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most common form of inflammatory arthritis. The age of onset 
is typically between 25 and 50, in the midst of working life, with 
significant social and economic impact, although it can occur at 
any age. The course is variable, ranging from a brief, mild ill-
ness affecting a few joints with minimal damage to a progressive 
polyarthritis that leads to pronounced functional impairment and 
deformity. 

Conventional treatment choices for RA include corticoste-

roids and disease-modifying anti-rheumatic drugs (DMARDs). 
For patients who fail to respond adequately to these drugs, the 
additional use of biopharmaceuticals, in particular inhibitors of 

1  Introduction

Rheumatoid arthritis (RA) is a chronic, systemic, autoimmune 
disease of unknown etiology that affects the connective tissue. 
RA is characterized by chronic synovitis, diarthrodial joint in-

flammation, and various degrees of bone and cartilage ero-

sion. Although joints are the primary target of RA, extra-articu-

lar manifestations, including sub-cutaneous nodules, vasculitis, 
pericarditis, and pulmonary fibrosis, can have a significant im-

pact on other organ systems. This autoimmune disorder affects 
approximately 1% of the population worldwide, making it the 
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treatment and prevention.

This is an Open Access article distributed under the terms of the Creative Commons 
Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution and reproduction in any medium, provi-
ded the original work is appropriately cited. 

https://doi.org/10.14573/altex.1910011
mailto:m.a.battino@univpm.it
mailto:francesca.pistollato@ec.europa.eu
http://creativecommons.org/licenses/by/4.0/


Cassotta et al.

ALTEX 37(2), 2020       224

nas (Collins, 2011). The novel technologies being integrated into 
toxicology and environmental health research are also applicable 
to disease research (Langley et al., 2015). Although some tech-

niques are still at early stages and several challenges remain to be 
overcome, recent developments have brought about an amazing 
array of tools and research approaches that offer bold new ways 
to study RA and could potentially yield profuse and meaningful 
human relevant data.

RA is a multifactorial disease influenced by a number of known 
modifiable risk factors, such as smoking and food choices (Lahi-
ri et al., 2012). Some of the factors identified already form part 
of the healthy lifestyle advice given for cardiovascular diseases 
and cancer prevention, and prevention of RA may be a bystand-

er motivating factor in high-risk individuals, such as those with 
first-degree relatives with RA. Formalizing this into a focused 
prevention may be a highly cost-effective public health initiative. 

Here, some of the major limitations associated with tradition-

al in vivo and in vitro models of RA are discussed, along with the 
potential and limitations of human-based new approach method-

ologies (NAMs). Finally, we highlight the importance of preven-

tion and the impact of environmental and life style factors on the 
risk of RA.

2  The inadequacy of conventional in vitro and 
in vivo models and current paradigms

So far, RA has been studied using a variety of in vitro assays and 
animal models. Cell-based in vitro assays are based on relative-

ly simple (co)culture systems and assays used to study cell ad-

hesion, migration, antigen presentation, and lymphocyte activa-

tion (Pretzel et al., 2009; Giese and Marx, 2014). Traditional hu-

man synovial cultures were crucial in the development of TNFα 
blockers, to date the most successful drug to manage RA (Bren-

nan et al., 1989), before the therapeutic effect was confirmed in 
an animal model (Keffer et al., 1991).

However, we now know that traditional cell culture does not 
provide the physiological stimuli needed to maintain cell func-

tion and phenotype. These stimuli can be classified into three ma-

jor groups (Fig. 1): (i) biochemical signals from other cells and 
the extracellular matrix, (ii) physical and structural stimuli from 
the three-dimensional (3D) microenvironment, and (iii) mechan-

ical stimuli derived from movement and the physicochemical 
fluxes originating from temperature, concentration or momen-

tum gradients (Di Nardo et al., 2011; Pamies and Hartung, 2017). 
Traditional in vitro methods thus present several shortcomings 
(Tab. 1) and lack clinical disease context. Therefore, it is becom-

ing increasingly evident that more relevant and predictive in vitro 

models are needed to better simulate the aforementioned stimuli 
and thus better model RA pathological mechanisms. 

On the other hand, the use of animal models for RA is in-

trinsically flawed for several reasons. Although there is gener-
al agreement among the scientific community that the immune 
systems of mammalian species show remarkable similarities in 
many respects (Ernst and Carvunis, 2018), human immune re-

sponses are still markedly different from those of rodents (Mes-

tumor necrosis factor α (TNFα), offers opportunities for disease  
management. However, despite the undoubted success of an-

ti-TNFα treatment, about 40% of patients are non-responders 
(Wijbrandts and Tak, 2017). In addition, up to 50% of primary 
responders lose their response within 12 months of the start of 
therapy (Buch et al., 2007; Juarez et al., 2012). Besides, these 
drugs do not specifically target the cause of the disease but inter-
fere with generic steps of the immune response; thus they may be 
associated with systemic side effects, for example an increased 
risk of infection (Wang et al., 2018; Liao et al., 2017; Atzeni et 
al., 2012). As continuous, lifelong therapy for RA is required in 
most cases to relieve symptoms and prevent long-term joint dam-

age, and because patients on biopharmaceuticals are often on 
concomitant medication such as steroids and/or DMARDs, the 
risk of serious infections and hospitalization can severely affect 
the quality of life of patients, especially in old age and if comor-
bidities are present (Goh et al., 2013). RA therefore remains a 
chronic condition for which there is currently no effective cure.

Lack of knowledge of the disease-specific human pathophys-

iology and etiology of RA severely impedes the development of 
targeted drugs. This could partly be a consequence of the over-
use of animal models that often cannot accurately recapitulate 
human RA etiopathogenesis and drug responses, and the inade-

quate consideration and/or use of in vitro research methods. An-

imal models of arthritis have been used extensively to identify 
druggable targets for RA and test potential therapeutics. Despite 
their having been extremely useful to test new approaches of in-

tervention in many cases, concerns about low clinical develop-

ment success rates for investigational drugs (Hay et al., 2014; 
Hartung, 2013), coupled with increasing awareness of the ethi-
cal issues surrounding the use of animal models, have led many 
to question their utility in the study of complex human conditions 
and drug target identification. Although traditional human cell 
cultures have been invaluable in the study of the pathogenesis of 
RA and for drug discovery research, simplistic cellular models, 
often utilizing cancer cell lines or nonhuman cells cultured under 
non-homeostatic and non-physiologic in vitro conditions are lim-

ited in their ability to fully reflect the pathogenetic mechanisms 
of RA. Emerging sophisticated human cell culture systems and 
tools promise to increase our understanding of RA and improve 
our search for effective therapeutics, while reducing and replac-

ing animals employed in biomedical research.
The need for a paradigm shift is becoming increasingly evident 

as the limitations of traditional models are more and more rec-

ognized in numerous research areas. This shift started in chem-

ical toxicology following a seminal report from the US Nation-

al Research Council (NRC, 2007; Krewski et al., 2010), which 
recommended a “21st-century paradigm” for safety testing, in-

volving an explicit transition away from reliance on adverse end-

points in animal tests and towards a novel framework based on 
understanding toxic perturbations to cellular pathways, mainly 
using in silico tools and human-specific cell and tissue models. 
This transition is actively supported at European level in form 
of the EU legislation governing animal experimentation (Direc-

tive 2010/63/EU) (SCHER, 2013), as well as by U.S. regulatory 
and research agencies both from environmental and medical are-
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tas and Hughes, 2004; Zschaler et al., 2014). A poignant example 
of this issue was the immunotherapy trial of TGN1412 (targeting 
CD28 signaling), which caused an unpredicted cytokine storm 
in six volunteers (Stebbings et al., 2007; Hunig, 2012). Dayan 
and Wraith (2008) identified several factors to explain TGN1412 
failure, mainly related to poor prediction of risk based on out-
comes of preclinical studies and the narrow margin of safety re-

quired both in dose and trial design when testing a treatment with 
a novel mode of action. The poor prediction of risk is thought to 
stem from interspecies differences in CD28 signaling between 
humans and other animals, in particular mice and monkeys 
(Schraven and Kalinke, 2008; Porciello et al., 2018; Waibler et 
al., 2008).

As summarized by Davis, (2008), the murine immune system 
poorly represents the human immune system for three main rea-

sons: (i) the use of inbred strains is associated with a prevalence 
of homozygous recessive defects that may skew the regulation of 
the immune response (von Herrath and Nepom, 2005); this may 
be highly relevant considering the lethal effects induced by some 
heterozygous deletions of cytokines involved in phenotype de-

velopment (Ferrara, 1999); (ii) animal models of human disease 

are often carefully and arbitrarily planned according to a specif-
ic biologic or therapeutic purpose; this is the opposite of human 
disease, which serendipitously occurs as an independent variable 
and demands treatment to be tailored to the individual’s needs 
(Quintana-Murci et al., 2007); (iii) the millions of years of evo-

lutionary divergence of animals exposed to significantly different 
environmental challenges (Mestas and Hughes, 2004). 

Dozens of preclinical arthritis models have been developed 
in a variety of species (e.g., mouse, rat, rabbit and monkey) 
that involve spontaneous or induced synovial inflammation. 
The most commonly utilized animal species in RA research is 
the mouse. Several murine models of arthritis have been estab-

lished (Brand, 2005), including those induced by immunization 
with antigen (proteoglycan-induced arthritis (PGIA) (Finnegan 
et al., 1999), streptococcal cell wall arthritis (Koga et al., 1985), 
collagen-induced arthritis (CIA) (Courtenay et al., 1980), and 
antigen-induced arthritis (Brackertz et al., 1977)); those in-

duced by chemical agents (oil-induced arthritis (Hopkins et al., 
1984)); spontaneous models (tumor necrosis factor-α transgen-

ic mouse (Butler et al., 1997) and K/BxN T-cell receptor trans-

genic mouse (Kouskoff et al., 1996)); and humanized models 
(Schinnerling et al., 2019). While these models all exhibit some 
of the classical features found in RA, i.e., joint swelling, syno-

vitis, pannus formation, and bone erosion, each model differs in 
speed of disease onset, chronicity, severity, resolution and his-

topathology (McNamee et al., 2015). The histopathology of the 
rodent models also differs among the models and from human 
RA (Patel, 2010). 

None of the animal models is truly human RA, and none con-

sistently predicts the effect of a therapeutic agent in human pa-

tients. For instance, IL-6 deficiency has little or no effect in pas-

sive transfer models of arthritis or in TNF transgenic mice, and 
methotrexate (to date the first-line DMARD for RA treatment), 
is only marginally effective in collagen-induced arthritis (CIA), 
which has been linked, by Delano et al. (2005), to genetically 
based resistance to methotrexate-induced anti-inflammatory ef-
fects in DBA/1 mice. Anti-CD20 antibodies (a next generation 
drug widely employed in RA) only work when administered 
very early in CIA, but not in established disease. For all these 
drugs, considering the preclinical (animal) results without any 
clinical data could have led investigators to abandon an effective 
therapeutic approach. Conversely, positive data in rodents may 
lead to overestimation of a therapeutic effect in humans; for ex-

ample, nonsteroidal anti-inflammatory drugs are remarkably ef-
fective in rat adjuvant arthritis, but provide only modest relief 
to RA patients (Hegen et al., 2008; Firestein, 2009). Soto et al. 
(2008) performed a gene array comparison between rat CIA and 
human RA to evaluate how closely the rat model reflects human 
RA. Although there were similarities between human RA and rat 
CIA, the differences in gene expression profiles between the two 
were found to be of greater significance, suggesting different in-

flammatory and pathogenetic mechanisms. Furthermore, Seok 
et al. (2013) showed that, although acute inflammatory stress-

ors from different etiologies result in highly similar genomic 
responses in different humans, the responses in corresponding 
mouse models correlate poorly with those of humans.

Fig. 1: The three axes of stimuli that act on cells, tissues, 

organs and organisms

The biochemical signals from other cells and the extracellular 

matrix, the structural stimuli from the three-dimensional (3D) 

microenvironment, and the mechanical stimuli derived from 

physicochemical fluxes originating from temperature, concentration 
or momentum gradients.
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they are not suited to develop novel targeted treatments for RA. 
Even mice with a humanized immune system lack the complex 
human genetics underlying autoimmune diseases like RA, pre-

venting modeling of the human immune response and tolerance 
mechanisms (Shultz et al., 2012).    

3  New technologies: opportunities for 
human biology-based RA research

Promising new technologies and approaches that are relevant 
for RA research include: i) several human-based models fo-

cused on the use of patient-derived cells, such as patient-de-

rived induced pluripotent stem cells (iPSCs) and their differ-
entiated derivatives, ii) tissue engineering and advanced in vi-

tro technologies (e.g., fluidic bioreactors, microphysiological 
systems, etc.), iii) epidemiology and multi-omics approach-

es (e.g., genomics, proteomics, transcriptomics, exposomics, 
etc.) resulting from overall analyses of biological samples by 
high-throughput analytical approaches and databases, and iv) 
computational analytical models. 

Given the need to integrate huge amounts of incoming da-

ta, comprehensive multi-scale and systems biology approaches 
are becoming fundamentally important. These approaches must 
take into account all levels of biological complexity (including 
population, individual, organ/tissue, cellular, protein, and gene 
level) to allow the elucidation of disease-related adverse out-
come pathways (AOPs) as already formalized in toxicology and 

Apart from possible interspecies differences hampering the 
relevance of animal data to the human condition, poor animal 
study design or data interpretation can be among the critical fac-

tors underlying the lack of reliability (and reproducibility) of in 

vivo models. An example is the use of anti-CD4 antibody for 
the treatment of RA patients. While anti-CD4 monoclonal anti-
bodies induced long-lasting disease suppression in CIA animal 
models, their use in patients with RA was disappointing, due to 
poor penetration into the synovial joint in quantities sufficient 
to suppress the disease and without severe side effects (i.e., pe-

ripheral blood lymphopenia) (Bugelski et al., 2000; Choy et al., 
1998). However, it has also been shown that anti-CD4 deplet-
ing antibodies can suppress CIA when administered before (i.e., 
prophylactically), but not after development of arthritis (Gold-

schmidt et al., 1992; Kobezda et al., 2014). These studies may, in 
part, explain why most anti-CD4 antibody treatments in human 
RA have failed.

Together with rapidly increasing knowledge on the com-

plex functioning of the human immune system, consensus has 
emerged on the limitations inherent to even the most sophisticat-
ed animal models (Zenewicz et al., 2010; Davis, 2008; Khanna 
and Burrows, 2011). The development of autoimmune diseas-

es, including RA, is influenced by complex underlying genet-
ics, including the many genetic variations determining individ-

ual immune system performance (Feuk et al., 2006; Wu et al., 
2007; Seok et al., 2013; Orru et al., 2013; Lee et al., 2014b).  
Altogether, this suggests that while animal models may have 
been useful to elucidate some of the mechanisms of arthritis, 

Tab. 1: Thirteen major shortcomings of static, one-dimensional cell culture models

S1 Nutrient and metabolite transport are limited by diffusion.

S2 It is difficult to create and maintain controlled concentration gradients.
S3 Extracellular concentrations in vitro mimic neither extracellular concentrations in vivo nor the relationship of these latter  

 concentrations to intravascular concentrations. 

S4 Open-surface cultures may not have significant interstitial flow and the associated signaling.
S5 It is hard to reverse experiments, i.e., achieve rapid washout without disrupting the cells.

S6 Daily or less-frequent media changes result in significant cyclic changes in nutrients, metabolites, and pH.
S7 It is not possible to provide shear forces to maintain endothelial and epithelial polarization.

S8 It is difficult to provide mechanical forces to cells without the use of cumbersome, vacuum actuated, flexible-bottom  
 chambers. 

S9 Small-volume wells with a supposedly homogeneous cellular phenotype do not recapitulate the heterogeneous tissue  

 microenvironment. 

S10 The microenvironment in the corners at the outer circumference of a well in a plate may differ from that at the center of  

 the well. 

S11 Wells near the outside of a plate may have a different gas environment than those at the center.

S12 It is difficult to create well-to-well connections with controlled flow that can model organ-organ interactions. 
S13 Centralized fluid handler and plate reader hardware are not well suited for: 
 − Simultaneous dynamic experiments on a large number of different wells; 
 − Fast, real-time, closed-loop control of the chemical and mechanical microenvironment; 
 − Complex exposure protocols.
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genes related to a given disease and measure their impact on hu-

man iPSC-derived cells (Bassett, 2017; Mungenast et al., 2016). 
In particular, these nucleases can induce guided DNA breaks, 
which can be repaired by homologous recombination with a do-

nor vector carrying a desired point mutation or gene, in order to 
better model the disease in vitro (Byrne and Church, 2015; Hen-

driks et al., 2016). Using different iPSC lines derived from the 
same specimens (same genetic and environmental background), 
genome-edited iPSCs could be used to clarify the biological 
functions of disease-susceptibility genes in autoimmune diseases 
such as RA (Shoda et al., 2018).

Generation and differentiation of large numbers of iPSCs, e.g., 
into immune cells (Choi et al., 2009; Yanagimachi et al., 2013; 
Senju et al., 2011) reflecting the pathogenesis of RA, could be 
suitable for drug screening (Shoda et al., 2018). hiPSCs also pro-

vide a unique opportunity to investigate the organ-specific and 
patient-specific toxic effects of antirheumatic drugs. They have 
already been used to successfully reproduce the long-term hepa-

totoxicity of methotrexate in a human-based setting (Kim et al., 
2018a).

Despite the great potential of iPSCs, their broad applica-

bility and reliability is currently hampered by some limita-

tions. It is essential to clearly recognize these constraints and 
define strategies to overcome them. Generating high-quality  
iPSC lines is still expensive and time consuming. Only a lim-

ited number of RA-specific iPSC-derived lines have been gen-

erated and thoroughly characterized so far. These have been 
derived from a variety of somatic cell types using different 
programming and quality control methods, which can make 
inter-laboratory comparisons difficult. Moreover, reprogram-

ming is often based on the use of integrating lentiviruses and 
retroviruses, which may cause insertional mutagenesis that 
may in turn alter the biology of the iPSCs and interfere with 
their differentiation into somatic cell types. For these reasons, 
current and future reprogramming methods should aim to be 
xeno-free and based on the use of non-integrating reprogram-

ming vectors or entirely vector-free approaches. A high level 
of standardization of undifferentiated cell cultures as well as 
of the differentiation process is required in order to ensure the 
establishment of robust test and research systems (Pistollato 
et al., 2012). Newly made iPSC lines should be assessed for 
genomic integrity via cytogenetic karyotyping or array-based 
virtual karyotyping. The latter can detect copy number chang-

es, and microdeletions and microduplications. There has also 
been concern that iPSCs can accumulate mutations during the 
process of reprogramming (Gore et al., 2011).

There is evidence that the epigenetic signatures of the somatic 
cells of origin may be retained in reprogrammed iPSCs. However, 
it appears that iPSCs lose epigenetic traits during long term culture 
(Nishino et al., 2011), which might be considered either as a pos-

itive aspect (as the epigenetic memory of somatic cells of origin 
might be mitigated) or a negative aspect (in light of the fact that RA 
patient epigenetic signatures might also be lost over time).

In all, the iPSC approach holds enormous potential to study 
RA pathogenesis and the rapidly expanding research field is al-
ready tackling its limitations.

applicable to human health research and drug discovery (Lang-

ley et al., 2015, 2017; Herrmann et al., 2019).

3.1  Human induced pluripotent stem cells (hiPSCs)
To delineate the systemic pathophysiology of RA, the ideal ap-

proach would be to perform disease modelling using a patient’s 
own cells or tissues. However, the possibility of obtaining live 
cells and tissues is limited as systemic RA inflammation often 
affects extra-articular sites, such as heart, lungs and gut. In these 
cases, tissue biopsy only secures a small number of target cells 
and involves the patient undergoing an invasive procedure im-

plying ethical issues. 
The advent of human iPSCs and stem cell reprogramming 

technology (Takahashi and Yamanaka, 2006; Takahashi et al., 
2007) has revolutionized disease modelling and cellular thera-

peutics (Avior et al., 2016). These cells can self-renew for ma-

ny cell divisions and can be differentiated into a broad range of 
different cell types, enabling the study of development and cel-
lular function, both in normal and disease states, or allowing 
large numbers of cells to be produced for high throughput genetic 
and drug screening or for cell therapy. iPSCs have been derived 
from individuals with a variety of monogenic and polygenic dis-

orders, including autoimmune diseases, and provide an invalu-

able resource for studying genetic contributions to human dis-

ease. iPSCs also provide opportunities to capture the heterogene-

ity that arises from gender, ethnicity and gene modifiers specific 
to patients from which they have been obtained. Reprogrammed 
somatic cells from patients are already applied in drug testing, 
drug discovery (Son et al., 2016; Bassett, 2017) and for model-
ing a variety of diseases and conditions, including neurological 
(Sanchez-Danes et al., 2012; Pistollato et al., 2014; Pamies et al., 
2017) endothelial (Kurokawa et al., 2017; Cochrane et al., 2019), 
cardiovascular (Zhang et al., 2015b; Liang and Du, 2014), renal 
(Kim et al., 2018b), gastrointestinal (Takahashi et al., 2018), as 
well as autoimmune diseases (Tang et al., 2016; Iizuka-Koga et 
al., 2017; Son et al., 2016). 

Patient-derived iPSCs are of special interest in diseases of 
complex pathophysiology where the isolation of primary human 
tissue is invasive and potentially harmful such as in RA (Lee et 
al., 2014a; Natsumoto et al., 2017). Lee et al. (2014a) have repro-

grammed fibroblast-like synoviocytes (FLSs) from patients with 
RA to generate disease-specific and patient-specific iPSCs and al-
so RA-patient derived functional cardiomyocytes (2016) as car-
diovascular disease is the most commonly encountered comorbid-

ity and is the leading cause of mortality and morbidity in patients 
with RA (Avina-Zubieta et al., 2008, 2012; Avior et al., 2016).  
iPSCs have been successfully employed to study several cardi-
ological conditions and the effect of drugs on myocardium, and 
they have great potential to study RA-associated cardiological  
implications, providing insight into the pathogenetic mech-

anisms (Musunuru et al., 2018; Feric et al., 2019; Sala et al., 
2019). 

Additionally, advanced genome-editing technologies, such as  
the clustered regularly-interspaced short palindromic repeats/  
CRISPR-associated protein-9 nucleases (CRISPR/Cas9) can 
now be used to add, disrupt or modify the sequence of specific 
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functions (Schuerlein et al., 2017; Jin et al., 2015). New technol-
ogies such as multicompartmental-modular bioreactors (MCmB) 
and microphysiological systems (see below) could address these 
issues by allowing exposure of cells and tissues to mechanical, 
biochemical or electrical stimuli, as well as fluidic perfusion.

3.3  Multicompartmental modular  
bioreactors (MCmBs)
The complexity of the physiological environment is not replicat-
ed in Petri dishes or microplates. All cells are exquisitely sensi-
tive to their microenvironment, which is enriched with factors 
secreted by the surrounding cells and influenced by mechanical 
stimuli derived from flow, perfusion and movement. This is a 
major limitation to experiments investigating cellular responses 
in vitro since the complex interplay between mechanical and bio-

chemical factors is generally missing. 
An MCmB is an advanced interconnected cell culture flow 

system engineered to provide in vivo-like conditions for cell 
growth of dynamic cell cultures and co-cultures. The modular 
chamber is designed with shape and dimensions similar to the 
24-multiwell and consists of a cell culture chamber made of sil-
icon polymer. The modular chambers can be connected in se-

ries or in parallel in order to replicate tissue/tissue or tissue/
organ communication and to recreate in vitro models of metab-

olism or disease using the organomics approach. The MCmB 
can apply controlled flow, allowing a high medium flow rate 
with non-turbulent fluid dynamics (Mazzei et al., 2010; Mattei 
et al., 2014). 

The Membrane Bioreactor is a double-flow bioreactor for 
mimicking physiological barriers, which combines a tran-

swell-like system with medium flow and multi-compartmental 
models. A porous membrane, whose characteristics and porosi-
ty may vary according to research needs, divides the bioreactor 
into two independent chambers for dynamic in vitro studies of 
drug diffusion through physiological liquid-liquid or air-liquid 
barriers (Giusti et al., 2014; Sbrana et al., 2013). The Sensorized 
Squeeze Pressure bioreactor is a system for long-term cell cul-
ture and tissue engineering, able to apply a cyclic hydrodynamic 
and non-contact overpressure (the squeeze stimulus) using ver-
tical piston movement. This stimulation is particularly useful for 
neo-tissues or fresh constructs seeded with articular chondro-

cytes, cardiomyocytes or endothelial cells, which require a dy-

namic environment to maintain their state of differentiation but 
do not tolerate direct compression or high shear stress (De Maria 
et al., 2011; Giusti et al., 2013). The new generation fluidic bio-

reactors are equipped with integrated sensors and control sys-

tems. They are able to adjust environmental variables like pH, 
temperature, flow and hydrostatic pressure, in order to simulate 
the physiological environment and maintain the required param-

eters over a long time (Mazzei, 2008; Giusti et al., 2017).
While bioreactor systems are particularly suitable to maintain 

cell growth and some differentiation processes, they may not be 
suitable to model the anatomy of the affected joint in RA, which 
is generally characterized by limited cell growth, hyperplasia, 
cell differentiation and cell death. However, MCmBs could of-
fer possibilities to investigate articular pathogenetic mechanisms 

3.2  Tissue engineering approaches 
Tissue engineering (TE) was defined by Langer and Vacanti, 
(1993) in the early 90s as “an interdisciplinary field which ap-

plies the principles of engineering and life sciences toward the 
development of biological substitutes that restore, maintain, or 
improve tissue function”. TE primarily aims to induce tissue-spe-

cific regeneration processes, thus overcoming the well-known 
drawbacks of organ transplantation (i.e., donor shortage, need 
of immunosuppressive therapy). However, TE approaches have 
been recently harnessed for the design of three-dimensional (3D) 
in vitro models of healthy or pathological tissues and organs for 
drug screening and the evaluation of new therapies as well as for 
investigation of the complex phenomena regulating disease onset 
and progression.

RA is characterized by drastic thickening of the synovial mem-

branes, followed by the formation of a proliferative synovial tis-

sue (pannus) containing predominantly FLSs and neutrophils. 
The pannus tissue is responsible for the invasion and destruction 
of the underlying cartilage and bone (Doan and Massarotti, 2005; 
Andreas et al., 2008; Ibold et al., 2007). Calvo et al. (2017) cul-
tured patient-derived FLSs in 3D micromasses and challenged 
them with TNF to mimic synovial inflammation and study cellular 
mechanisms of pannus formation and inflammatory remodeling. 
TNF challenge induced hyperplasia resembling that observed in 
patient synovium. Gene expression studies revealed differential-
ly expressed genes during the early phase and the mature phase of 
the culture period, shedding light on RA pathogenesis.

Damerau et al. (2019), developed a human-based in vitro 3D 
joint model to simulate the immune-mediated pathogenesis of 
RA. The model consists of an osteogenic and chondrogenic part, 
the joint space with synovial fluid, and the synovial membrane. 
It allows interactions between cells via signaling molecules and 
cell contacts. Human bone marrow-derived mesenchymal stro-

mal cells (hMSCs) were used to develop the different 3D tissue 
components. The arthritic joint was simulated by the application 
of neutrophils and typical cytokines. The authors confirmed and 
validated in a standardized manner the phenotypic integrity and 
stability of each single component of the multi-component 3D 
in vitro joint model and have thus provided a suitable model to 
study the efficacy of drug treatments in vitro in a human-based 
setting.

3D in vitro models allow the independent identification and 
modulation of cellular and molecular factors responsible for dis-

ease onset and progression, allowing investigation of their con-

tributions to disease development. The cells can grow and inter-
act with each other and with the ECM in all spatial dimensions. 
These models allow overcoming the limits of traditionally em-

ployed models (i.e., animals and 2D cell culture models) and 
promise more reproducible data by tightly controlling experi-
mental parameters, reducing costs and time. However, the bio-

logical complexity of 3D tissues entails complex requirements 
of culture techniques. For instance, ensuring a suitable nutrient 
supply throughout a 3D construct is more challenging than for 
2D cell cultures (Alepee et al., 2014). Additionally, tissue-specif-
ic cues are needed to mimic the in vivo situation and allow gen-

eration of tissue constructs with the required characteristics and 
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biochemical stimulations, substrate mechanical properties, etc. 
(Schwarz and Bischofs, 2005; Sosa-Hernandez et al., 2018; Wei-
bel and Whitesides, 2006; Luni et al., 2010, 2014). Microfluidic 
OOC/MPS devices allow the analysis and use of low volumes of 
samples, chemicals and reagents, reducing the costs of applica-

tion. Analytical biosensors can be incorporated into the culture 
platform, thus allowing the detection of cellular physiological 
parameters and analysis of external stimuli in situ in a non-in-

vasive way (Halldorsson et al., 2015). These sensors have been 
shown to provide reproducible results in a short time with data 
transmission, multiplexing and on-line monitoring ability by an-

alyzing very low volumes of samples. Readout technologies are 
based on measurement of physical parameters associated with 
tissue/organoid microenvironment (such as O2, pH, CO2 and os-

molarity), biological properties (protein and metabolite secre-

tion, DNA methylation, etc.), and morphology (cell layer barrier, 
cell-cell interaction via fluorescence and confocal microscopy) 
(Shanti et al., 2018).

The simultaneous electrochemical, mass spectrometric, and 
optical measurement of the dynamics of tens to hundreds or 
even thousands of cellular variables will allow an unprecedent-
ed advance in our understanding of living cells and how they re-

spond to pharmaceuticals, pathogens, and cellular or environ-

mental stimuli. The emergence of new technologies has refined 
the MPS capability for translational research (Mittal et al., 2019), 
thus these systems have the potential to dramatically impact RA 
research, providing a wealth of opportunities to understand RA 
pathogenesis and affording a potentially better model for drug 
discovery and screening, in particular with regard to the emerg-

ing area of personalized medicine. 
Ma et al. (2018) have designed a microfluidic chip-based 

co-culture platform to mimic RA FLS-mediated bone erosion, 
providing an effective, human-based anti-RA drug screening 
model. The human “joint-on-a-chip” is an example of how or-
gan-on-chip technologies could be used to model joint diseases, 
including RA (Karperien, 2019), and Gottardi (2019) is attempt-
ing to model over-physiologic compression forces in osteoarthri-
tis on a chip. 

3.5  Epidemiological studies and novel  
multi-omics readouts
Epidemiological studies have been important in identifying RA-re-

lated risk factors. The primary risk factors for RA include genet-
ic factors (MacGregor et al., 2000), female sex (Crowson et al., 
2011), age > 35 (Deane et al., 2017), cigarette-smoking (Costen-

bader et al., 2006), nutritional patterns characterized by high in-

take of red meat and low polyunsaturated fatty acids (Di Giuseppe 
et al., 2014), obesity (Versini et al., 2014), low socioeconomic sta-

tus (Chen et al., 2015), and emotional traumas and distress (Yıl-
maz et al., 2017). Additionally, exposure to air pollution (Essouma 
and Noubiap, 2015; Sigaux et al., 2019), chemicals and pesticides 
(Lundberg et al., 1994; Parks et al., 2011), and the intake of met-
als (Irfan et al., 2017) have been described as possible risk factors. 
Environmental and lifestyle risk factors play a pivotal role in the 
onset of pathologic changes underlying RA, which often appear 
many years before symptomatic stages (Deane, 2014). Knowledge 

(e.g., a 3D dynamic arthritic joint model), to study the extra- 
articular implications of RA, and to evaluate the metabolism and 
toxic effects of anti-rheumatic drugs. 

3.4  Organ-on-chip / microphysiological systems
Organs-on-chip (OOC) are controlled microfluidic systems in 
which (human) cells are cultured in engineered microenviron-

ments that recapitulate the essential aspects of tissue geometry, 
actuation, dynamics, flow and gradients found in the human body 
(Huh et al., 2011; Bhatia and Ingber, 2014). Microphysiolog-

ical systems (MPS) consist of interacting OOC or tissue-engi-
neered 3D human organ constructs. Individually, each construct 
is designed to recapitulate the structure and function of a human 
organ or organ region, paying particular attention to the cellu-

lar microenvironment and cellular heterogeneity. When coupled 
together to create an MPS, these constructs allow the analysis 
of multiorgan interactions and allow disease modelling and drug 
discovery in vitro with an unprecedented physiological accuracy, 
including the investigation of cell-cell, drug-cell, drug-drug, and 
organ-drug interactions. A wide range of tissues and organ sys-

tems have been modelled, including heart (Zhang et al., 2015b), 
gut (Poceviciute and Ismagilov, 2019), liver (Knowlton and 
Tasoglu, 2016), blood vessels (de Graaf et al., 2019), a breath-

ing and immune-reactive lung composed of human airway, capil-
lary and immune cells (Huh, 2015), kidney (Lee and Kim, 2018), 
brain (Pamies et al., 2017; Mofazzal Jahromi et al., 2019), lym-

phoid follicle (Goyal et al., 2018), spleen (Rigat-Brugarolas et 
al., 2014), bone marrow (Sieber et al., 2018), and complex MPS 
that connect engineered tissues from up to 10 organs (Edington et 
al., 2018) to simulate a human-on-a-chip. 

Ultimately, MPS could be used to create, with iPSC-derived 
cells, a human-on-a-chip tailored to a single patient for use in 
a personalized or precision medicine scenario (Wikswo, 2014). 
The concept of precision medicine, in which each individual 
would receive tailored treatment for the promotion, maintenance 
and restoration of their health, is gaining interest due to the in-

creasing recognition of groups of non-responders. This current 
lack of tailored medicine contributes to inefficient healthcare in 
which many patients receive treatments that are not beneficial for 
them (Schork, 2015), and this is particularly true for RA (Romao 
et al., 2013; Strand et al., 2018). 

A number of challenges are related to 3D organ constructs and 
OOC, particularly when multiple organs are coupled together to 
model drug-organ-organ interactions and organ-organ regula-

tion. These include achieving a proper scale in terms of organ 
size and cell number, attaining architectural complexity of the 
human tissues and organs in vitro and in a miniaturized manner, 
developing a universal perfusion medium suitable for multiple 
cell types within the same organ or within different organs con-

nected together, the need for small and controlled fluid volumes, 
accounting for the contributions of missing organs, organ vascu-

larization, and revision of culture protocols (Halldorsson et al., 
2015; Park et al., 2019; Wikswo, 2014). 

Microfluidics-based chip technology is currently at a mature 
stage and offers exceptional control over culture conditions, 
i.e., spatial homogeneity, chemical gradients, time-dependent 
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could allow the discovery of correlative patterns involving drugs 
not currently suspected to be of value in systemic autoimmune 
diseases (Teruel et al., 2016). For example, genome-wide associ-
ation studies (GWASs) have identified RA risk-associated genes 
as well as genetic factors associated with various disease subphe-

notypes, including production and circulating levels of autoanti-
bodies and joint destruction (van der Helm-van Mil et al., 2006; 
Soleimani et al., 2017), transcriptomics readouts have revealed 
the molecular effects of TNF blockers in the peripheral blood (Os-

wald et al., 2015) or synovial tissues (Ducreux et al., 2014) of pa-

tients with RA, and metabolomic approaches have been employed 
to aid diagnosis, distinguish among different types of arthritis, and 
improve understanding of disease mechanisms (Anderson et al., 
2018; Hugle et al., 2012; Carlson et al., 2019). Individually, these 
technologies have contributed medical advances that have begun 
to enter clinical practice. However, each technology by itself can-

not capture the entire biological complexity of human disease. In-

tegration of multiple technologies, referred to as a “multi-omics” 
approach or “systems biology” has emerged to provide a more 
comprehensive view of biology and disease (Karczewski and 
Snyder, 2018). The integration of data from diverse omics read-

outs provides multi-faceted insight into the interrelation of these 
omics layers on disease processes, allowing the retrieval of com-

prehensive and holistic biological information. 
Although early therapeutic intervention can result in sustained, 

drug-free disease remission in RA patients (Ajeganova and Huiz-

of these risk factors may enable the discovery of early biomarkers 
of RA and the development of intervention strategies to prevent or 
delay RA onset or progression, avoid complications, and gain im-

portant insight into RA pathogenesis. 
In particular, analysis of RA-patient advanced imaging read-

outs, synovial fluid, and blood samples has identified possible 
early biomarkers of RA (Tab. 2). The interaction of the HLA-
DRB1 shared epitope gene and cigarette-smoking exposition 
seems to play a major role in the development of anti-citrulli-
nated protein antibody (ACPA)-positive RA (Too et al., 2012; 
Padyukov et al., 2004). Positivity to ACPA correlates with a per-
sistent, erosive disease (Jilani and Mackworth-Young, 2015) 
and is associated with a higher TNFα serum level (Thilagar et 
al., 2018). Also, an increased expression of interferon (IFN)-re-

sponding genes, the so-called IFN signature, has been reported in 
RA; the description of IFN expression signatures (Thurlings et 
al., 2010; Raterman et al., 2012; de Jong et al., 2015) has led to 
extensive insights into the mechanisms of disease and the devel-
opment of new therapies. 

The start of the 21st century was characterized by rapid advanc-

es in high-throughput and high-content-technologies, bioinfor-
matics, medical science, biology, and genetics pertinent to epide-

miology. Omics technologies allow the recognition of patterns of 
disease at a pathway level and, thereby, to reclassify systemic au-

toimmune diseases, including RA, and to develop new therapeu-

tics from a personalized perspective. The use of omics readouts 

Tab. 2: Summary of biomarkers possibly useful for RA detection and follow-up

Biomarkers Localization References

CRP Plasma Grassi et al., 1998

ESR Plasma Silva et al., 2010

RF  Serum Heidari et al., 2009b
Anti-ccp  Serum Heidari et al., 2009a
TNFα Plasma Costa et al., 2019
IL-6, IL-10, IL-13 Serum, synovial fluid Hornum et al., 2017; Wang et al., 2012;  
IL-15, IL-17, IL1β  Liao et al., 2004
MMP-3 Serum, synovial fluid Fawzy et al., 2016
C5a, C5aR Synovial fluid Hornum et al., 2017
FCN-2 Serum Cheng et al., 2014

Eotaxin Serum Syversen et al., 2008

sCTX-I, uCTX-II  Serum, urine Syversen et al., 2010

Juxta-articular osteoporosis  Finger and wrist joints  Moon et al., 2013; Berglin et al., 2004;   

  Eyre et al., 2012; Johansson et al., 2006

HLA-DRB1 *0404 /0401; Genome - Genetic loci associated with Eyre et al., 2012; Johansson et al., 2006; 
SNP PTPN22 rs2476601; PADI4  susceptibility to RA Berglin et al., 2004 

rs2240336; IL6R rs2228145;   

IL, interleukin; TNFα, tumor necrosis factor α; CRP, C-reactive protein; ESR, erythrocyte sedimentation rate; RF, rheumatoid factor; Anti-ccp, 
anti-cyclic-citrullinated-peptide antibodies; C5a, complement fraction 5a; FCN-2, ficolin-2; MMP-3, matrix metalloproteinase 3; sCTX-I, seric 
C-terminal crosslinking telopeptide of type I collagen; uCTX-II, urinary C-terminal crosslinking telopeptide of type II collagen; SNP, single 

nucleotide polymorphism; PADI4, peptidyl arginine deiminase, type IV
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3.6  Computational and analytical models
Over the past decade, there has been a paradigm shift in how clin-

ical and experimental data are collected, processed and utilized. 
Bioinformatics and machine learning (ML) fueled by break-

throughs in algorithmic innovations, high-performance comput-
ing, and data availability, are paving the way to effective analy-

ses of large, multi-dimensional collections of patient biological 
samples, histories, laboratory results, treatments and outcomes. 
ML and other computational approaches can suggest solutions 
for the issues arising from analyzing data on complex and het-
erogeneous diseases, such as rheumatic diseases (Kim and Tag-

kopoulos, 2018; Obermeyer and Emanuel, 2016; Heard et al., 
2014). ML applications in multi-omics datasets were examined 
in detail in a series of recent reviews (Ching et al., 2018; Lib-

brecht and Noble, 2015; Kim and Tagkopoulos, 2018; Wainberg 
et al., 2018). 

Singh et al. (2018) present a systematic effort to summarize 
current biological pathway knowledge concerning RA and are 
constructing a detailed, interactive molecular disease map and a 
large-scale dynamical computational model for the study of RA 
synovial fibroblasts’ emergent behavior under different initial 
conditions specific to RA. The map could be used as a template 
for omics data visualization, offering a first insight into the path-

ways affected in different experimental datasets.
Since computational models are dependent on the data they are 

trained on or are called upon to analyze, their value depends on 
the quality of the data, they are valid only within the same frame-

work of that knowledge, and their performance will degrade if 
they are not regularly updated. Development and adaptation of 
integrated software platforms is central to efficient and effective 
use of data and for predictive computational modeling (Ghosh et 
al., 2011).

4  Adverse outcome pathways (AOPs) 

The AOP concept was originally developed in the field of risk 
assessment for chemicals (Landesmann et al., 2013) and ecotox-

icology (Ankley et al., 2010). An AOP (Feric et al., 2019) is an 
analytical construct that describes a sequential chain of causally 
linked events at different levels of biological organization that 
lead to an adverse health or toxicological effect. AOPs have a 
common structure, comprising exposure to the first molecular 
initiating event (e.g., a chemical binding a cell receptor), inter-
mediate key events, and an adverse outcome. AOPs have been 
described for skin sensitization, liver cholestasis, liver steatosis 
and fibrosis (Vinken et al., 2013; Willett, 2014; OECD, 2014). 

This new paradigm in toxicology could provide a template for 
modernizing the disease modelling and drug discovery paradigm 
(Langley et al., 2015). A disease AOP, like an AOP in toxicolo-

gy, describes a chain of causally linked key events causing down-

stream effects at several biological levels and provides clear 
mechanistic rationales for diagnostic, preventative, and thera-

peutic interventions in the era of personalized medicine. The cen-

tral steps will likely be similar, although the molecular initiating 
events may be more varied. For example, as well as chemical 

inga, 2017; Nagy and van Vollenhoven, 2015), it requires early 
diagnosis. Since current diagnostic tests are not sufficiently accu-

rate or sensitive in the early stages of the disease, RA is typically 
diagnosed only once damage to the joints has already begun and 
when the window for optimal treatment may have been missed. 
The multi-omics approach has the potential to identify multiple 
biomarkers that can be used to transform the management of RA 
by enabling early diagnosis. Besides, through the analysis of bio-

markers in patient populations, the disease could be stratified in-

to distinct subsets that exhibit differential outcomes and respons-

es to specific therapeutics or interventions (Aterido et al., 2018; 
Tasaki et al., 2018; Romão et al., 2017; Lindstrom and Robinson, 
2010). 

Recent advances in high-throughput single-cell technologies 
(Proserpio and Mahata, 2016) now make it possible to measure 
the (epi)genomic, transcriptomic, or proteomic state of individ-

ual cells at high resolution in an unbiased fashion (Villani et al., 
2017; Stephenson et al., 2018; Wong et al., 2016; Papalexi and 
Satija, 2017; Leonavicius et al., 2019), and even allow the study 
of combined regulatory mechanisms evident only at single cell 
resolution (Chappell et al., 2018). Single-cell omics technologies 
have already indicated roles for peripheral T helper cells (Rao 
et al., 2017) and HLA-DR+CD27− cytotoxic T cells (Fonseka et 
al., 2018) in RA pathogenesis and have identified a distinct sub-

set of fibroblasts enriched in RA synovial tissue (Mizoguchi et 
al., 2018). With the advent of high-throughput technologies and 
high-content assays, a systems-oriented approach to biological 
sciences is emerging, which represents a shift from the classical 
reductionist approach. 

The novel concept of the “exposome”, accounting for the to-

tality of environmental exposures from gestation onward, is cur-
rently considered complementary to the genome in the study of 
disease etiology. In particular, among the possible triggers of the 
autoimmune process and in particular of RA, cigarette smoking 
is a well-known risk factor (Costenbader et al., 2006; Costen-

bader and Karlson, 2006; Liu et al., 2019). The study of its ef-
fect at the gene expression level, by means of transcriptomic and 
epigenomic analyses, is a field of broad scientific interest (Cho 
et al., 2017). Svendsen et al. (2016) identified gene-independent, 
differentially methylated DNA positions and regions associat-
ed with RA in monozygotic twin pairs discordant for RA by an 
epigenome-wide association study (EWAS) with smoking and 
anti-cyclic citrullinated peptide antibodies included as covari-
ates. These regions may represent environmental effects or con-

sequences of the disease and plausible biological pathways perti-
nent to the pathogenesis of RA.

The challenge lies in the integration and interpretation of these 
complex multi-omics datasets, which is hampered by different 
data formats, high data dimensionality, and the need for data nor-
malization (Pinu et al., 2019; Fondi and Liò, 2015). The expo-

nential growth of omics data requires a similarly fast develop-

ment of software solutions to handle this challenge. New bio-

informatics tools and pipelines for the integration of data from 
different omics disciplines continue to emerge to support scien-

tists in reliably interpreting data in the context of biological pro-

cesses (Dihazi et al., 2018).            
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man-based methods and models for RA research taking into ac-

count the limitations of traditional (animal) models and the op-

portunities offered by new technologies.
In recent years, a shift toward a new human-based paradigm 

has been advocated extensively in toxicology and regulatory test-
ing (NRC, 2007), but also in other research fields, including au-

toimmune diseases (Langley, 2014; van der Worp et al., 2010; 
Mak et al., 2014; Begley and Ellis, 2012; Geerts, 2009; van de 
Stolpe and Kauffmann, 2015). The envisioned human-based 
framework will not only increase human relevance and translat-
ability, but also contribute to the reduction and/or replacement of 
animals used in RA research. In light of the growing concern for 
the ethical justification of the use of animals in research, it is very 
important to consider not only the scientific dimensions, but also 
the ethical cost inherent in the use of living beings.

Several human cell/tissue advanced models and tools have 
been developed, spanning patient-derived iPSCs, 3D engineered 
tissues, fluidic bioreactors, and the more complex joint-on-a-
chip. Human-based cellular and tissue models and high-through-

put (omics) readouts, supported by epidemiology studies, repre-

sent the basis of a paradigm shift in RA research that will increase 
knowledge on the molecular mechanisms that are perturbed at 
the onset of the disease, helping to define novel biomarkers for 
early detection and establishing preventive and more precise tar-
geted treatment strategies.

In the proposed strategic framework, the use of patient-derived 
cellular models such as iPSCs and the application of omics read-

outs – while tackling human relevance – would still constitute the 
lower level/scale of “wet lab” research. Large computational ap-

proaches together with large-scale epidemiological datasets rep-

resent the essential tools required to account for higher level/scale 
and to establish systemic correlations among signaling pathways, 
epigenomic and genomic perturbations, patient heterogeneity, 
and lifestyle components. Some comprehensive maps of signal-
ing pathways and networks that are dysregulated in RA already 
have been compiled (Singh et al., 2018; Ostaszewski et al., 2018; 
Wu et al., 2010), which, in combination with other omics data, 
may help to identify genes as predictors of RA risk. 

There is already a growing understanding how risk factors, in-

cluding lifestyle factors, such as smoking and nutrition, may be 
mechanistically related to RA development. In particular, accu-

mulating research evidence suggests that individual dietary pat-
terns may be implicated in the risk of developing RA (Skoczyńs-

ka and Świerkot, 2018; Philippou and Nikiphorou, 2018). An-

other aspect is the growing insight into modulation of the 
pathophysiology of RA by the gut microbiome. Human-based 
approaches (in vitro, in silico, etc.) should also take into account 
these aspects, e.g. by including microbiota in complex in vitro 

models (Jalili-Firoozinezhad et al., 2019) and/or accounting for 
nutrigenomics, which cannot be reliably studied in animal mod-

els owing to interspecies differences. Although the relationships 
among diet, microbiota, and human health are complex, new 
tools, such as metagenome sequencing, provide new connections 
and insights (Tong, 2015; Zhang et al., 2015a). The study of the 
effect of nutrients at the gene expression level, through nutrig-

enomic analyses, has received increasing attention (Rana et al., 

perturbations, infectious and genetic factors may initiate the dis-

ease process. By using an AOP conceptual framework it could 
be possible to gather existing knowledge about signaling path-

ways that are perturbed at the onset and during the consolidation 
of the disease, and to link genetic determinants, lifestyle and en-

vironmental factors with adverse health effects (Pistollato et al., 
2015). An AOP approach already has been proposed for Alzhei-
mer disease (Langley, 2014).

Incorporating advanced scientific tools into a research frame-

work emphasizing pathways and networks in human-specific mod-

els could offer better progress towards understanding and treating 
diseases than the current emphasis on animal models. The disease 
AOP concept would provide a unified framework for describing 
relevant pathophysiological pathways and networks across mul-
tiple biological levels and for encompassing extrinsic and intrin-

sic causes. Describing these pathways and networks, along with 
anchoring molecular initiating events with adverse outcomes, the 
AOP framework would represent a significant advance over exist-
ing concepts, such as disease mechanisms that are often studied in 
isolation and biological pathways or networks that are invariably 
considered only at the molecular or cellular levels. 

The disease AOP approach would better exploit advanced ex-

perimental and computational platforms for knowledge discov-

ery, since the emergence of AOP networks will identify knowl-
edge gaps and steer investigations accordingly. A commitment 
to build, curate, and disseminate a pathways framework within 
the biomedical research field would thus provide considerable 
impetus to base decisions on mechanistic understanding rather 
than empirical observation, as has been the case in toxicology 
(Langley et al., 2015). It is important that the overall pathophysi-
ological scenario does not become lost when using AOPs. AOPs 
are to be considered as open and flexible structures that should 
be continuously refined by feeding in old and new data, com-

ing from a human based and human relevant approach (Vinken, 
2016; Langley et al., 2015).

5  Discussion 

Animal and simple cell culture models of RA have been useful to 
elucidate some of the mechanisms underlying the disease. How-

ever, simple cell culture models cannot mimic the complexity of 
the pathophysiological processes, biomechanical and hydrody-

namic pressure conditions characterizing RA, and animal models 
may be misleading owing to interspecies differences regarding 
e.g., chondrocyte biology (Schulze-Tanzil et al., 2009), articular 
cartilage (Athanasiou et al., 1991) and cartilage thickness (Mc-

Lure et al., 2012). 
Here we describe new technologies, tools and approaches that 

could be employed in an integrated human-based framework to 
investigate cellular and molecular mechanisms underlying RA 
pathology and pharmacotherapeutics. While other studies have 
discussed the use of human-based approaches for other autoim-

mune diseases (van de Stolpe and Kauffmann, 2015; Shoda et 
al., 2018; Shin et al., 2019; Rogal et al., 2019), this is, to our 
knowledge, the first review discussing the applicability of hu-
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visioned framework will help redefine human RA pathogenesis 
and etiology according to a more holistic perspective, taking in-

to account the numerous human-related risk factors implicated in 
the onset and consolidation of RA (Fig. 2). 

The reductionist approach traditionally followed in biomedi-
cal research may hamper the discovery of effective treatments 
for RA. According to Stanich and colleagues (2009), focusing re-

search on single etiologic agents or factors possibly involved in 
RA pathogenesis is misleading: RA should not be considered a 
discrete clinical entity with a single, unique etiological source, 
but rather viewed as a complex multifactorial syndrome, a com-

mon endpoint for a number of different starting points (Firestein, 
2014). Since many factors contribute to RA etiology, and they 
do so differentially in individual patients, modern research must 
take these multifactorial aspects into account.

The feasibility of the envisioned human-based strategy neces-

sarily requires the combined application of technology and ex-

pertise. The establishment of a collaborative strategy is clear-
ly imperative to determine what occurs throughout the course 
of RA. Increasing the awareness of the limits of traditional ap-

proaches as well as of the advantages of 21st century human-rel-
evant scientific approaches is essential to overcome resistance to 
change (Tralau et al., 2012; Archibald et al., 2015).    

2016; van Breda et al., 2015; Ferguson et al., 2016, 2013) and 
could help to establish a prevention strategy for RA. 

The discovery of biomarkers that are elevated prior to the on-

set of clinically apparent RA would allow the identification of in-

dividuals who are at risk of developing RA in a preclinical phase 
of disease that is defined as “abnormalities of RA-related immune 
activity” prior to clinically apparent joint disease. This could make 
it possible to identify the likelihood and timing of onset of future 
RA and intervene with lifestyle risk factor modification to prevent 
the onset of RA (Donzelli and Schivalocchi, 2016). Large scale 
epidemiological and interventional studies are needed to improve 
our understanding of lifestyle-related factors associated with the 
risk of RA and design effective prevention strategies. 

Combining data derived from a wide range of studies, also ac-

counting for the disease activity score (DAS) and hand grip test 
(van Riel and Renskers, 2016; Higgins et al., 2018), advanced 
imaging (Vyas et al., 2016; Gu et al., 2011), the analysis of pa-

tient-derived synovial fluid- and plasma-related biomarkers, to-

gether with computational models and high-throughput readouts 
applied to patient-derived cell-based models to assess signaling 
pathways, post-translational, translational, and transcriptional 
events, will help us to better understand RA pathology, predict 
long-term sequelae, and develop successful treatments. The en-

Fig. 2: Overview of the novel, available tools and readouts applicable to design human-based RA research, accounting for 

multiple levels of complexity, from molecular to population level

SF, synovial fluid; MRI, magnetic resonance imaging; PDU, power doppler ultrasonography; MPS, microphysiologycal systems;  
DAS 28, disease activity score-28; iPSCs, induced pluripotent stem cells; IF, immunofluorescence; HCA, high content analysis; MS, mass 
spectrometry; MRS, magnetic resonance spectroscopy; GWAS, genome-wide association studies; GEP, gene expression profiling;  
Ic and Ec, intracellular and extracellular; HGT, hand grip test; CyTOF, mass cytometry; GEDDs, gene expression dysregulations
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