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Abstract Abstract 

Aim: Our objective was to determine changes in bone mineral density (BMD), trabecular bone 

score (TBS), and body composition after 2 years of therapy with recombinant human insulin-like 

growth factor-1 (rhIGF-1) in 2 prepubertal children with a complete lack of circulating PAPP-A2 

due to a homozygous mutation in PAPP-A2 (p.D643fs25*) resulting in a premature stop codon. 

Methods: Body composition, BMD, and bone structure were determined by dual-energy X-ray 

absorptiometry at baseline and after 1 and 2 years of rhIGF-1 treatment. Results: Height 

increased from 132 to 145.5 cm (patient 1) and from 111.5 to 124.5 cm (patient 2). Bone 
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mineral content increased from 933.40 to 1,057.97 and 1,152.77 g in patient 1, and from 696.12 

to 773.26 and 911.51 g in patient 2, after 1 and 2 years, respectively. Whole-body BMD also 

increased after 2 years of rhIGF-1 from baseline 0.788 to 0.869 g/cm2 in patient 1 and from 

0.763 to 0.829 g/cm2 in patient 2. After 2 years of treatment, both children had an improvement 

in TBS. During therapy, a slight increase in body fat mass was seen, with a concomitant 

increase in lean mass. No adverse effects were reported. Conclusion: Two years of rhIGF-1 

improved growth, with a tendency to improve bone mass and bone microstructure and to 

modulate body composition. 

 
 

Abstract Second Language  

 

 

Abstract Third Language  

 

 

Key Messages  

  

  

 
 
 

Body  

Introduction 

Mutations in the gene for pregnancy-associated plasma protein A-2 (PAPP-A2), a 

metalloproteinase enzyme [1], produce short stature due to low insulin-like growth factor-1 (IGF-

1) availability. Short stature, skeletal abnormalities, and high circulating levels of total IGF-1, 

IGFBP-3, IGFBP-5, and acid-labile subunit (ALS) characterize this new syndrome. Because 

PAPP-A2-deficient patients do not exhibit growth hormone (GH) deficiency, they were treated 
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with recombinant human IGF-1 (rhIGF-1) [2]. We previously reported that these children had 

improved growth with no adverse effects after 1 year of rhIGF-1 administration [2]. 

Here, our aim was to assess the effect of 2 years of rhIGF-1 therapy on bone mineral 

density (BMD) and bone quality, as assessed by trabecular bone score (TBS), as well as body 

composition in a unique model of 2 children with a complete lack of PAPP-A2 and very low IGF-

1 bioavailability. 

Subjects and Methods 

Two siblings, a prepubertal female (patient 1; chronological age: 10.54 years) and a 

prepubertal male (patient 2; chronological age: 6 years) with short stature (height SDS --1.10 

and --0.96 for age and sex, respectively, but far from their target height in centile 72) were 

studied. Both patients were born to nonconsanguineous Spanish parents. Length and weight at 

birth were normal, but postnatally they experienced continuous growth velocity retardation. 

Phenotype included small chin, modest microcephaly, and long thin digits on hands and feet. 

Both children had a homozygous frameshift mutation in PAPP-A2 (p.D643fs25*) [1]. Bone age 

and chronological age were consistent in patient 1 (Δ = --0.21) and slightly delayed in patient 2 

(Δ = 1.5). At diagnosis, the height of the female patient was in the normal range (--1.10 SD), but 

was 1.6 SDS below her expected height. The height of the male patient was also normal (--0.96 

SD), but 1.2 SDS below his expected height. Patient 1 started puberty 3 months after starting 

rhIGF-1 treatment and thus received GnRH analog in order to delay puberty and to potentiate 

the effect on height. 

Whole-body BMD (WB-BMD), lumbar spine BMD (LS-BMD), hip BMD, and femoral neck 

BMD (FN-BMD) as well as body composition measurements were performed using dual-energy 

X-ray absorptiometry (DXA; DXA Discovery Wi, software version 13.3; Hologic, Inc., Waltham, 

MA, USA) before therapy started and at 1 and 2 years after treatment. Data for BMD are 
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expressed adjusting for height-for-age Z scores [3]. Body composition data obtained by DXA 

(body fat mass, lean mass, and body fat percentage) were compared from baseline to the end 

of the study [4]. The coefficient of variation was 0.85 for whole body and 0.70 for lumbar spine. 

TBS measurements were obtained from DXA lumbar studies using the TBS iNsight 

software (MedimapsFrance, v3.0). TBS was calculated from the same DXA acquisition and 

region of interest as those used for LS-BMD. A higher TBS indicates a healthier bone 

microarchitecture, whereas a lower value suggests a weaker bone structure. Unfortunately, 

there is no international consensus regarding what constitutes normal or abnormal TBS in 

children, but for adults it has been proposed that TBS ≥1,350 is normal, TBS values between 

1,200 and 1,350 are consistent with partially degraded bone, and TBS ≤1,200 indicates 

degraded bone [5]. 

Results 

Height was clearly increased after treatment with rhIGF-1 in both children according to 

their sex and age and using Spanish tables. For patients 1 and 2, heights were 132 and 111.5 

cm at baseline, 139.6 and 118.5 cm after 1 year of treatment, and 145.5 and 124.5 cm at 2 

years of rhIGF-1 therapy, respectively. Ultrasound of internal organs (kidney, spleen, and heart) 

was normal.  

Effects of rhIGF-1 on Bone Mineral Content and BMD (Table 1) 

The pretreatment BMD was subnormal in both the female (osteoporosis) and male 

(osteopenia) subject, according to age- and sex-matched references. In patient 1, bone mineral 

content (BMC) increased from 933.40 g at baseline to 1,057.97 and 1,152.77 g at 1 and 2 

years, respectively, with a total increase of 23.4%. In patient 2, BMC increased from 696.12 g at 

baseline, to 773.26 and 911.51 g at 1 and 2 years, respectively, with a total increase of 30.8%. 

At baseline, patient 1 had a WB-BMD of 0.788 g/cm2, which increased to 0.843 g/cm2 at 1 year 
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and 0.869 g/cm2 at 2 years of rhIGF-1 therapy. Patient 1 had a baseline LS-BMD of 0.582 g/ 

cm2 and 0.679 g/ cm2 after 2 years of rhIGF-1 treatment (a 16.8% increase). Total hip BMD and 

FN-BMD increased from an initial 0.644 and 0.578 g/cm2 to 0.688 and 0.582 g/cm2, 

respectively, with an increase of 6.8%. Despite this, the adjusted LS-BMD Z score (--0.3) and 

total hip Z score (--1.5) were in the low normal range, but her annual increase was acceptable 

according to national values for age and sex (+0.094 g/cm2) [6]. 

The initial WB-BMD in patient 2 was 0.763 g/cm2, 0.784 g/cm2 at 1 year, and 0.829 g/cm2 

at 2 years of rhIGF therapy. Patient 2 had a baseline LS-BMD of 0.488 g/cm2 and 0.532 g/cm2 

after 2 years. Total hip BMD and FN-BMD were initially 0.596 and 0.572 g/cm2 and after 2 years 

of rhIGF-1 treatment 0.708 and 0.646 g/cm2, respectively, with a positive change of 8.5% during 

this period. The annual increase was similar to that described for Spanish children for age and 

sex (+0.042 g/cm2) [6]. The height-adjusted LS-BMD Z score (--0.4) and total hip score (0.3) 

were in the normal range. 

Effects of rhIGF-1 on TBS 

TBS values were compared to normative data from a group of 4,126 healthy Spanish 

children of both sexes (2,600 girls and 1,520 boys between 1 and 19 years) according to age 

and sex [Del Rio et al., unpubl. data]. 

The initial TBS value for patient 1 was in the lower range: 1,223 (normal range: 1,285 ± 

0.10). In patient 2, it was acceptable: 1,291 (normal range: 1,269 ± 0.10). After 2 years of 

treatment, patient 2 showed an increase to 1,312, which is above the normal range adjusted for 

age and sex (1,228 ± 0.11). Patient 1 had a substantial decline in TBS after the first year of 

treatment (1,147), but after 2 years it increased to 1,337, which is in the normal range for age 

and sex (1,355 ± 0.08). 

Effects of rhIGF-1 on Body Composition 
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The percentage of total body fat mass was reduced, by --4.5 and --4.7% in patient 1 and 

2, respectively, during the first year of rhIGF-1 therapy. During the second year of treatment, a 

non significant increase in the percentage of total body mass was found in patient 1 (+2.7%) 

and in patient 2 (+1.3%), with the percentage of total body fat mass being below the expected 

value for age and sex in both. The small positive effects of rhIGF-1 on fat mass during the 

second year could reflect the severe nature of their IGF-1 deficiency [7]. There was a 

concomitant increase in lean mass from 15,471.8 g at baseline to 19,490.5 and 22,165.6 g after 

1 and 2 years of rhIGF-1 treatment in patient 1 and from 11,468.3 g at baseline to 13,892.2 and 

16,019.3 g in patient 2. The increases in lean mass in patient 1 (43%) and in patient 2 (40%) 

during the treatment period are acceptable according to age and sex reference published 

database [8]. 

No adverse effects were seen during rhIGF-1 therapy in either patient. There were no 

episodes of symptomatic hypoglycemia or hyperglycaemia reported during the 2 years of the 

study and no local reactions at the site of subcutaneous injections were seen. 

Discussion 

This is the first study confirming an improvement in BMD, body composition, and 

microstructure in patients with short stature due to mutations in PAPP-A2 after 2 years of 

treatment with rhIGF-1. The therapeutic option of rhIGF-1 seems reasonable, as this syndrome 

is associated with postnatal growth failure and low free IGF-1 bioavailability necessary for bone 

remodeling during development [9]. Low levels of free IGF-1 are detrimental to bone, as it is 

fundamental for optimizing peak bone mass. Therefore, it is essential to consider therapeutic 

interventions to optimize bone mass accrual and bone density during these development years.  

Our 2-year study demonstrates that rhIGF-1 treatment is capable of improving WB-BMD, 

BMC, and LS-BMD towards the normal range and results in an acceptable annual BMD 
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increase. This trend toward increasing BMD of the whole skeleton is similar to previous 

observations of treatment with rhIGF-1 in other growth-retarded conditions [10]. 

In a recent study, Cabrera-Salcedo et al. [11] reported a moderate increase in total BMD 

in a patient with a missense mutation in PAPP-A2 after 1 year of treatment. The differential 

response to rhIGF-1 treatment, including a lower growth velocity than that of our patients [2], 

could be explained by the differences in the affectation of the IGF-1 system due to the different 

genetic mutations. Indeed, our patients have a total lack of PAPP-A2 compared to a mutated 

form of this protease in the patient reported by Cabrera-Salcedo et al. [11]. Although the 

descriptions of this patient and his brother and sister were published together with the two 

Spanish subjects, our patients have been under treatment for a longer period due to their earlier 

diagnosis [1, 12], and it will be of interest to see how the other patient responds to longer 

treatment. 

Although initially there was a slight decrease in TBS in patient 1, with that of patient 2 

being acceptable 1 year after rhIGF-1 treatment, afterwards there was an increase in both 

children that resulted in a TBS score in the normal range after 2 years of therapy. The small 

decrease in TBS in patient 1 at 1 year could possibly be due to rhIGF-1 initially increasing bone 

remodeling. Our study suggests that TBS and BMD may need more than 2 years of therapy to 

improve significantly, as reported for treatment in other chronic conditions [5]. Preliminary data 

show an improvement in fracture prediction in adults when TBS is used in combination with 

FRAX [13], but the utility of this technique has not been evaluated in children. Longer studies in 

large series of children with healthy and chronic diseases are necessary to analyze the 

relationship between TBS and anthropometric clinical variables. Unfortunately, results of TBS 

cannot be compared with the study by Cabrera-Salcedo et al. [11] as this analysis was not 

performed.  

After the first year of rhIGF-1 treatment, a small decrease in the percentage of body fat 

mass (<5%) was registered, but in the second year there was a nonsignificant increase (<3%) in 
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both children. This is similar to a recent study, in which an early decrease in the percentage of 

body fat, followed by a longer-term increase, was reported in 21 children with GH receptor 

deficiency treated with rhIGF-1 for 3 years [14]. In patients with GH insensitivity syndrome, a 

small reduction in 3 patients and a 7% rise in the percentage of body fat in 1 patient were found 

as early as 3 months after treatment with IGF-1 [15]. 

Lean mass also increased in both patients, confirming the anabolic effects of IGF-1. The 

observed increases were normal compared to age-matched controls and similar to those 

described by others. The significant increase in lean body mass, but no change in BMI, is 

similar to that reported in GH-deficient patients treated with GH [8]. DXA was used to measure 

body composition, as this technology is a sensitive tool with good precision for assessment of 

longitudinal changes [16]. 

When we compare the BMD of these patients with PAPP-A2 deficiency to that of our 

patients with primary ALS deficiency due to recessive IGFALS mutations associated with low 

IGF-1 levels, differences can be observed. Even without therapy (neither hGH nor rhIGF-1), no 

affectation of whole-body BMC or LS-BMD was observed in our patients, with the exception of 1 

patient who exhibited a very moderately decreased lumbar spine BMC, but not whole-body 

BMC, as found by DXA analysis [17]. In contrast, a modest decrease in the BMC of the lumbar 

spine was found in the first reported patient with primary ALS deficiency due to a homozygous 

IGFALS mutation [18] as well as in 2 male siblings born to consanguineous parents [19]. Thus, 

we can speculate that the availability of IGF-1 is important for BMD and that, although our 2 

patients have very high total IGF-1 levels, IGF-1 availability is very low due to the complete lack 

of PAPP-A2 deficiency [1]. 

In summary, our study indicates that rhIGF-1 increased growth in 2 children lacking 

PAPP-A2 and hence with free/bioactive IGF-1 deficiency, with a tendency to improve bone 

mass, quality of bone, and body composition. Nonetheless, a follow-up of these patients will be 

required to demonstrate whether they can normalize BMD and TBS as well as to determine their 
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final height. In addition, further research is necessary to evaluate the clinical significance of 

BMD and TBS changes during growth as a useful tool for the management of these children 

with this new syndrome. 
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Table 1. Baseline values and the response of patient 1 and patient 2 to rhIGF–1 treatment at 1 and 2 years 

    
    
Parameter Baseline Year 1 Year 2 

    
    
Patient 1    

Age, years 10.54 11.54 12.5 

Height, cm 132 (–1.25) 139.6 (–0.86) 145.5 (–0.81) 

BMI 14.1 (–1.51) 14.8 (–1.44) 15.6 (–1.3) 

Lumbar spine    

BMD, g/cm2 0.582 0.601 0.679 

Z score1 –0.1 –0.4 –0.3 

TBS 1,223 1,147 1,337 

Whole-body mineral density    

Total BMC, g 933.40 1,057.97 1,152.77 

Total BMD, g/cm2 0.788 0.843 0.869 

Body composition    

Fat mass, g 7,611.1 7,663.6 9,928.3 

Lean mass, g 15,471.8 19,490.5 22,165.6 

Lean and BMC, g 16,405.1 20,548.5 23,318.0 

Total mass, g 24,016.3 28,212.0 33,246.7 

Total body fat, % 31.7 27.2 29.9 

        Patient 2    

Age, years 6.1 7.1 8.2 

Height, cm 111.5 (–0.74) 118.5 (–0.34) 124.5 (0.31) 

BMI 13.38 (–1.81) 13.64 (–1.69) 14.39 (–1.24) 

Lumbar spine    

BMD, g/cm2 0.488 0.476 0.532 

Z score1 –0.1 –0.7 –0.2 

TBS 1,291 1,278 1,312 

Whole-body mineral density    

Total BMC, g 696.12 773.26 911.51 

Total BMD, g/cm2 0.763 0.784 0.829 

Body composition    

Fat mass, g 4,630.5 4,332.2 5,401.3 

Lean mass, g 11,468.3 13,829.2 16,019.3 

Lean and BMC, g 12,164.5 14,602.5 16,930.8 

Total mass, g 16,794.9 18,934.7 22,332.1 

Total body fat, % 27.6 22.9 24.2 

    
    

Values in parentheses indicate SDS■■■. BMI, body mass index; BMD, bone mineral density; BMC, bone 

mineral content. 1 Z score: age and height adjusted (3). 

 
 

 

 

 


