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p meson light-cone distribution amplitudes of leading twist reexamined
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We give a complete reanalysis of the leading twist quark-antiquark light-cone distribution amplitudes of
longitudinal and transverse mesons. We derive Wandzura-Wilczek-type relations between different distribu-
tions and update the coefficients in their conformal expansion using QCD sum rules, including next-to-leading
order radiative corrections. We find that the distribution amplitudes of quarks inside longitudinally and trans-
versely polarizedp mesons have a similar shape, which is in contradiction to previous analyses.
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I. INTRODUCTION distributions for the description of diffractive leptoproduc-
tion of vector mesons at the DES¥ collider HERA[7] and
The theoretical interest in leading twist light-cone distri- light-cone QCD sum rules for exclusive semileptonic
bution amplitudes of hadrons is due to their role in the QCDB— pev and radiativeB— py weak decay$8]. The neces-
description of hard exclusive procesgés. In terms of the  sity of such an update is due to the following.
Bethe-Salpeter wave functions these distributions are defined First, the old calculations if4,6] have used a very low
by keeping track of the momentum fractigrand integrating  normalization scalg.’~0.5 Ge\? and a small value of the

out the dependence on the transverse momektum QCD coupling. Radiative corrections to the sum rules have
been neglected. With the larger valuesagfaccepted nowa-
X) ~ d2k, b(x.K, ). 1.1 days, the inclusion of th®(«y) corrections to th_e sum rules

¢ jkf<u2 Lok, @9 is mandatory. The corresponding calculation is a new theo-

retical result of this paper.
They describe probability amplitudes to find the hadron in a Second, there is a controversy about the sign of the con-
state with minimum number of Fock constituents and attribution of four-fermion operators to the sum rule for the
small transverse separatidwhich provides an ultraviolet transverse vector meson as given by [6Z3], and later cal-
(UV) cutoff]. The dependence on the UV cutdfitalg x is  culations[9]. This sign difference had apparently remained
given by Brodsky-Lepage evolution equations and can beinnoticed, and has dramatic consequences for the shape of
calculated in perturbative QCD, while the distribution ampli- the distribution.
tudes at a certain low scale provide the necessary non- Third, earlier studies did not give a complete basis of
perturbative input for a rigorous QCD treatment of exclusiveleading twist distributions. As first noted i8], to leading
reactions with large momentum transfex. twist accuracy there exist two more distributions for trans-

Their investigation has been the subject of numerous studrersely polarized mesons, which can be calculated in terms
ies. Chernyak and ZhitnitskyCZ) have developed an ap- of longitudinal quark spin distributions. We present a de-
proach to study the moments of light-cone distributions ustailed derivation of the corresponding relations, the status of
ing QCD sum rule$3]. Their main conclusion wag,5] that  which is identical to that of the Wandzura-Wilczek relations
the pion and nucleon distribution amplitudes deviate strongly10] between the polarized nucleon structure functions
from the asymptotic distributions at large scales, which is ay;(x,Q?) andg,(x,Q?). Although it is predominantly lon-
result still under debate. Another resiit,6] was that the gitudinally polarizedp mesons that are produced in high-
distribution amplitudes of longitudinally and transversely po-energetic electromagnetic processes, there is growing experi-
larized p mesons deviate from their asymptotic distributionsmental interest also in transversely polarized, e.g., at
in opposite directions: the longitudinal distribution is wider, HERA [11]. Assuming vector meson dominance, these dis-
while the transverse one is narrower. In the further discustributions can be relevant for large-distance corrections to the
sion, the pion and nucleon distributions received most attenvirtual Compton scattering cross sectighN— yN, measur-
tion. able at the continuous Electron Beam Accelerator Facility
The present paper is devoted to the reevaluation ofe-  (CEBAF) and ELFE.

son distributions along the lines of the approach of CZ and is Our presentation is organized as follows. In Sec. Il we
mainly fueled by newly emerged applications of light-conecollect relevant definitions and give basic formulas for the

expansion of the distribution amplitudes in contributions of

conformal operators, which diagonalize the mixing matrix

"On leave of absence from St. Petersburg Nuclear Physics InstiBrodsky-Lepage kernelso leading logarithmic accuracy.

tute, 188350 Gatchina, Russia. Section Il is devoted to the analysis of QCD sum rules for
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the distributions in the transversely polarizedieson, while  for all four distributionsf = ¢, , ¢;,9" ,g/® . The functions
Sec. IV contains the sum rules for the longitudinally polar-¢, (u,.) and¢(u,x) give the leading twist distributions in
ized p meson. Section V contains a summary and some corthe fraction of total momentum carried by the quark in trans-
cluding remarks. We also include two appendices containingersely and longitudinally polarized mesons, respectively.

the discussion of more technical issues. The functionsgi”)(u'lu) and g(j‘)(u,,u) are to a large extent
analogous to the spin structure functigg(x,Q?) in polar-
Il. THE p MESON DISTRIBUTION AMPLITUDES ized lepton-nucleon scattering. Similarly to the latter, they

receive contributions of both leading twist two and nonlead-

ing twist three, and the twist-two contributions are related to
We define the light-cone distributions as matrix elementshe longitudinal distributionp(u,«) by Wandzura-Wilczek-

of quark-antiquark nonlocal gauge invariant operators af10] type relations:

lightlike separationd3]. For definiteness we consider the

p* meson distributions; the difference p8 andw is just a _ 1

trivial isospin factor in the overall normalization. The com- g{*»™St™o(y, 4)= >

plete set of distributions to leading twist accuracy involves

four wave functiong8]J:!

(0[u(0)a,,,d(x)[p* (p.N))y=i(elMp,—eMp,)fr () gl sty ) =2

A. Definitions

J’“dv ¢H(v_,,U«) N fldv éy(v,pm)
0 v u v

LTfud” d)(v,m) +ufldv d(v,p)
0 v u v

1 )
x [ du e, (. 24
0 Here and below=1-v, etc. Equation2.4) is derived in
(2.1)  Appendix A and presents one of our main results.
The remaining twist-three contributions ¥, g{® can

(0[u(0) y,d(x)[p"(p.\)) be written in terms of three-particle quark-antiquark-gluon
My 1 wave functions of transversely polarized vector mesons, cf.
=p, fpmpf du e*iupxd,”(u”u) [3,12], and will not be considered in this paper. From now on
px 0 we will drop the superscript “twist two,” which is always
ey 1 implied.
+leM—p )f m f du e P (u, 1), For some applications it is more convenient to rewrite Eq.
roOTE px )PP o (2.2) as
(2.2 _
(0[u(0)y,d(X)[p™(p,\))
e d + — 1 (N)vpp of 1 f
<0|u(0)’)/,u,75 (X)|p (pr)\)>_ - Zep,vpa'e p X pmp :pM(E(A)X)mepfO dU e_IUpXCI)”(U,/.L)
! —iupx~(a) 1
X fo du € °h) (U,,LL), +efu)\)fpmpfo du e—iupxg(lv)(u”u), (25)
2.3

introducing a new distribution function
where the gauge factors

1 u  @y(v,p) 1o d(v.pm)
1 _* [\V. &) [\V. K
Pexr{igfo da X’MA#(Q’X) (I)H(U,/.L)— 2 ﬁo dv —U_ Ufu dv —l) . (26)
are understood in between the quark fields. Equation(2.6) follows directly from Eqs.(2.4) and (2.5 by
In the above definitiong,, ande™ are the momentum Ntegration by parts.
and the polarization vector of themeson, respectively. The
integration variablel corresponds to the momentum fraction B. Conformal expansion and renormalization
c?rrled by the quark. The normalization constafifsand The separation between the quark and the antiquark in
fp (to be detailed latgrare chosen in such a way that Egs. (2.1)—(2.3) is assumed to be lightlike, i.ex?=0. Ex-
L tracting the leading behavior of the matrix elements on the
f du f(u)=1 light cone one encounters UV divergences, whose regular-
0 ization yields a nontrivial scale dependence, which can be

described by renormalization group meth¢@sl]. The con-
formal invariance of QCD at tree level implies that operators
To be precise, one more twist-two contribution exists to the maWwith different conformal spin do not mix with each other to
trix element in Eq.(2.1). This additional term is proportional to leading logarithmic accuracy. For the leading twist distribu-
mi and will be omitted in what follows. V.B. would like to thank X. tions ¢, (u,u) and ¢;(u,u) it follows that the coefficients
Ji for a discussion on this point. a, of their expansion in Gegenbauer polynomi&@&4(x)
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[13] (that is in contributions of operators with definite con- f,«=(195=7) MeV, f,0=(216+5) MeV.
formal spin are renormalized multiplicatively to that accu- (2.10
racy:
For other quantities, most of the existing information comes
1+ an(,u)Cﬁlz(Zu—l) , from QCD sum rules. In what follows we summarize and
n=24.... update these calculations, taking into account radiative cor-
rections and resolving some discrepancies in earlier studies.

(U, u)=6u(l—u)

a,s(’u) (Y(ny= v(0))!(2B0)
an(/-’*):an(:uo)( aq )) (2.7
stMo Ill. TRANSVERSELY POLARIZED p MESONS
with Bo=11—(2/3)n;. The one-loop anomalous dimensions A. The tensor coupling
are[14] The normalization of the leading twist quark-antiquark
8 nt1 distribution in the transversely polarizgd meson is deter-
I —Z| 11— ; mined by the tensor couplinfy, , defined by
"o 3(1 n+D(n+2) ' 1”)' — ¥ oo
(Ofua,dlp™(pA)=i(elp,—eMp,f,, (3.1
8 n+1
ﬁn)zg 1+4122 1/j ) (2.8)  which can be estimated by studying the correlation function

of two tensor currents within the framework of QCD sum

rules[19]. We refer the reader to the review0,3], for a

detailed explanation of the method; the latter reference deals
h f | . f the distribution®) @ i specifically with the determination of distribution functions.

The con ormal expansion of the distri _utlogfe” 917 1S A somewhat troublesome point in studyirig is that the

more complicated and was derivedBy using the approach tensor current also couples to the positive parity

of Refs.[15,16. We do not repeat the result in this paper, ;pc_ 1"~ stateb,(1235)[18];

since to leading twist accuracy these distributions are no‘g ! '

independent functions, but can be expressed in terms of . N  wB ) gl

(ﬁ“(u,,u) We find <0|ua-,uvd|b1 (p’)\)>: I ep,vea pﬁfbl' (32)

Note that ﬁo);&o, o) thatfﬁ in Eq. (2.1 depends on the
renormalization scalésee Sec. Il

The correlation function of two tensor currents thus contains

@y, u)=6uU(l—u
g (up) ( ) two Lorentz structures:

1+%a&(m62’2(§)+-~

3 3 -
01" (U, p) = 7 (L+ &)+ Toap(u) (166682~ 1)+ - -, m,,=i f d4y (0| T[u(y) o, x¢d(y)d(0) o, xu(0) ] 0)

1
=;[(qX)(q,LXﬁqyxﬂ)—(QX)ng]H’(qz)

L 2
1+ zaa(u)(156° -1+ - -

3
(U p)=Zu(L-u)é

(2.9 1 )
: + —2[(9x)(0,%,+0,X,) = (AX)°g .,
Here and below we use the notatiés 2u—1 as shorthand. a
The leading contributions in Eq2.9) agree with the “as- —qzx#x,,]l'ﬁ(qz). 3.3

ymptotic distributions” that were derived in Rdf12] by a

different method, but erroneously identified as being of twist )

three? We also would like to mention that the twist-three 10 compactify the Lorentz structure we have contracted the
contribution to theg, distributions is not power suppressed correlation fu+nction in two indices_by the lightlike vector
as compared to the twist-two part, but not likely to be nu-Xu [3]- Thell*(q”) were calculated ifi9] and correspond to

merically large. intermediate states with positiveiegative parity, respec-
tively:
C. Nonperturbative input
1 .. . - 2 1 2 _q2 aS _q2 7

The decay constanfs,, f; and the coefficienta, in the I (g9)=- Fq In—| 1+ 3, In——+ 3
Gegenbauer expansid8.7) are intrinsic hadronic quantities ™ K AN
and must be determined either experimentally or by nonper- 1 [as _,\ 167 4
turbative methods. In particular, the decay constgnts —quz ;G +9—qA<\/?qu1> §i1 ,

measured17,1§:
(3.9

2lt is worthwhile to note that these leading terms correspond to the
sum of contributions of leading and next-to-leading conformal spin,
see[8]. 3B(1235) in the old classification.
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where we used vacuum saturation for the contributions of[]~(g?)+1I1*(g? ) 1 -9 —q?

four-fermion operators. 7 Ezln_z_ 1+ 3 In ﬁ—+ 3
The correlation functiodl(g?) can be used to extract H H

the value offi, see, e.g.[9]. Note, however, that it has a 1 [as_,\ 1287 —

higher dimension than the correlation function of vector cur- 1298\ 7w + 81q° (Vasqa)?.

rents[19], since in the latter case current conservation allows

us to include one power af? in the Lorentz structure. The 3.9

higher dimension significantly reduces the accuracy of thechernyak and Zhitnitsky speculatgg] that the approxima-
sum rule, as it increases its sensitivity to higher resonancegon of local duality for the continuum contributions may be
and the continuum. In addition, the sign of the four-quarksatisfied with better accuracy in sum rules with summation
contribution is reversed, which makes it impossible to get aver different parity contributions, and noted that an addi-
stable sum rule for the meson mass in this case, $6¢ To  tional advantage of using E¢3.5) is that contributions of
overcome this difficulty, Chernyak and Zhitnitsky suggestedparticular four-fermion operators that are suspected to violate
to sum contributions of opposite parities. Since one has tyacuum saturation cancel identically in this case. The price
assume to pay is that the sum rule contains an additional contribution

of theb,(1235 meson; since its mass, however, is very close

to the continuum threshold in themeson channel, one may

Im*0)+I1-(0)=0 expect that this contamination has a minor effect.
One can thus write down several different sum rules for

fﬁ, each of which has its own advantages and disadvan-
to avoid an unphysical singularity g€=0 in Eq.(3.3), itis  tages; their agreement indicates consistency of the approach.
legitimate to write a dispersion relation for the structure  Using Eq.(3.5) one obtains

e L)) + e (1 2w = [ Tasers 142 5| §m ~ )— ﬁ<%ez> gV
(3.6
On the other hand, starting from the correlation functibhs(g?), one gets
mze*m’M (f)2(u =—f O0sdse M’ ; gl S +2—14<$Gz>+%<\/;s®>2, (3.7
m2 e~ Mo, (£4 )2() = %fosglsdses’“"z 1428 ; zl > )+ 2i4<%G2> 881?\;'TZ<\/_qq> (3.9

where sf=1.5 Ge\? [19] and 531:2.3 Ge\? [9] are the rangeu®=(1-2) GeV does not have any noticeable ef-
continuum thresholds in the andb, channels, respectively. fect, provided the extracted couplings are related by renor-
The continuum threshols}, for the “mixed parity” sum rule  malization group scalin§:

(3.6) is discussed belowM? is the Borel parameter. Note

that the sign of the contribution of four-fermion operators in ag(1l GeV) |42
Eq. (3.6) is opposite to the result given i6,3]. We have fH(1GeV)=|———| f+(w).
recalculated this contribution and confirm the sign as ob- as(i)
tained in[9].
In the numerical analysis we use(u=1 GeV)=0.56, We start with the “pure parity” sum rules in Eq$3.7)

and (3.8). The values of the couplings extracted from these
sum rules are shown in Figs(d and Xb) as functions of the
Borel parameter for several choices of the continuum thresh-
olds. Requiring best stability in the “working window” of
the Borel parameter4M?<1.5 Ge\?, we find

A(S) 0.4 GeV, corresponding to the world average

as(mz) 0.119[18]. For the condensates we take the stan
dard valueg19]

<a—st>=(0.012t0.006 GeV?,
m f,=(160+10) MeV, s§{=1.5GeV, (3.10

(JVaqq)?=0.56 —0.25 GeV®. (3.9
“In this paper we stay consistently with®( a) accuracy and do
The sum rules and the couplings are evaluated atot attempt a renormalization group improvement of sum riges,
pn=1GeV. We have checked that changing the scale in the.g.,[21]).
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FIG. 1. (8 f,(1 GeV) from Eq. 3.7) as a function of the Borel FIG. 2. (ag f, (1 GeV) from Eq( 3.6) as a function of the Borel
parametemM? for different values of the continuum threshag. parametemM < for different values of the continuum threshaigl.
(b) The same forf: (1 GeV) from Eq.( 3.9). fﬁl(l GeV) is put to 180 MeV(b) The same with thé, contribu-

! tion put to the continuum, i.ef; =0.
L b1
fbl 180 MeV, s,=2.7 GeV. (3.13 Note that the sum rule now “wants” a much lower value of

Sp. It is instructive to observe that the accuracy is now
Note thatsf coincides with the value quoted [19], while  worse, since the sum rule remains stable for a rather large
for b, we get a somewhat larger value than obtained in Refinterval ofs,. This is natural because, in this case, we do not
[9]. This difference, however, affects the coupling only veryincorporate additional information about thg meson con-
slightly: with 381=2.3 GeV? we getfil=170 MeV with a  tribution.

somewhat worse stability. Note also that it is difficult to O Summarize, we find that the positive parity meson
specify more precisely the value of the continuum thresholdontributes significantly to the “mixed parity” sum rule, but
sg: the stability of the sum rule does not change much with't. is not possible to separgte this contr'|put|0n from the con-
s8 in the interval(1.3—1.5 GeV2 (although the value Ofﬁ tinuum. In effect, the admixture of positive parity states can

C . . . be described by lowering the duality interval for {heneson
does, which is precisely the disadvantage of having a su . S
rule of high dimension. Mo 1 GeV. Our final result for the meson tensor coupling is

Turning to the “mixed parity” sum rule(3.6), we first fL=(160=10) MeV. (3.14
note that the contribution df, is numerically suppressed by P
the exponential factor eg(lrﬁl—nﬁ)/Mz], so that a modest This value is lower by about 20% than CZ’s resi8{ and
accuracy infy is sufficient. Using the value if3.1) as ~ agrees surprisingly well with an old %6) symmetry rela-

. - - tion, f-=(f, +f )/2~0.17 GeV[22].

input and requiring best stability of the sum ru@.6) by Cp AT TP . .
varyingM2 and the continuum thresholdee Fig. 2a)], we | As discussed |r|i6_,3], an alternatlye methqd to determine
get f, could be to consider the correlation function of the tensor

with the vector current, which is not contaminated by posi-
fL=(163£5) MeV, s,=2.1 Ge\t. (312 Uve parity states:

The higher value of, (compared tcsf}) is expected, since J d*y€9¥(0|T[u(y)y,d(y)d(0)o,zu(0)]|0)

the part of the continuum contribution coming froog is

:zalr:?;rgo account explicitly on the left-hand side of the sum :[gwqﬁ_gﬁﬂqa]x(qﬁ_ (3.15
On the other hand, since the state is rather wide and its The correlation function was calculated[28,12 and read$

mass is very close to the continuum threshold in the pure s

17~ channel, it is natural to expect that an equally good fit to o 2(qq)

the sum rule can be obtained by ignoring this contribution on x(a%)= q°

the left-hand side of Eq(3.6) and fitting the value of the

2

2«
Hl— S(ZInM—ZJrl
37 q

continuum threshold to include it effectively. Remarkably, in 4 13 +Oi+ . 31
this case we find a very similar value for thecoupling, see 39° q* : (3.19
Fig. 2(b):
ft =(160x15 MeV, s35=(1.0x0.2 Ge\2. 5The radiative correction to the quark condensate contribution is a

(3.13 new result.
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which in general correspond to correlation functions of the

0.22 _\II\\I|I}II|\II\|\!II|}!II|\\II|I!II_ . .
. ] tensor current with the conformal operators:
0.21 F ] . .
S r 7 ) — D-D
8 o.2fF = QI =i"0)" Uy, C =5 )d(y) ,
e C ] .
ha - m
0.19 B B where the dots stand for the projection on the lightlike vector
0. 18 E i i X, , andd is the total derivative. Note that one of the indices
’ 0.60.8 1 1.21.41.61.8 2 of the o matrix is projected onta,, , while the other one has
M? [GeV]? to be taken transverse to thg,{) plane, whergy is thep
meson momentum, s¢&6] for more details.
FIG. 3. f£(1 GeV) from Eq.(3.17) as function of the Borel As a general property of conformal operat¢@t] the
parametenvlf for sp=1.5 Ge\~. tree-level perturbative contribution to the corresponding cor-

relation function vanishe¢for n#0) and the perturbative

Herem?=(qgoGq)/(qq). Note that the perturbative contri- contribution to the corresponding sum rule starts with

bution vanishes to all orders and that the dimension-seveR(@s). As a result, these sum rules are necessarily less
operatorqG2q has zero coefficient at tree levi23]. The  Stable than the sum rules for moments, and their accuracy is
corresponding sum rule readsf [6,3,23.): seemingly worse. The better accuracy of the sum rules for

moments is, however, completely illusory since in this case
4a M2 1 the major contribution comes from the trivial first term in Eq.
1+ — _S( In— — yg— = (3.18), corresponding to the asymptotic distribution function,
3 m 2 and the contribution of interest is numerically suppressed.
2 22 Since we should not expect good stability for the sum rule
_ de_s s/Mz) _ 1 @Jr <gSG_ ) for a,, we evaluate this sum rule using precisely the same
so S 3 M? M4 values of the continuum threshold and the same “window”
(3.17 of the Borel parameter as in the sum rules fgr. The in-
stability of the sum rule then gives an estimate of the accu-
racy of the result.
It is important to note that the necessity to separate the

2 J—
e "Mt (w)f,=—2(qq)

and yieldsf;~200 MeV as illustrated in Fig. 3. Here we

usze f,=205MeV, (qa)(1GeV)=(-0.25 GeVy, and ._contribution of leading twist does not allow for the separa-
m0=O.65_ GeV at the scale 1 G?.V' The accuracy of this tion of contributions of opposite parity in the diagonal sum
sum rulfe |s,_however, not competitive to the_ones above: thjeg. Indeed, one may try to start from a correlation function
uncertainty in the quark condensate alone gives a 10% errofi.a the one in Eq(3.3) with two open Lorentz indicefand

in addition, the study i23] indicates possible large contri- ..t the substitution of one of the tensor currents by

butions of excited states to this sum rule, e.g., from,T(n) - - ; o
J ; L ' Q I h
p’ (1600). Its significance is, however, that it allows a deter-,_ * (Y)]’ and try to isolate ty eTTSg_anve fgrltyﬁg]?tn?unon
N o n . by taking the projectiong*g”Il V= (gx)""“II (99).

mination of the relativesign of f, andf,, which proves to L -
be positive Hovyever, .the same p(OJectlon for 'Fhe de_ﬂmng equati) .

' vanishes identically since, to leading twist accuracy, contri-
butions of ordelqz=m§ must be put to zero. Thus, this pro-

B. Deviations from the asymptotic form jection is in fact saturated by higher twist contributions and

The deviation of the distribution function from its asymp- iS irrelevant for our analysis. Therefore, one cannot get rid of
totic form ¢, (u) ~u(1—u) is quantified by the coefficients the con_tr|but|on of states with positive parity and it is more
a, in the expansior(2.7). Since the corresponding anoma- convenient to consider the correlation functidre,3):
lous dimensions are ordered with one can expect that, at
least for large scaleg, only a few first terms are important. f 4, Hay — E AT () o tE
The QCD sum rule approach can be used to estiragte | dlye(O[TLu(y) o, x*d(y)d(0)o*x
The traditional procedure developed by Chernyak and Zhit-
nitsky is to write down the sum rule for the second moment S in _ N4 277 T(N) (2

X (iD - =- . 3.
of the wave function, which is related &, by simple alge- (iD-X)"u(0)]10) 2(q)7 (@), (319
bra:

1 1 2
fo du(2u—1)2¢, (u,pu)= 5t 3—55%(#)- (3.18 81t has become common practice to choose different values of the
continuum threshold in the sum rules for different moments. To our

. . . . point of view, the higher fitted values & for higher moments
The corresponding sum rule is obtained from the correlatlorp]=2,4, ... generally reflect the increase of the overall mass scale

function of the tensor current with the similar operator with in the correlation function, due to the increasing contribution of

two extra covariant derivativas(y) oﬂgxg(ili x)2d(y). We  higher resonances. This rise has nothing to do with the change of
find it more appropriate to consider the sum rules directly forthe interval of duality for thep meson contribution of interest,
the coefficients in the expansion in Gegenbauer polynomialsyhich is in fact more likely tadecrease
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a low value for the continuum thresholl=1 GeV?, on the

0.5 ! . . :

LR LA R R L R right-hand side. From this we get as our final result
0.4 —

= = ay(u=1GeV)=0.2+0.1. (3.22
0.3 £ —

B = = This has to be compared with, (u=1 GeV)=—0.17 from
0.2 & = [6,3]; the difference in sign is mainly due to the opposite
0.1 E — sign in the contribution of the four-fermion operators in

- - [6,3].
o1 ' 60 ' 5 'i' ’ ‘1'{‘2’ 'l'{'4' 4 ' 61 l ) We have investigated whether adding thecontribution
M? [GeV]? as a free parameter and requiring best stability in the range

1<M?<1.5 GeV? could change the result. We have also

FIG. 4. a (1 GeV) from Eq.( 3.20 as a function of the Borel ried to .follow_ the standard proced_ure to use.the sum rule
3¢ ) 4320 (3.21) with s fitted to get best stability. In both fits the value

of a; tends to increase by some 30-50%, but we do not find

It is easy to check that the trace over Lorentz indices pickdhis evidence significant enough to influence our estimate.

up the required transverse components. To avoid an admixture of positive parity states, one can

The complete results for the sum rules for the coefficientEonsider, instead of Eq3.19), the correlation function

in the Gegenbauer expansion for arbitraryare given in o

Append'ix B. No'te thgt in this2 casze the mass scale in the d4yeiqy<0|T[u_(y)y#d(y)d(O)aaﬁxB

correlation functions rises agl“~n< for n large as com-

pared with the increas >~ n for the moments. This makes LS _ _ N (N)f 2

the sum rule approach essentially useless for the evaluation X(iD-x) u(O)]|O>—[gaM(qx) Xu0al(9X)"X(0%).

of a,, with n> 2. For_the particular case=2 we get, using (3.23

the correlation functior{3.19:

parameteM? for s,=1 GeV?.

The results fory(™(g?) are available fronj25]. The corre-
- 18 sponding sum rule foa; reads
e m/M (ft)z(,u,)7aé(,u,)+ b, meson

22 14
e "ML ()t e (u)=— 5 (aa)| 1+ 75—

L oag() oo el
= —_— —pQ 20 —
27° o MT1-e ]5

+ const fxdses”\"z)
1 /a 644 . s
+ 25| —=G?) + g (Va2 (3.20 %0
3AM N\ 7 IM 5 —
_ mO ﬁ <gsG >
This sum rule is equivalent to that for the second moment M2 216 M*
considered ir{6,3]:

. (3.29

where we used vacuum saturation for the contribution of
- 1 dimension seven. The constant in the radiative correction to
e M/M (f;)z(,u)f du(2u—1)?¢, (u,u)+ b; meson the quark condensate contribution is not calculated yet. Un-
0 fortunately, due to the large coefficient in front of the con-
1 s 59 s tribution of the mixed condensate, its contribution almost
= f(ste*S"\’|2 1+ 2 2 4 2iny
2072 Jo |15 u?

identically cancels the leading quark condensate contribu-
tion, and the answer depends crucially on the contribution of

1 Ja 641 dimension seven, which is poorly knoviat is suspected that
+ _2<_st> + _4<\/;S®>2, (3.21) vacuum saturation is strongly violated in this casthus,
36M*\ ™ 81IM from this sum rule one can only get a rough estimate

. . |az|<0.5.
provided one takes the same value of the continuum thresh-

old as in the sum rule for the tensor couplif®6). Note that
the sign of the contribution of the four-quark condensate is
opposite to the result 46,3].” Since the decay constahf is measured experimentally
The value ofa, that follows from the sum rul¢3.20 is  [we use the average valdg=(205+10) MeV in the nu-
plotted as a function of the Borel parameter in Fig. 4. Notemerical analysik we only need an estimate of the coefficient
that we do not have an independent estimate for the contr'ag describing the deviation of the distributiopy from its
bution of theb; meson in this case; so we neglect it and takeasymptotic form. The corresponding QCD sum rule calcula-
tion has been done by Chernyak and Zhitnitsky in Ré&f.
We update this calculation by taking into account radiative
"We have recalculated this contribution and obtain the opposité () corrections and using an up-to-date value of the
sign for all moments, see Appendix B. For the case0 our result ~ strong coupling that is slightly larger than the value used in
agrees witH9]. Ref. [4]. The radiative corrections can be extracted from a

IV. LONGITUDINALLY POLARIZED p MESONS
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0-5 "“II|$|I\[IHI\\IH|HH|HII‘I\H: 2EIIII III!|\I|I|I||||I}\1E
= 0 1.75 =
0.4 = E 1.5 PR (a) =
0.3 = = 1.25 = < > =
=Lk E § 1/ Y\ 3
0.2 = = 0.75 & /,7 “\ 3
[— — E/ s \ i
0.1 = 0-5 &, A\E
- — 0.25
0 o b b b Lo b by 0 I A AN AN AN A A A
0.60.8 1 1.21.41.61.8 2 0.2 0.4 0.6 0.8 1
M?[GeV]? U
2 EI T 1T | T T 1T [ T } | I | T T TF | T TT lE
FIG. 5. al(l GeV) from Eg.(4.1) as a function of the Borel 1.75 & b =
parameteM? for s,=1.5 Ge\~. 1.5 = (b) =
1.25 & ~ ~ =
paper by Gorskii26], where he calculated the correlation & 1E s ‘\\\ 3
function of two axial vector currenisvith extra derivativel 0.75 & ,’ SN\ S
which in perturbation theory and for massless quarks coin- 0.5 E //,,’ ‘\\ =
cides with the vector correlation function. The complete re- 0.25 &
sults for arbitrary moments are given in Appendix B. For o 2 A A A
n=2 we get the sum rule 0.2 0‘4u0'6 0.8 1
-m /M2f2 (M)— ! _S(’U‘) M2[1—e %/M%] FIG. 6. Final results for the wave functiogs (a) and¢, (b) at
o

n=1GeV (solid lines. Long dashes, asymptotic wave functions;
short dashesp, according to CZ3].

1l |« 327 S
+W<—SG2>+W<@QQ>Z, .
m structure functions of the nucleog; (x,Q?) andg,(x,Q?).
4.1 We have given a detailed reanalysis of the QCD sum rules

for the first two moments of the distribution amplitudes,
which is equivalent to the sum rule for the second momengomplementing existing sum rules by the calculation of ra-

considered irf4]: diative corrections. Our final results for the distribution am-
1 plitudes of quarks in longitudinally polarized and trans-
e*m,f/szZf dU(ZU—1)2¢H(U,M) versely polarizegh mesons are shown in Figsi& and Gb),
?Jo respectively.
1 5 4 We deviate from the results $6,3] mainly in the shape
|1+ _s) Mz(l_e—so/MZ) of the distribution amplitude for the transversely polarized
201 37 p meson, see the short-dashed curve in Fig).6We find

that the distributions in longitudinally and transversely polar-
1 as_, 167 . . L .
+—(—=G?)+ _4<\/a—sqq>2_ (4.2 ized p mesons coincide, to our accuracy, whereagi] a
12M°\ o 81M significant difference has been claimed. This contradiction is
With the same input parameters as in Sec. lll, the numeric%ﬁrge.ly due to an qpposne sign of th.e contribution of four-
analysis yieldgsee Fig. 5 ermion qperator; in Fhe correspondlng sum rule. We note
that the sign as given ir6,3] also contradicts an independent
ab(u=1GeVv=0.18+0.10. (4.3  calculation in Ref.[9], which apparently remained unno-
ticed. One more consequence of this sign difference is that
ThIS is in perfect agreement with the original estimateour result for the tensor couplm@ is 20% lower than in
ab(u=1.1 GeV)=0.18[4]. It also coincides within the er- [6,3]. . . .
rors with our result fomy , Eq.(3.22, which means thatthe A discussion of the phenomenological consequences of

distribution amplitudesp; and ¢, are similar. our results goes beyond the scope of this paper. Since in hard
exclusive processes one typically deals with integrals over
V. SUMMARY AND CONCLUSIONS quark distributions of type
Extending earlier studief4,6,3, we have performed a 1 $(u,Q)
reanalysis op meson quark-antiquark light-cone distribution fpf dum =6f [1+axQ)+---],
0 —

amplitudes of leading twist. In general, their complete set
consists of several independent functions, but we have
shown that, to ouftwist-two) accuracy, two of the existing the change in shape of the transvepagistribution suggested
distributions in transversely polarized mesons can be re- by the results of this paper may increase the rate of the pro-
lated to the distribution with longitudinal polarization. The duction of transversely polarizgdmesons by a factor 2. The
theoretical status of these relations is identical to the status afonsequences for exclusive semileptonic and radidgivke-

the Wandzura-Wilczek relatiofilO] between the polarized cays will be considered in a separate publicafi®w].
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APPENDIX A: TRANSVERSE SPIN DISTRIBUTIONS 1
- . o P cvap o
The derivation of relations between longitudinal and tley fo udux,de[u
transverse quark spin distributions in the longitudinally po-
larized p meson is in principle straightforward and can be X (—ux)ygysd(ux)],

done similarly to the classical Wandzura-Wilczek analysis
for polarized leptoproductiofl0]. The major difference is
that one must include operators with total derivatives and (G0-x) 00 Tuui o — Jlduj“ duTT— ux)
that higher twist operators corresponding to total derivatives Yu?s twist three~ — s 0 Y
of lower twist operators cannot be neglected. _
It is convenient to consider the relevant nonlocal operator X[uG,,(vX)X"%
at symmetric quark-antiquark separations: — 66, (0X)X " y5]d(UX)

u(—x)y,d(x) , 1 _
+i e;‘lﬁjo udux,d,[u

1 - -
:; XM"'X””HU(O)DM'"Du,ﬂ’ud(o)- (A1) X (—ux)yzd(ux)], (A5)

Sincex?=0 the arising local operators are tracel@smntrac-  where G is the gluon field strength,
tions of the typeg,, ,, vanish by the equations of motipout G =(1/2)e,,,,G, anda, is the derivative over the total
not fully symmetric in Lorentz indices because of the distin-translation:

guished indexu. Therefore, they contain a mixture of con-
tributions of twist two and twist three, which have to be
separated:

uvap

_ J
dLu(—ux)ygd(ux)]= W[“( —ux+y)ysd
U(=%)y,d(x)=[u(=x)y,d(X)] wist two
+ [U—(— X) ')’,ud(x)]twist three  (A2)

X (ux+y)]ly o (A6)

Note that Eqs(A4) and(A6) are exact operator relations.

The leading twist-two contribution by definition contains Taking the matrix element between the vacuum andgthe
contributions of symmetrized operators: meson state, we get

[U_(_ X) ')’Md(x)]twist two - 4
<0|[U( —X) '}’Md(x)] twisttwo|P (p,)\))

g XML, .o xHn 1 o -
= u0)y —D,. ---D 1 d —
n=0 Nl O] 7+1Pm oV =f dv —(Ou(—vx)%d(vX)|p*(p,\))
0 (9X,u
n <> <> -
+—>Db,D, ...D d(0). A3 1 d 1 :
n+1 #* # ""n—l’y""n] ( ) ( ) :f dv_(e()\)x)fpmpf dueflgvpxgﬁu(u)
0o X, 0

Fortunately, the sum can be reexpressed in terms of a non-

1 1 )

local operatof28], =eﬁ)fpmpfo dv fo due &P (u)
_ 1 [ 1 1 ,
[U(=X) ¥, d(X) Tiwist two= fo dv Eu(—vx)kd(vx), (Ad) —ipM(eWx)f,,mpf0 dvvj0 duge™'PXg(u)
which is easily verified by expanding. An identical expres- p (e(”x)f m ldue“‘f’“q& ()+| e®
sion is valid for the nonlocal operator with an additiong| “px)y P PJo I ©
in between the quarks. N

Using the equations of motion, the difference ex 1 L e
T(—)7,0() ~[U(~ %) 7,400 Jysstuwo CAN b written in T )fpmﬂjod“ o Ve, A

terms of operators containing total derivatives and quark-
antiquark-gluon operators, sef28]. Neglecting quark
masses, one finds whereé=2u—1 and to arrive at the last line we have used
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1 1 icopx Note that the contribution of the leading twist operator
f dqu duge™ "¢ (u) (O[Lu(—x) 7, ¥sd(X) Jwisttwd p " (P,))) vanishes identically
0 0 ALY . . .
in this case, and the answer is generated entirely by twist-
i ri 19 i i three operators, which are reduced to total derivatives.
= ox dvvf du£e_'§“px¢||(u): p_xf dugy(u) Combining Eqs(A12) and (A13) we get a simple recur-
0 0 0 rence relation
e—igpx_ fldve—igupx
0

X . (A8)

(N+1)Me=(n—1)M?_,+M! (A14)

Note that the matrix element of the twist-two operator pro-the solution of which yields the first relation in E@.4). The
duces both Lorentz structures, and hegé8(u,x) is non-  second one then follows from EGA13) after some algebra.
zero to this accuracy.

Specific for the kinematics in exclusive processes is the
generation of an additional twist-two contribution by twist- APPENDIX B: QCD SUM RULES
three operators proportional to the total derivative FOR ARBITRARY MOMENTS
doa— ~1P4, Which would vanish in deep inelastic scattering. |5 this appendix we collect some more definitions and
Taking the matrix element for the twist-three operator in thegive the sum rules for the Gegenbauer momentf the

first of Egs. (AS) and neglecting three-particle quark- |ongitydinal and transverse meson distribution amplitudes
antiquark-gluon distributions of twist thr¢&2] we get for arbitraryn.

— _ + We first relate the, to hadronic matrix elements of local
(OILu(=x)7,d(x) ] wistrved ™ (P 1) operators. To leading logarithmic accuracy, the relevant mul-

1 of o eMyx 1, tiplicatively renormalizable operators are:
=—5(px) eMp,, ox )fpmpfov dv
n
1 QV(y)= ¢, (ixa)"Tuly)x(ixD)id(y),
xf due P ). (A9) (¥) ;O 0. (iX3)"Tuy)x(ixD)d(y)
0

Since, on the other hand,

_ QI"(y)=3 ¢n(ixd)"u(y) o, x"(ixD)id(y),  (B1)
(O[u(=x)7,,d(x)|p* (p.N)) o

A
=pM¥meledUe_ifpx¢(u”“) WheI‘S X, js aélightl_ike vector,a,, = (i12)[ y,v,— 'y,,y’u],-
0 andD,=d,—d,—2igA;(y)\%2. Thec, are the coeffi-
eMy 1 cients of the Gegenbauer polynomials such that
+ eﬁj)—pﬂ—)fpmpf due g (u, u), C¥(x)=3c, X*. Expanding the defining relations fas,
px 0 Egs.(2.1)—(2.3), around the lightcone, one finds

(A10)

1
we obtain relations between!”(u,u), g®(u,u), and (0|QV(”)(0)|P>:(pX)nfpmp(eX)j duc¥2u
¢ (u,u) by comparing the Lorentz structures. At this stage it 0

is convenient to introduce the moments —1)¢y(u,p)
ml = ld n MO — ld n(0) B N 3(n+1)(n+2) H
=, ué"o(u,u), =, ug"g;”(u, i), =(px) fpmp(ex)wan ),
a ! n~(a) 1
M= [ o ) (LD (0[] ™(0)|o) = (px"if e, (9~ p,(ex)] | duciau
Expanding Eqs(A7), (A9), and (A10) in powers of pX), -1, (u,u)
we get .
=(px)"if;[e.(px)

o 10D e Lo (A12) 3(n+1)(n+2)

"2 a1 M2t pgMee - AAF TS
Similar manipulations with the axial vector operat@.3)
produce one more relation The QCD sum rule§l19] are obtained by matching the rep-

resentation in terms of hadronic states to the operator product
1 expansion in the Euclidean region for the correlation func-

_ a:_ v
M2 VS A1y B
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. i n Al
(qx)“”HV(”’(qz):If d*ye¥(0[TQY™(y)2™(0)), 2 ”"(k+1)(kk+3) (B6)
=2(gqx)" 21T (g?) .
In particular
:ij dlye®(ojTa,™ 5 59 353
Ab=1, A=z, A=, Aj=—ag,
Note that the contraction over in the second relation auto- I 1 I 1 I 1 I 83
matically projects onto the transverse componért™, =3 1273 "= Te=g1o

which is a conformal-invariant operator, where@g™ is
not. We find the following sum rules fax, (for evenn): For completeness and for comparison widh, we also give
the sum rules for the momentg") = [du&"¢(u, u):
3(n+ 1)(n+ 2)

—m2IM2,£1N2

2
(F2(E (we ™™
3 So 1 2 — qg
_ —S/IM __1\n
_—2772]0 dsfodu e uu(2u—1) |1+ 37

as 2
s — Lu
< >(n +3n-2) —W—+2In—2+lnu+lnu+ln2—
3 JZ u

1 agw)
27

1
M2[1—e %/M%] JO duuuCdq2u—1)

1
24M?

6

Inu+Inu+In?

8w .
+ ——2(Jaqq)2(n—1)(n+1)(n+2)(n+4). n-1 1 /[a;g 64 -
CHIY R B (PSR S P 2
(B4)
(B7)
The radiative corre(‘:ltion in EqB4) is a new result. Simi-
larly, we obtain foray,: 3
n P eme M= 1+ isAé)'\/lz(l
o 23(n+1)(n+2) 47°(n+1)(n+3) T
U i TP e T o 1
_e—So/M )+ 12M2 GZ
iz as(/-lv) 2[1_e_SO/M2]rH+% %Gz
A7s N 24M°\ = 167 .,

8 —
X (n+1)(n+2)+ grra(Vasqa)*(n+1)
Note the difference in sign in the last term of EB7) with

X (n+2)(n’+3n-7). (B5)  respect to Eq(4.29 in Ref.[3]2

In this case a compact answer for the radiative corrections as——

in Eq. (B4) is not available, but the!, are related to the  8after completion of this paper we learned that the results of
radiative corrections to the axial vector correlation functionGorskii, Ref.[26], were rederived if29] in a form that is more
(with extra derivativesand for arbitraryn can be expressed similar to our Eq.(B4). We thank A. V. Radyushkin for bringing
in terms of the coefficients, calculated in26]: this reference to our attention.
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