŵ/a; if the particle size a is

known, measuring σ y or preferentially G0, since it is accessible with high accuracy
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(Equation 1.57), is a valuable tool for determining the interfacial tension Ŵ, which

is otherwise often hard to access.

Highly concentrated emulsions often do not exhibit uniform deformation even

in simple shear flow, instead they show shear banding, which can be very irregular

in the sense that the plane of deformation changes its position or that the width of

the deformed region changes with time [87–90].
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30. Fritz, G., Schädler, V., Willenbacher, N.,

and Wagner, N.J. (2002) Electrosteric

stabilization of colloidal dispersions.

Langmuir, 18 (16), 6381–6390.

31. Wetz, D.A. and Oliveria, M. (1984)

Fractal structures formed by kinetic

aggregation of aqueous gold colloids.

Phys. Rev. Lett., 52 (16), 1433–1436.

32. Weitz, D.A., Huang, J.S., Lin, M.Y.,

and Sung, J. (1985) Limits of the frac-

tal dimensions for irreversible kinetic

aggregation of gold colloids. Phys. Rev.

Lett., 54 (13), 1416–1419.

33. Sonntag, R.C. and Russel, W.B. (1986)

Structure and breakup of flocs sub-

jected to fluid stresses: I. Shear

experiments. J. Colloid Interface Sci.,

113 (2), 399–413.

34. Woutersen, A.T.J.M. and de Kruif, C.G.

(1991) The rheology of adhesive hard-

sphere dispersions. J. Chem. Phys., 94

(8), 5739–5750.

35. Buscall, R., McGowan, J.I., and

Morton-Jones, A.J. (1993) The rhe-

ology of concentrated dispersions of

weakly-attracting colloidal particles with

and without wall slip. J. Rheol., 37 (4),

621–641.

36. Buscall, R., Mills, P.D.A., and Yates,

G.E. (1986) Viscoelastic properties of

strongly flocculated polystyrene latex

dispersions. Colloids Surf., 18 (2–4),

341–358.

37. Buscall, R., McGowan, I.J., Mills,

P.D.A., Stewart, R.F., Sutton, D., White,

L.R., and Yates, G.E. (1987) The rheol-

ogy of strongly flocculated suspensions.

J. Non-Newtonian Fluid Mech., 24 (2),

183–202.

38. Buscall, R., Mills, P.D.A., Goodwin,

J.W., and Lawson, D.W. (1988) Scaling

behavior of the rheology of aggregate

networks formed from colloidal parti-

cles. J. Chem. Soc., Faraday Trans., 84

(12), 4249–4260.

39. Tadros, T.F. (1996) Correlation of

viscoelastic properties of stable and

flocculated suspensions with their in-

terparticle interactions. Adv. Colloid

Interface Sci., 68, 97–200.

40. Larson, R.G. (1999) The Structure and

Rheology of Complex Fluids, Oxford

University Press, New York.

41. Koos, E. and Willenbacher, N. (2011)

Capillary forces in suspension rheology.

Science, 331 (6019), 897–900.

42. Pham, K.N., Puertas, A.N., Bergenholtz,

J., Egelhaaf, S.U., Moussaidl, A., Pusey,

P.N., Schofield, A.B., Cates, M.E.,

Fuchs, M., and Poon, W.C.K. (2002)

Multiple glassy state in a simple model

system. Science, 296 (5565), 104–106.

43. Pham, K.N., Egelhaaf, S.U., Pusey,

P.N., and Poon, W.C.K. (2004)



48 1 Rheology of Disperse Systems

Glasses in hard spheres with short-

range attraction. Phys. Rev. E, 69 (1),

011503.1–011503.13.

44. Eckert, T. and Bartsch, E. (2002)

Re-entrant glass transition in a

colloid-polymer mixture with deple-

tion attractions. Phys. Rev. Lett., 89 (12),

125701–125704.

45. Eckert, T. and Bartsch, E. (2004) Glass

transition dynamics of hard sphere like

microgel colloids with short-ranged

attractions. J. Phys. Condens. Matter, 16,

S4937–S4950.

46. Willenbacher, N., Vesaratchanon,

J.S., Thorwarth, O., and Bartsch, E.

(2011) An alternative route to highly

concentrated, freely flowing colloidal

dispersions. Soft Matter, 7, 5777–5788.

47. Dames, B., Morrison, B.R., and

Willenbacher, N. (2001) An empiri-

cal model predicting the viscosity of

highly concentrated, bimodal disper-

sions with colloidal interactions. Rheol.

Acta, 40 (5), 434–440.

48. Willenbacher, N., Börger, L., Urban,

D., and Varela de la Rosa, L. (2003)

Tailoring PSA-dispersion rheology for

high-speed coating. Adhesives Sealants

Ind., 10 (9), 25–35.

49. Chong, J.S., Christiansen, E.B., and

Baer, A.D. (1971) Rheology of concen-

trated suspensions. J. Appl. Polym. Sci.,

15 (8), 2007–2021.

50. Rodriguez, B.E., Kaler, E.W., and

Wolfe, M.S. (1992) Binary mixtures

of monodisperse latex dispersions 2.

Viscosity. Langmuir, 8 (10), 2382–2389.

51. Sudduth, R.D. (1993) A generalized

model to predict the viscosity of so-

lutions with suspended particles I. J.

Appl. Polym. Sci., 48 (1), 25–36.

52. Farris, R.J. (1968) Prediction of the

viscosity of multimodal suspensions

from unimodal viscosity data. Trans.

Soc. Rheol., 12 (2), 281–301.

53. McGeary, R.K. (1961) Mechanical pack-

ing of spherical particles. J. Am. Ceram.

Soc., 44 (10), 513–522.

54. Barnes, H.A. (1989) Shear-thickening

(‘‘Dilatancy’’) in suspensions of nona-

gregating solid particles dispersed in

Newtonian liquids. J. Rheol., 33 (2),

329–366.

55. Maranzano, B.J. and Wagner, N.J.

(2001) The effect of particle size on

reversible shear thickening of concen-

trated colloidal dispersions. J. Chem.

Phys., 114 (23), 10514–10527.

56. Hoffman, R.L. (1972) Discontinuous

and dilatant viscosity behavior in con-

centrated suspensions I. Observation of

a flow instability. Trans. Soc. Rheol., 16

(1), 155–173.

57. Hoffman, R.L. (1974) Discontinuous

and dilatant viscosity behavior in con-

centrated suspensions II. Theory and

experimental tests. J. Chem. Phys., 46

(3), 491–506.

58. Boersma, W.H., Laven, J., and Stein,

H.N. (1990) Shear thickening (dilatancy)

in concentrated suspensions. AIChE J.,

36 (3), 321–332.

59. Laun, H.M., Bung, R., and Schmidt,

F. (1991) Rheology of extremely shear

thickening polymer dispersions (pas-

sively viscosity switching fluids). J.

Rheol., 35 (6), 999–1034.

60. Laun, H.M., Bung, R., Hess, S., Loose,

W., Hahn, K., Hadicke, E., Hingmann,

R., Schmidt, F., and Lindner, P. (1992)

Rheological and small angle neutron

scattering investigation of shear-induced

particle structures of concentrated

polymer dispersions. J. Rheol., 36 (4),

743–787.

61. Bender, J. and Wagner, N.J. (1996)

Reversible shear thickening in

monodisperse and bidisperse colloidal

dispersions. J. Rheol., 40 (5), 899–916.

62. Bender, J.W. and Wagner, N.J. (1995)

Optical measurement of the contribu-

tions of colloidal forces to the rheology

of concentrated suspension. J. Colloid

Interface Sci., 172 (1), 171–184.

63. Kaffashi, B., O’Brien, V.T., Mackay,

M.E., and Underwood, S.M. (1997)

Elastic-like and viscous-like compo-

nents of the shear viscosity for nearly

hard sphere, Brownian suspensions. J.

Colloid Interface Sci., 181 (1), 22–28.

64. Brady, J.F. and Bossis, G. (1988) Stoke-

sian dynamics. Ann. Rev. Fluid Mech.,

20, 111–157.

65. Brady, J.F. and Bossis, G. (1989) The

rheology of Brownian suspensions. J.

Chem. Phys., 91 (3), 1866–1874.



References 49

66. Phung, T.N., Brady, J.F., and Bossis,

G. (1996) Stokesian dynamics simula-

tion of Brownian suspensions. J. Fluid

Mech., 313, 181–207.

67. Chow, M.K. and Zukoski, C.F. (1995)

Gap size and shear history dependen-

cies in shear thickening of a suspension

ordered at rest. J. Rheol., 39 (1), 15–32.

68. Krishnamurthy, L.N. and Wagner, N.J.

(2005) Shear thickening in polymer

stabilized colloidal dispersions. J. Rheol.,

49 (6), 1347–1360.

69. Beazley, K.M. (1980) Industrial aqueous

suspensions, in Rheometry: Industrial

Applications (ed. K. Walters), Research

Studies Press, Chichester.

70. Bergstrom, L. (1998) Shear thinning

and shear thickening of concentrated

ceramic suspensions. Colloids Surf., A,

133, 151–155.

71. Egres, R.G. and Wagner, N.J. (2005)

The rheology and microstructure of

acicular precipitated calcium carbonate

colloidal suspensions through the shear

thickening transition. J. Rheol., 49 (3),

719–746.

72. Bartok, W. and Mason, S.G. (1958)

Particle motions in sheared suspen-

sions: VII. Internal circulation in fluid

droplets (theoretical). J. Colloid Interface

Sci., 13 (4), 293–307.

73. Taylor, G.I. (1932) The viscosity of a

fluid containing small drops of another

fluid. Proc. R. Soc. London, Ser. A, 138

(834), 41–48.

74. Grace, H.P. (1982) Dispersion phenom-

ena in high viscosity immiscible fluid

systems and application of static mixers

as dispersion devices in such systems.

Chem. Eng. Commun., 14 (3), 225–277.

75. Zhao, X. (2007) Drop breakup in dilute

Newtonian emulsions in simple shear

flow: new drop breakup mechanisms. J.

Rheol., 51 (3), 367–392.

76. Nawab, M.A. and Mason, S.G. (1985)

The viscosity of dilute emulsions. Trans.

Faraday Soc., 54, 1712–1723.

77. Pal, R. (2001) Novel viscosity equations

for emulsions of two immiscible liq-

uids. J. Rheol., 45 (2), 509–520.

78. Pal, R. (2000) Shear viscosity behavior

of emulsions of two immiscible liq-

uids. J. Colloid Interface Sci., 225 (2),

359–366.

79. Oldroyd, J.G. (1953) The elastic and

viscous properties of emulsions and

suspensions. Proc. R. Soc. London, Ser.

A, 218 (1132), 122–132.

80. Oldroyd, J.G. (1955) The effect of in-

terfacial stabilizing films on the elastic

and viscous properties of emulsions.

Proc. R. Soc. London, Ser. A, 232 (1191),

567–577.

81. Palierne, J.F. (1990) Linear rheology of

viscoelastic emulsions with interfacial

tension. Rheol. Acta, 29 (3), 204–214.

82. Kitade, S., Ichikawa, A., Imura, M.,

Takahashi, Y., and Noda, I. (1997)

Rheological properties and domain

structures of immiscible polymer

blends under steady and oscilla-

tory shear flows. J. Rheol., 41 (5),

1039–1060.

83. Princen, H.M. (1986) Osmotic pressure

of foams and highly concentrated emul-

sions. 1. Theoretical considerations.

Langmuir, 2 (4), 519–524.

84. Mason, T.G., Lacasse, M.-D., Grest,

S.G., Levine, D., Bibette, J., and Weitz,

D.A. (1997) Osmotic pressure and

viscoelastic shear moduli of concen-

trated emulsions. Phys. Rev. E, 56 (3),

3150–3166.

85. Mason, T.G., Bibette, J., and Weitz,

D.A. (1996) Yielding and flow of

monodisperse emulsion. J. Colloid

Interface Sci., 179 (2), 439–448.

86. Princen, H.M. and Kiss, A.D. (1986)

Rheology of foams and highly con-

centrated emulsions: 3. Static shear

modulus. J Colloid Interface Sci., 112 (2),

427–437.
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