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Abstract: Rhinoviruses (RVs) and respiratory enteroviruses (EVs) are leading causes of upper

respiratory tract infections and among the most frequent infectious agents in humans worldwide.

Both are classified in the Enterovirus genus within the Picornaviridae family and they have been

assigned to seven distinct species, RV-A, B, C and EV-A, B, C, D. As viral infections of public health

significance, they represent an important financial burden on health systems worldwide. However,

the lack of efficient antiviral treatment or vaccines against these highly prevalent pathogens prevents

an effective management of RV-related diseases. Current advances in molecular diagnostic techniques

have revealed the presence of RV in the lower respiratory tract and its role in lower airway diseases is

increasingly reported. In addition to an established etiological role in the common cold, these viruses

demonstrate an unexpected capacity to spread to other body sites under certain conditions. Some of

these viruses have received particular attention recently, such as EV-D68 that caused a large outbreak

of respiratory illness in 2014, respiratory EVs from species C, or viruses within the newly-discovered

RV-C species. This review provides an update of the latest findings on clinical and fundamental

aspects of RV and respiratory EV, including a summary of basic knowledge of their biology.
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1. Introduction

Rhinoviruses (RVs) are responsible for more than one-half of upper respiratory tract infections

(URTI) and they are considered to be among the most frequent infectious agents in humans

worldwide [1]. Most cases of RV infections are benign, self-limited cold-like illnesses. However,

these viruses have been also identified as the causal agent of severe pneumonia in the elderly and

immunocompromised patients, as well as exacerbations of chronic obstructive pulmonary disease

and asthma. At present, no efficient antiviral treatment, vaccines, or other preventive measures exist

against these particularly frequent pathogens (apart from poliovirus). In addition to the significant

associated clinical morbidities, the economic impact of RV-related infections is of great concern [2].

Viral URTI are highly expensive for society, both directly (healthcare resource use) and indirectly

(productivity loss), which emphasizes the importance of finding an appropriate preventive treatment.

RVs belong to the Enterovirus (EV) genus within the Picornaviridae family. The members of this

genus are divided into seven human species, three RV species (RV-A to RV-C) and four EV (non-RV

EV) species (EV-A to EV-D). Although closely related at a genetic level, these viruses have remarkably

different phenotypic characteristics. The tropism of RVs is restricted to upper respiratory airways,

except in some rare cases of disseminated disease, whereas EVs can infect a wide range of different
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cells and cause very diverse clinical syndromes [3]. Diseases due to non-RV EVs range from febrile

illnesses to myopericarditis, paralysis or encephalitis, with a significant number of complications and

deaths. EVs are notably the most frequent cause of viral meningitis [4]. However, some types of

EVs are only found in the respiratory tract and cause RV-like symptoms, especially EVs from species

C and D (Table 1), and are consequently named respiratory EVs. Some have been shown to share

characteristic traits of RVs, including instability at low pH (<5–6) or high temperatures (>34 ˝C) [5].

This review provides an overview of the latest findings on the clinical and fundamental aspects of

RVs and respiratory EVs and briefly summarizes current knowledge of RV and EV biology.

Table 1. Non-Rhinovirus (RV) Enteroviruses (EVs) associated with respiratory diseases.

Species
Types of Viruses Detected Occasionally

in Respiratory Samples
Types of Viruses Detected Predominantly or

Exclusively in Respiratory Samples

EV-A CV-A10, CV-A16, EV-A71 –

EV-B

CV-A9, CV-B1, CV-B2, CV-B3, CV-B4,
CV-B5, CV-B6, E-1, E-2, E-3, E-4, E-5, E-6,
E-7, E-9, E-11, E-12, E-13, E-14, E-15, E-16,

E-17, E-18, E-19, E-20, E-21, E-25, E-29, E-30

–

EV-C CV-A24, PV-3
EV-C104 [6], EV-C105 [7], EV-C109 [8], EV-C117

[9], EV-C118 [10], CV-A21

EV-D
´´

EV-D68

Adapted from [3].

2. Overview of Rhinovirus Biology

2.1. Brief Overview of Basic Virology

2.1.1. Genome and Structure

RVs and EVs are small, non-enveloped, positive-stranded RNA viruses with a genome of about

7.2 to 7.5 kb packed in a 30 nm icosahedric capsid. This capsid is composed of the assembly of

12 pentamers of 5 protomers, consisting of the four capsid proteins VP1, VP2, VP3 and VP4. VP1 is

located at the external side and is the major target of the immune response [11], even if VP2 and VP3

contribute to the antigenicity. VP4 is localized on the internal surface of the capsid and interacts with

the genome.

An internal ribosomal entry site (IRES) is located in the 51untranslated region of the genome

(51UTR) and is necessary for translation. This translation gives rise to a precursor polyprotein, which

is cleaved by viral proteases in 11 mature proteins. The single open reading frame is divided into

three regions: the first region of the genome, P1, encodes for capsid proteins (VP1 to VP4), whereas

the next regions, P2 and P3, give rise to non-structural proteins (2A to 2C and 3A to 3D) (Figure 1).

Regarding structural elements, a cloverleaf structure is located close to the IRES in the 51-UTR and a

small stem loop in the 31-UTR. Another stem loop structure, the cis-acting replication element (cre),

is positioned at different places throughout the polyprotein coding region, depending on the viral

species. A small viral protein, VPg, is covalently bound to the 51 end of the genome, but seems to be

cleaved from the genomic RNA early in the replication cycle. This protein is implicated in priming viral

genome for replication, but recent studies have reported that its presence does not affect translation or

replication [12,13]. Thus, it is unclear why this peptide is cleaved from genomic RNA shortly after its

release in the cytoplasm, and it has been speculated that VPg unlinking may be necessary for proper

encapsidation of newly synthesized genomic RNAs in particles as only VPg-containing viral RNA is

found in virions [13].
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Figure 1. Enterovirus genome organisation.

2.1.2. Replication Cycle

Virus entry to the cell depends on the cell surface molecule used as receptor, as well as putative

attachment receptors that vary between the different EV and RV types. Viral uptake can be mediated

either by clathrin-dependent or -independent endocytosis or via macropinocytosis, depending on the

virus and the host cell type [14]. Virions then undergo a conformational change triggered by the drop

in pH or by receptor binding and leads to uncovering of the hydrophobic domains, which results in

pore-mediated release of the genome in the cytoplasm. A cap-independent IRES-mediated polyprotein

synthesis is then mediated by the host cell ribosomal machinery. The obtained viral polyprotein

precursor of approximately 2000 amino acids is cleaved by the viral proteases into different viral

proteins. The genome is then replicated in complexes in association with cytoplasmic membranes [15].

For more details, the EV replication cycle was recently reviewed [16].

2.2. Pathogenesis and Associated Diseases

2.2.1. Transmission

The transmission of viral particles between humans occurs mainly via direct contact or through a

fomite, typically with inoculation into the eye or nose from the fingertip. RVs are able to survive on

hands for several hours, which allows an easy human-to-human transmission through this route in the

absence of adequate hand hygiene, particularly in the presence of high viral loads [17]. Transmission

by large particle aerosols has also been documented, but is presumably less efficient [18].

2.2.2. Site of Infection and Pathogenesis

Inoculation of RV happens either directly on the nasal mucosa or via the eye conjunctiva where it

is transported via the lacrymal duct to the nasal cavity, and then on to the nasopharynx. The airway

epithelium is the primary site of infection of RV and it was shown in studies of both natural and

experimentally-induced cold that viral RNA cannot be detected in the subepithelial layer, only in

epithelial cells. Most RV-A and -B utilize intercellular adhesion molecule (ICAM)-1 as cell entry receptor

(classified as the major receptor group) and the others alternatively bind low density lipoprotein

receptor (LDL-R) (minor receptor group) (Table 2), whereas RV-C utilizes a different receptor molecule

(see Update section). These receptors are expressed by ciliated and non-ciliated airway cells. In situ

hybridization experiments reported that RVs replicate in a small proportion of these cells in the

nasopharynx and nasal epithelium of experimentally-infected humans [19]. ICAM-1 expression is

limited in cells, but RV infection increases surface ICAM-1 expression via nuclear factor (NF)-κB

p65-mediated transcriptional up-regulation [20]. This up-regulation was observed in vitro in normal

primary human bronchial epithelial cells (HBECs), but also in vivo when infecting experimentally

healthy human volunteers [21]. Unlike other respiratory viruses, RV by itself does not cause airway

epithelial cell destruction and a visible cytopathic effect [22]. Yet, even if the epithelium morphology

remains intact, RV compromises the epithelial barrier function by dissociating zona occludens 1

from the tight junction complex by stimulating reactive oxygen species (ROS) generation during

viral replication [23]. This disruption of the barrier function increases pathogen (including bacteria)

translocation across the polarized airway epithelial cells (AECs), which can lead to complicated disease [24].
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Table 2. Cellular receptors for RVs and non-RV respiratory EVs.

NON-RV Respiratory Enteroviruses Rhinoviruses

Species Genotype Receptor Species Genotype Receptor

EV-A

CV-A10 unknown

RV-A

A7, A8, A9, A10, A11,
A12, A13, A15, A16, A18,
A19, A20, A21, A22, A24,
A27, A28, A32, A33, A34,
A36, A38, A39, A40, A41,
A43, A45, A46, A50, A51,
A53, A54, A55, A56, A57,
A58, A59, A60, A61, A63,
A64, A65, A66, A67, A68,
A71, A73, A74, A75, A76,
A77, A78, A80, A81, A82,
A85, A88, A89, A90, A94,
A96, A100, A101, A102,
A103, A104, A105, A106,

A107, A108, A109

ICAM-1 [25]

CV-A16 SCARB2 [26], PSGL-1 [27]
EV-A71 SCARB2 [26], PSGL-1 [27] *

EV-B

CV-A9 αV integrins [28–30]
CV-B1 CAR [31,32], DAF [33]
CV-B2 CAR [31,32]
CV-B3 CAR [31,32], DAF [33]
CV-B4 CAR [31,32]
CV-B5 CAR [31,32], DAF [33]
CV-B6 CAR [31,32]

E-1 α2β1 integrin [34]
E-2 unknown
E-3 DAF [35]
E-4 unknown
E-5 Heparan sulfate [36]
E-6 DAF [35,37]
E-7 DAF [35,37,38]
E-9 αvβ3 integrin [39]
E-11 DAF [35,37], HLA Class I [40]
E-12 DAF [35,37]
E-13 DAF [38]
E-14 unknown

E-15 unknown

A1A, A1B, A2, A23, A25,
A29, A30, A31, A44, A47,

A49, A62

LDLR, VLDLR,
LRP [41–43]

E-16 unknown
E-17 unknown
E-18 unknown
E-19 DAF [35]
E-20 DAF [37]
E-21 DAF [37,38]
E-25 DAF [35]
E-29 DAF [38]
E-30 DAF [35]

EV-C

CV-A21 ICAM-1 [44], DAF [45]

RV-B

B3, B4, B5, B6, B14, B17,
B26, B27, B35, B37, B42,
B48, B52, B69, B70, B72,
B79, B83, B84, B86, B91,

B92, B93, B97, B99, B100,
B101, B102, B103, B104,

B105, B106

ICAM-1 [25]

CV-A24 unknown
CV-A24v Sialic acid [46]
EV-C104 unknown
EV-C105 unknown
EV-C109 unknown
EV-C117 unknown
EC-C118 unknown

PV-3 PVR [47]

EV-D EV-D68 α2-6-linked sialic acids [48] RV-C

C1, C2, C3, C4, C5, C6, C7,
C8, C9, C10, C11, C12,

C13, C14, C15, C16, C17,
C18, C19, C20, C21, C22,
C23, C24, C25, C26, C27,
C28, C29, C30, C31, C32,
C33, C34, C35, C36, C37,
C38, C39, C40, C41, C42,
C43, C44, C45, C46, C47,
C48, C49, C50, C51, C52,

C53, C54, C55

CDHR3 [49]

* Other co-receptors have been described including dendritic cell-specific ICAM3-grabbing non-integrin
(DC-SIGN) [50], sialylated glycan [51], heparan sulfate [52], nucleolin [53], vimentin [54] and annexin II [55],
but their contribution to virus entry is unclear. SCARB2: scavenger receptor class B, member 2. CAR:
Coxsackievirus-adenovirus receptor. DAF: complement decay-accelerating factor, also known as CD55. ICAM-1:
intercellular adhesion molecule 1, also known as CD5. LDLR: low-density lipoprotein receptor. VLDLR:
very-LDLR. LRP: LDLR-related protein. CDHR3: human cadherin-related family member 3.

RV replication was shown in early experiments to be reduced at high temperatures (37 ˝C or 39 ˝C)

compared to 33 ˝C [56]. This condition was consistent with the role of RV as an upper respiratory

tract pathogen and unable to invade lower airway functioning at physiologic temperature. However,
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the undeniable epidemiological connection between RV infections and asthma exacerbations called

into question this assumption. Since then, experimental studies have extensively reported not only

effective RV replication in lower airway epithelial cells [57], but also that the difference in replication

capacity at lower temperatures is minimal [58] and may vary according to the RV type [59]. RV nucleic

acids have been detected also in lower airway cells by reverse transcriptase-polymerase chain reaction

(RT-PCR) in bronchoscopy and bronchoalveolar lavage samples of individuals following experimental

inoculation of the upper airways [60].

Other tissues have been shown to be infected by RV in addition to the nasopharynx and lower

airway cells. RV RNA was detected in sinuses by RT-PCR in maxillary sinus brushings [61] and in

turbinate epithelial cells in patients with chronic sinusitis [62], but also in the middle ear cavity of

children with otitis media with effusion [63]. The spread to these locations is presumed to happen by

local extension. Considering its theoretical restricted tropism and its sensitivity to the acid environment

of the gastrointestinal tract, RV was assumed until recently to be unable to spread by viremia and to

infect other organs than the respiratory tract. However, the presence of RV RNA in multiples sites,

including the blood and stools has been increasingly detected in recent years and many aspects of the

pathogenesis of this virus remain unclear [64–68]. The great number of different RV types may add an

extra factor of complexity, as some are potentially more virulent than others.

2.2.3. Host Response

The first line of defense against RV infection is the airway epithelium, which serves as a relatively

resistant barrier against infection when undamaged and composed of well differentiated cells [69].

Early innate immune detection of RVs occurs very rapidly after infection of the epithelium and, most

importantly, triggers the production and secretion of type 1 interferon (IFN), which will establish an

antiviral state in the infected and surrounding cells.

At the binding step, the attachment of major group RVs to ICAM-1 activates a signaling cascade

leading to the expression of chemokine genes such as C–X–C motif chemokine 1 (CXCL10) [70].

Once viral uncoating occurs, RV particles are released and activate the cell defenses. Infected

cells recognize RV “pathogen-associated molecular pattern” (PAMP) by the interaction with two

different families of pattern recognition receptors: toll-like receptors (TLR) and retinoic acid-inducible

gene-I-like receptors (RLR), a RNA helicase family that includes retinoic acid-inducible gene-I (RIG-I),

melanoma differentiation-associated gene-5 (MDA-5), and LGP-2. TLR, especially TLR-3, 7 and 8,

are transmembrane receptors localized in the lumen of the endosomes that recognize viral dsRNA

(for TLR-3 [71]) or ssRNA (for TLR-7 and 8 [72]) and are involved in RV genome detection [73–75].

In addition, TLR-2 is expressed on the cell surface and is able to detect specific molecular patterns on

the viral capsid, even in the absence of replication [73]. The recognition will propagate downstream

signaling and activate different transcription factors, such as interferon regulatory transcription factor

(IRF) 3, IRF-7 and NF-κB, which will result in the expression of type 1 IFN and transcription of several

inflammatory cytokine genes [76]. In parallel, RLR localize in the cytosol and will also recognize

viral genomes. MDA-5 binds to dsRNA generated as an intermediate of replication and therefore

has an important role in the anti-RV response [77], whereas RIG-I binds to the 51 triphosphate motif

and has a more controversial role in the recognition of picornaviruses. Indeed, picornaviruses do not

exhibit the 51triphosphate motif, but instead the 51end of their genome is covalently linked to the viral

genome-linked protein (VPg) and their recognition is mediated principally through MDA-5 [77,78].

Upon ligand recognition, RLR activate the mitochondrial adaptor molecule MAVS (also named VISA,

Cardif and IPS-1), which will activate the IFN induction pathway using the same intermediates.

RV infection triggers the release of a variety of antiviral factors and cytokines, including

bradykinin, IL-1β, TNFα, IL-6 and IL-8, activating and attracting granulocytes, dendritic cells, and

monocytes at the site of infection [79]. An antibody response to RV infection also occurs with the

development of serotype-specific neutralizing serum antibodies (IgG) and secretory antibodies (IgA) in

the airways, detectable usually after one or two weeks after inoculation and maintained for at least one
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year [80]. As RV infections are generally short-lived, these neutralizing antibodies appear after viral

clearance, but have an essential role in protecting from reinfection from the same type of virus [81].

This humoral response seems to be serotype-specific with only little antibody cross-reacting, which

represents a difficult challenge for vaccine development. However, this pivotal question remains

controversial [82,83].

2.2.4. Clinical Syndromes and Epidemiology

RV was found to be the etiology of one-half to two-thirds of common colds [1] and is therefore

regarded as the most common human infectious agent worldwide. Children are considered as the

major reservoir for RVs and experience up to eight to 12 infections per year, whereas adults are

infected two to three times per year [84]. The average incubation period is two days [85] after

nasal inoculation with a symptom duration of seven to 10 days [86]. Infections occur all year

round, but two peaks of infection are classically reported, the first between April and May and

the second between September and October [87,88]. Interestingly, a recent study showed that RV-Cs

demonstrate a different trend, with a peak of infection during winter months [89]. The only known

host of RV is human, even if primates might also be susceptible to asymptomatic infection [90,91]. In

immunocompetent individuals, the virus is usually strictly restricted to the upper respiratory airways

and typically induces nasal congestion and rhinorrhea, cough, sneezing, sore throat and malaise, with

a spontaneous resolution within one to two weeks [92]. However, RVs can also cause a wide range of

respiratory illnesses, ranging from asymptomatic infection to bronchitis and wheezing, bronchiolitis,

or pneumonia. Rare cases of extra-pulmonary illnesses related to RV have been recently described,

including gastroenteritis [65,93] and pericarditis cases [94].

2.2.5. Animal Models

To elucidate the pathogenesis of RV infection in human, a reliable animal model would be essential.

However the host range of RV is very limited, as they are able to replicate only in cells of primate origin.

These limitations are believed to result in part from cellular receptor incompatibility (which is the case

for major group RV types but not for minor group RVs) and also from post-entry intracellular block

to replication [95–98]. Mice adapted viral strains or transgenic mice expressing the human cellular

receptor ICAM-1 have been successfully developed, however these models inadequately mimic an

infection in the natural host [99–101]. The lack of adequate animal model to study the pathogenesis

of RV has been partially overcome by the development of in vitro reconstituted differentiated human

airway epithelia. These tissues exhibit in vivo morphological and growth characteristics of the

respiratory epithelium and allow a thorough analysis of some aspects of the pathogenesis of RV

(see Section 3.3.1).

3. Update on Latest Findings on RVs and Respiratory EVs

3.1. RV and EV Classification: Current Status

The EV genus belongs to the Picornaviridae family, which is composed of some of the simplest RNA

viruses containing very limited genetic material. Despite this genomic size constraint, the Picornaviridae

family displays a great variability between its different members and a very large number of types can

be distinguished. Historically, EVs and RVs were classified into separate genera, but due to their closely

related genome organization and structure, they were merged into a single genus named EV. This genus

is divided into 12 species, based on the genetic homology and similarity of pathophysiology [102].

Seven of these species are composed of human pathogens: three RV species (RV-A, RV-B, RV-C) and

four EV species (EV-A, EV-B, EV-C, and EV-D) (Figure 2). Formerly named human rhinovirus (HRV)

and human enterovirus (HEV) species, the International Committee on Taxonomy of Viruses (ICTV)

decided in February 2013 to abandon host names and renamed these species simply as Rhinovirus-A,

B and C and Enterovirus-A, B, C and D [102,103]. Between 1956 and 1987, 101 different serotypes of
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RV were established based on serological cross-neutralization assays in cell culture [104] and were

divided into species RV-A and RV-B [105]. Similarly, 66 human EV serotypes were defined until 1999

by serum neutralization. This method of classification was insensitive, time-consuming, and labor

intensive and was restricted by the limited supply of standardized antisera [106] and the inability to

isolate some EV or RV types in cell culture. A molecular typing system was developed in 1999 for EV,

which relies on the sequencing of an amplicon targeting a variable part of VP1. To date, the accepted

threshold for type assignment is >25% divergence in the VP1 coding region [107].

 

Figure 2. Phylogeny of the different human enterovirus species with emphasis on respiratory

enteroviruses and associated clinical features. The VP1 nucleotide region of selected representatives

of RV-A to -C and EV-A to -D species including all non-RV EVs associated with respiratory disease

(Table 1) were included in the phylogenetic analysis with simian sapelovirus 1 (SSV-1) as the outgroup

(see Table S1 for Genbank IDs). The tree was computed as previously described [6]. The consensus tree

resulting from PhyML analysis is shown as cladogram. Names of viruses detected predominantly or

exclusively in respiratory samples are in bold, names of viruses detected occasionally in respiratory

samples are in black while names of non respiratory EVs are in light grey and italic. Clinical features

associated with viruses predominantly detected in respiratory samples are color-coded. The references

for each unusual associated symptom or detection site are available in Table S2.

The serological method of classification based on the isolation of viruses in culture cells prevented

the detection of an entire species of RV, now known as RV-C, which are uncultivable on standard cell

cultures. The arrival of molecular detection techniques allowed the discovery in 2006 of this new RV

species, composed of 55 different types to date [102]. Inspired by the non-RV EV classification system,

a genetically-based classification for RV was proposed by Simmonds et al. [108], also determined by

the divergence of the VP1 nucleotide sequence. At the same time, the name “serotype” was changed

to “genotype” or simply “type”. A threshold of 13% divergence on VP1 nucleotide sequences was

proposed for type assignment and is still currently accepted. This classification system was extended

a few years later for species A and B and it was established that a RV type should have at least 13%

(for RV-A), 12% (RV-B), or 13% (RV-C) nucleotide divergence from all other RV types [109].

In the EV genus, members of a same species must share >60% amino acid identity in P1 (capsid

proteins), >70% in 2C + 3CD (non-structural proteins) and in the polyprotein sequence, as well as

sharing a limited natural host range, a limited range of cell receptor, a genome composition (G + C)
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that varies of less than 2.5%, and a considerable degree of compatibility in proteolytic processing,

replication, encapsidation and genetic recombination.

3.2. Mechanisms of RV Evolution and Adaptation

The vast genetic diversity of non-RV EV and RV types is an important characteristic of these

viruses and explains a substantial part of the variety of their associated clinical syndromes. Two driving

forces for this diversity coexist: the high error-rate of the viral RNA-dependent RNA-polymerase

(RdRp), and the occurrence of recombination events.

In general, RNA viruses display a great genetic diversity, mostly arising from the high mutation

rate caused by the error-prone nature of their RdRp, which misincorporates nucleotides at a frequency

of 10´3 to 10´5 per nucleotide site [110]. For EV, this mutation frequency is believed to give

rise to approximately one mutation introduced per genome replication. The resulting collection

of the multitude of related, but non-identical viral variants, is referred to as quasispecies. This

high level of genetic diversity results in a great variety of amino acid sequences of the capsid

region, which can explain the large number of different recognized RV types. In vivo, the mutation

frequency in the open reading frame of a RV-A39 during a 5-day course of infection in healthy,

experimentally-inoculated volunteers could be estimated at 3.4 ˆ 10´4 changes/nt, equivalent to

6.83 ˆ 10´5 changes/nt/day [111]. Another study of RV genome evolution in immunocompromised

patients revealed a RV mutation frequency of the same order of magnitude, i.e., between 7.27 ˆ 10´6

to 3.88 ˆ 10´5 mutation/nt/day [112].

By contrast, recombination events occur very frequently, particularly within non-RV EVs, and

participate extensively in the genetic diversity of these viruses. Two different molecular mechanisms

underlying RNA virus recombination are currently believed to exist: (1) a classic replicative model with

template-switching of the viral polymerase occurring during replication and giving rise to homologous

recombinants; and (2) a non-replicative model where the cut and rejoining of different viral RNA

fragments occur by an as yet unknown mechanism and create non-homologous recombinants with

sequence duplications at gene boundaries [113–119]. The homologous replicative recombination may

be of greater importance under natural conditions, but the relative importance of both mechanisms

remain unclear. In non-RV EV, recombination has been extensively studied and documented and is an

undeniable force of evolution of these viruses, occurring at high frequency mostly in non-structural

regions [120–122]. Interestingly, recombination in RV seems to be surprisingly rare and is probably

mostly limited to ancient events. Based on sequence analysis, it was speculated that recombination

could be at the origin of RV-B species, which would have been generated by recombination between

RV-A and non-RV EV ancestors [123]. Interspecies recombination between RV-A and RV-C in the

51UTR and 2A sequences have been identified and are certainly the result of an ancient evolutionary

event [124]. On the other hand, contemporary recombination events among RV circulating strains are

believed to occur mainly between the same species and thus would give rise to recombinants highly

related to the parental strains. Contemporary intraspecies recombinations within the coding region

have been documented for RV-A [6], but not for RV-B and -C [6,109]. Experimental investigations of RV

recombination have attempted to elucidate this phenomenon by studying the genetic exchangeability

between different RV strains. By artificially exchanging some sequences, it was possible to show that

intra- and interspecies RV/RV and RV/non-RV EV exchanges in the 51UTR could give rise to fully

viable viral chimeras [125]. These viruses could be easily propagated in cell cultures, but were not

able to outcompete the better-adapted parental strain. By contrast, interchangeability potential in the

polyprotein coding regions seems to be reduced. When engineering artificial recombinants where the

capsid together with the 2A-encoding region is exchanged, only intraspecies exchanges can give rise

to viable viruses. Similarly, non-replicative recombination occurred only between genomes belonging

to the same RV-A species [119]. Again, fitness of the different recombinants was reduced compared to

the parental virus, thus indicating that this kind of event would not easily happen in nature [119].
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The high heterogeneity in the coding sequence of RV was speculated to be an important obstacle

to the emergence of viable recombinants compared to non-RV EV and may be a partial explanation of

the lower frequency of these events in nature [124]. Another possible explanation may lie in the great

difference between RV and non-RV EV pathogenesis. Some characteristics of RV infection could be a

limitation to spontaneous recombination in vivo, either in terms of restricted tropism or short duration

of infection. However, this is only speculative and RV recombination mechanisms and limitations are

still far from being fully understood.

3.3. Recent Advances in Knowledge of the In Vitro and in Vivo Pathogenesis of RV and Respiratory EV

3.3.1. RV-C: Getting to Know the Newcomers

The arrival of new molecular diagnostic tools allowed the discovery in 2006 of a new species of

RV (RV-C) [126–133] that had remained undetectable until then due to the incapacity of these viruses to

grow in standard cell lines. This species is not composed of emergent strains and has been circulating

in humans for at least 250 years [134]. Since its discovery, RV-C is reported to have a high prevalence

and in that respect resembles more RV-A than the less prevalent RV-B [135,136]. Epidemiological

data revealed that its seasonality seem to differ from the other RV species, with a peak of infection

during the winter months [89]. Clinical manifestations associated with RV-C seem to be more severe

in children [135] and also more often disseminated [6,94,126,137–141]. Of note, a case study of a

systemic RV-C type 8 infection causing a fatal acute respiratory illness in a young child was reported

recently, with isolation of the virus from blood and detection of nucleic acids in different body sites

(lungs, blood, gastrointestinal tract, and cerebrospinal fluid) [64] (Figure 2). However, the association

between RV-C and more severe illness is controversial and other studies showed no difference in

clinical presentation and severity among different RV species infections, particularly between RV-A

and -C infections [112,129,135,142–145]. Recent data have suggested that there may be age differences

in the prevalence and severity associated with RV species. RV-A is more frequent in adults, while

RV-C is more frequent among children [146] and appears to be more severe in this population, with

a significantly higher rate of lower respiratory tract infections than observed in adults [147]. Finally,

a recent prospective study evaluating the circulation of different types of RV among young children

reported that RV infection is extremely frequent in this population, but remained asymptomatic

in 64% [148,149]. Defining the exact etiological role of RV in respiratory disease remains difficult,

including the association of a particular species or even type with specific clinical findings.

The inability of RV-C to propagate in standard immortalized cell lines has hampered research

progress related to the biological properties of this new group of viruses. Bioinformatic comparisons

of sequences suggested a different receptor use than RV-A and -B, which may explain this distinctive

growth feature, even if another receptor-independent limitation could not be ruled out [150]. A first

successful amplification of RV-C15 clinical specimens was reported in sinus mucosal organ cultures,

obtained as a byproduct of human sinus surgery [150]. RV-C15 and -C11 generated from infectious

cDNA clones could be amplified in fully differentiated human AECs [151], similar to RV-C15 and

-C41 clinical specimens in differentiated sinus epithelial cells cultured under air-liquid interface (ALI)

conditions. Another ALI culture system using 3D human upper airway epithelia reconstituted in vitro

allowed the growth of five different types of RV-C and the study of biological properties of these

viruses [59]. A comparative study of RV-A, -B, and -C replication and inflammatory response induction

was performed in an ALI culture system and showed that RV-B subtypes exhibit slower and lower

replication, but also induce lower cytotoxicity and cytokine production [152]. These results are

consistent with clinical observations and epidemiological data indicating that RV-B types cause less

severe illness than RV-A or -C types [135]. With these models it could also be confirmed that similar to

RV-A and -B, RV-C is acid-sensitive, although temperature sensitivity seemed to differ from one type

to another. Some RV-C types can grow efficiently in higher temperature conditions, which could be an

explanation for the apparent greater propensity of some strains to cause lower airway syndromes [59].
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The next major step forward in the understanding of RV-C pathogenesis was the very recent

discovery of the cell receptor used by these viruses. By comparing genome-wide gene expression

analysis between cells susceptible versus not susceptible to RV-C infection, Bochkov et al. [49] found

400 genes expressed exclusively in RV-C permissive cells. They selected 12 that are common genes

encoding membrane-bound proteins and then functionally validated them by transfecting HeLa cells

with plasmid DNAs encoding these genes. A reporter virus (RV-C15-GFP) was inoculated in these

different cells and only cells transfected with cadherin-related family member 3 (CDHR3) became

permissive to RV-C infection. Replication of other RV-C strains in stably expressing CDHR3 cells

that were previously insensible to RV-C infection was also demonstrated, suggesting that CDHR3

could be the functional receptor for RV-C [49]. CDHR3 is highly expressed in airway epithelium and

as a cadherin family member is supposed to be involved in cell adhesion, cell-cell interaction, and

epithelium polarity and differentiation. Interestingly, a single nucleotide polymorphism (SNP) in this

gene was previously associated by genetic analysis with severe asthma exacerbation in children [153].

When tested in vitro, this SNP allowed increased RV-C binding and replication, thus confirming the

link between RV infection and severe asthma. This finding represents a key step in the study of RV-C

by providing a useful insight into the biological properties of these viruses and will most likely be

determinant in the discovery of new RV-C inhibitors.

3.3.2. Recent Re-Emergence of EV-D68 and Other Respiratory EVs

EV-D68 is a member of the small EV-D species and was first isolated in 1962 in California,

USA, in respiratory samples of four children with respiratory disease [154]. Due to its biological

properties, such as the typical acid lability of RV and an optimal growth temperature of 33 ˝C, EV-D68

is of particular interest because it shares characteristics of both RV and EV [103,155]. Isolated from

respiratory samples, some strains of EV-D68 were independently classified initially in the RV genus as

RV87. However, following genetic and antigenic studies, it was determined that they were similar to

EV-D68 strains and all RV87 strains have now been reclassified as EV-D68 type [103]. Rarely observed

until the late 2000s, a few clusters of EV-D68 cases were progressively reported in different parts of the

world during the last decade and associated with mild to severe respiratory illness [156–159]. During

autumn 2014, the USA experienced the largest outbreak of EV-D68 with an unprecedented level of

circulation nationwide, especially in the pediatric population. A total of 1153 individuals in 49 states

and the District of Columbia tested positive for this virus, mostly children, many with a previous

history of wheezing or asthma [160].

This rapid increase in reported cases over the last few years was first believed to be caused by

the improvement of detection techniques and to the previous misidentification of EV-D68 as a RV

leading to an underestimated prevalence. However, retrospective tests confirmed this real increase in

prevalence [158,161]. Phylogenetic analysis of recently detected EV-D68 strains revealed an increased

diversity in VP1 sequences. These strains cluster in three different genetic lineages, which are clearly

distinguishable from the prototype strains [158,161]. Some amino acids changes (mostly substitutions

but also one deletion) in the capsid encoding genes, predominantly in VP1, define these different

lineages. The regions involved are located in the putative immunogenic BC and DE loops. This finding

is consistent with the demonstration of Imamura et al. [48] that these emergent strains have highly

different antigenic properties, which could have impacted greatly on the transmission dynamics of

the virus and may explain the epidemiological change. Other surprising genetic variations that are

described consist in the presence of deletions in the 31end of the 51UTR, which is usually considered to

be the most conserved region among EVs [48]. These deletions occur in a spacer region, between the

IRES and the ORF of VP4. As the function of this spacer region is unclear, it is difficult to assess if these

variations confer an advantage for these emergent strains, and if these mutations can be considered as

potential genetic markers of virulence.

Concurrently with its respiratory tropism, EV-D68 infections have been increasingly associated

with neurologic disease [13,162,163], including cases of acute flaccid myelitis, thus suggesting a link
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between EV-D68 and this type of complications [164–166]. In one case, EV-D68 neurotropism was

confirmed by detection of the virus in the cerebrospinal fluid and brain at autopsy of a 5-year-old boy

with fulminant encephalitis [162]. EV-D68 was also detected in a blood sample of a child with acute

flaccid paralysis (AFP) [167]. However, although many epidemiological and clinical factors suggest

this association [167], the direct causality link between EV-D68 and neurological involvement has never

been strictly demonstrated as reports of association occurred in a period of high EV-D68 incidence and

could have been coincidental. Further investigations are thus still needed to prove this association.

The receptor binding molecules utilized by EV-D68 were found to be sialic acids (SA), similar to

many other viruses, with a higher affinity for α-2-6-linked SA than α-2-3-linked SA [48]. These

sialylated glycans are extensively expressed on the outer cell membranes of the human airway

tract [168]. Two other EVs were found to have an affinity for sialic acids, EV-D70 (a close relative

of EV-D68) [169] and the coxsackievirus A24 variant (CVA24v, member of EV-C) [46,170,171]. These

viruses are causative agents of acute hemorrhagic conjunctivitis, but can also cause symptoms in the

upper respiratory tract and neurological impairment such as acute flaccid paralysis, and are considered

to have a pandemic potential [46]. Even if the pathogenesis of these three viruses varies significantly,

this common receptor shared by potentially highly contagious viruses suggests a common mechanism

that needs to be further investigated.

Other non-RV EVs from species C have been recently discovered and show a predominant

respiratory tropism (Figure 2). EV-C104 [6], EV-C105 [7,172], EV-C109 [8], EV-C117 [9], and

EV-C118 [10] have been discovered during the last six years and form a distinct clade within the

EV-C species. These viruses show a worldwide distribution [8,173–175] and cause diseases of varying

severity ranging from asymptomatic or mild respiratory infections to complicated diseases, such as

pneumonia [10,175,176]. Of note, there is also a report of EV-C105 detection in the rectal swab of a

fatal acute flaccid paralysis patient [7,172]. If confirmed, such observations would suggest that some

respiratory EVs from species C may infect the gut and reach the central nervous system. Rarity of

detection, combined with difficulties in propagating these viruses in culture, limits our ability to

investigate their biology and genetic diversity and their host cell receptors are not known at the present

time [8,9,176,177]. Another EV-C, coxsackievirus-A21 (CVA21) is associated with mild respiratory

illness [178]. Interestingly, it utilizes ICAM-1 as receptor, the same molecule used by the major receptor

group of RV [45,179] (Table 2). This virus revealed to be able to invade the central nervous system by

retrograde axonal transport and caused poliomyelitis in ICAM-1 transgenic mice [180] In humans,

CVA21 was detected in stool samples of patients with AFP [181].

Of note, EV-A71, which came up in the last decade as a major cause of Hand-Foot-Mouth-Disease

and viral encephalitis in the Asia-Pacific region [182,183], is also a common agent of respiratory disease.

Associated to pharyngitis, bronchiolitis, croup and pneumonia, EV-A71 infections mostly affect young

children [184–186]. In addition, cases of acute pulmonary edema have been associated to severe

EV-A71 encephalitis, but these are believed to result from the destruction of medullary vasomotor and

respiratory centers even if the exact pathogenesis is not completely understood [187].

In summary, emerging or re-emerging respiratory EVs have been highlighted in recent years and

their circulation should be closely monitored, particularly EV-D68 and EV from species C exhibiting

potential neurotropic features.

3.4. Optimal Growth Temperature of RV: A Possible Link with the Interferon Response

RVs are known to optimally grow at cooler temperatures than non-RV EVs [56]. Until recently,

this was assumed to partially explain their restricted tropism to the nasal cavity. The mechanism of

this growth pattern remains unknown, despite years of research. The viral replication machinery

was first believed to be involved. However, studies of cell entry, uncoating, or polymerase activity

could not find a virus-intrinsic reason for this temperature-dependence [188,189]. Foxman et al. [190]

investigated the possibility that this characteristic of RVs may depend on the capacity of defense of

the victim, instead of a weakness of the assailant. The cellular innate immune response repressing RV
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infection could be more effective at higher temperatures, thus inhibiting an efficient RV replication

and infection. By contrast, cells would be more vulnerable to RV infection at lower temperatures.

By using a mouse model system and a mouse-adapted variant of RV-1B (minor receptor group),

Foxman et al. [190] examined host-virus interactions and, more precisely, the IFN response to infection

at 33 ˝C compared to 37 ˝C in primary AECs. As expected, viral replication was less efficient at

non-permissive temperatures and an earlier plateau in viral titer was reached at this temperature.

The unexpected finding was that this earlier plateau could be correlated to an increased induction of

IFN (protein and mRNA), as well as IFN-stimulated genes (ISGs) at this temperature. Using AECs

from knockout mice lacking innate immune signaling molecules, it could be demonstrated that the

recognition pathway involved in this temperature-dependent IFN induction is the RLR receptor

pathway, and that the PAMP eliciting this response would probably be viral replication by recognition

of dsRNA (a replication intermediate). When investigating further the mechanism of this increased

induction of the IFN pathway, they observed that the levels of IFN secretion were higher at 37 ˝C than

at 33 ˝C at fixed concentrations of RLR ligands (by using the synthetic poly I:C ligand), thus revealing

an enhanced RLR function at a higher temperature. The direct function of RLR seems to be improved

also, as demonstrated by the better ability of receptors to catalyze ATP hydrolysis at 37 ˝C than 33 ˝C.

Finally, the authors compared the viral replication in AECs deficient in the RLR detection pathway and

infected at 37 ˝C to wild-type AECs infected at 33 ˝C. It was demonstrated that growth was almost

similar, proving a significant contribution of innate immunity to the temperature-dependent growth

of RVs.

By showing that the modification of temperature impacts the immune response to infection rather

than, or in addition to a virus-intrinsic property, Foxman et al. [190] answered a fundamental question

about RV pathogenesis. However, more generally, this opened the door to a new understanding of

innate immunity functioning. The idea that RV infection, particularly URTI, is linked to exposure to

cold air is a widespread and long-standing popular belief that has been extensively studied over the

last centuries without finding a direct pathophysiological effect. To some extent, the work of Foxman

et al. [190] is the first demonstration of how temperature can directly impact virus-host interaction and

weakens the innate immune response to infection. Testing other RV strains, but also other respiratory

viruses, could bring a better understanding of this function and perhaps allow a generalization of this

immune mechanism in the host antiviral response. A limitation of this study is the use of a mouse

model system and mouse-adapted virus and it would be interesting to confirm these results in a

human model, such as a three-dimensional human airway epithelia reconstituted in vitro [59].

4. Conclusions

RVs and respiratory EVs have been extensively studied during the past years and substantial

progress has been made towards a better understanding of their biology. The development of new

molecular tools has allowed the discovery of an entire species of RV, RV-C, which had remained

undetected due to its inability to grow in standard cell culture. Since then, viruses from this species

have been increasingly detected and their clinical importance is now undeniable. A significant advance

in the understanding of their specific biological properties was the recent identification of the RV-C

cellular receptor, which gives a useful insight into the early mechanism of infection of these viruses.

Many host cell receptors of respiratory EVs remain unknown, especially for non-RV EVs. These cell

receptors are believed to be important determinants of pathogenesis and cell tropism and it would

be of great relevance to identify these molecules. Finding RV-C cell receptor, in addition to other key

information on these viruses was made possible thanks to the development of new functional culture

systems, which allowed the growth and characterization of difficult to study respiratory pathogens.

In vitro reconstituted 3D human airway epithelial tissues or other types of differentiated epithelial cells

cultured under air-liquid interface conditions represent a useful tool to study RV infection and suggest

interesting prospects in improving our understanding of the biology of these viruses.
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Genetic analyses of variants found in clinical screenings have led to the discovery of many

novel RV and EV strains during the last few years. A great genetic diversity driven by mutations

and recombination characterizes EV and RV and leads to an impressive number of different types

and variable clinical presentations. Exploring the driving forces behind this evolution may help to

understand the evolutionary pattern of these viruses and to anticipate the emergence or re-emergence

of better-adapted strains. One of these reemerging strains that has been particularly highlighted during

the past year is EV-D68, which is believed to be a non-RV EV with an probable exclusive respiratory

tropism. Rarely detected until recently, this virus was able to cause an outbreak of respiratory disease

in the pediatric population in North America. In addition a possible role of EV-D68 infection in acute

flaccid myelitis cases has been suggested, albeit not proven. This is a concrete example of how a

more detailed understanding of EV genetic determinants would help to appreciate the impact on viral

properties of the emergence of new mutations and lineages within a particular subtype.

Further studies are needed to improve our understanding of the pathogenesis of these highly

prevalent viruses. This is particularly essential in the light of their significance for public health and the

considerable associated clinical morbidity. Direct and indirect costs resulting from RV and non-RV EV

infections place a heavy financial burden on healthcare systems worldwide. Total costs associated with

RV infection in the USA were estimated at approximately US$40 billion per year, which is greater than

many other conditions, such as hypertension, asthma, or chronic obstructive pulmonary disease [2].

Numerous EV inhibitors have been shown to be promising, but these are currently still under study

and are not yet commercialized. All strategies regarding the development of vaccines against non-RV

EV (except poliovirus) and RV have failed so far, primarily because of the lack of cross-protection

between the different subtypes. Improving our knowledge of RV evolution and diversity is crucial to

have a reasonable hope of success in finding new antiviral targets.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4915/8/1/16/s1,
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sites of respiratory EVs as listed in Figure 2.
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