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r meson light-cone distribution amplitudes of leading twist reexamined
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We give a complete reanalysis of the leading twist quark-antiquark light-cone distribution amplitude
longitudinal and transverser mesons. We derive Wandzura-Wilczek-type relations between different distrib
tions and update the coefficients in their conformal expansion using QCD sum rules, including next-to-lea
order radiative corrections. We find that the distribution amplitudes of quarks inside longitudinally and tr
versely polarizedr mesons have a similar shape, which is in contradiction to previous analys
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I. INTRODUCTION

The theoretical interest in leading twist light-cone dis
bution amplitudes of hadrons is due to their role in the Q
description of hard exclusive processes@1#. In terms of the
Bethe-Salpeter wave functions these distributions are de
by keeping track of the momentum fractionx and integrating
out the dependence on the transverse momentumk' :

f~x!;E
k'
2

,m2
d2k'f~x,k'!. ~1.1!

They describe probability amplitudes to find the hadron
state with minimum number of Fock constituents and
small transverse separation@which provides an ultraviole
~UV! cutoff#. The dependence on the UV cutoff~scale! m is
given by Brodsky-Lepage evolution equations and can
calculated in perturbative QCD, while the distribution amp
tudes at a certain low scale provide the necessary
perturbative input for a rigorous QCD treatment of exclus
reactions with large momentum transfer@2#.

Their investigation has been the subject of numerous s
ies. Chernyak and Zhitnitsky~CZ! have developed an ap
proach to study the moments of light-cone distributions
ing QCD sum rules@3#. Their main conclusion was@4,5# that
the pion and nucleon distribution amplitudes deviate stron
from the asymptotic distributions at large scales, which
result still under debate. Another result@4,6# was that the
distribution amplitudes of longitudinally and transversely p
larizedr mesons deviate from their asymptotic distributio
in opposite directions: the longitudinal distribution is wid
while the transverse one is narrower. In the further disc
sion, the pion and nucleon distributions received most at
tion.

The present paper is devoted to the reevaluation ofr me-
son distributions along the lines of the approach of CZ an
mainly fueled by newly emerged applications of light-co

*On leave of absence from St. Petersburg Nuclear Physics
tute, 188350 Gatchina, Russia.
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distributions for the description of diffractive leptoproduc
tion of vector mesons at the DESYepcollider HERA@7# and
light-cone QCD sum rules for exclusive semilepton
B→ren and radiativeB→rg weak decays@8#. The neces-
sity of such an update is due to the following.

First, the old calculations in@4,6# have used a very low
normalization scalem2;0.5 GeV2 and a small value of the
QCD coupling. Radiative corrections to the sum rules ha
been neglected. With the larger values ofas accepted nowa-
days, the inclusion of theO(as) corrections to the sum rules
is mandatory. The corresponding calculation is a new the
retical result of this paper.

Second, there is a controversy about the sign of the c
tribution of four-fermion operators to the sum rule for th
transverse vector meson as given by CZ@6,3#, and later cal-
culations@9#. This sign difference had apparently remaine
unnoticed, and has dramatic consequences for the shap
the distribution.

Third, earlier studies did not give a complete basis
leading twist distributions. As first noted in@8#, to leading
twist accuracy there exist two more distributions for tran
versely polarized mesons, which can be calculated in ter
of longitudinal quark spin distributions. We present a d
tailed derivation of the corresponding relations, the status
which is identical to that of the Wandzura-Wilczek relation
@10# between the polarized nucleon structure functio
g1(x,Q

2) andg2(x,Q
2). Although it is predominantly lon-

gitudinally polarizedr mesons that are produced in high
energetic electromagnetic processes, there is growing exp
mental interest also in transversely polarizedr ’s, e.g., at
HERA @11#. Assuming vector meson dominance, these d
tributions can be relevant for large-distance corrections to
virtual Compton scattering cross sectiong*N→gN, measur-
able at the continuous Electron Beam Accelerator Facil
~CEBAF! and ELFE.

Our presentation is organized as follows. In Sec. II w
collect relevant definitions and give basic formulas for th
expansion of the distribution amplitudes in contributions
conformal operators, which diagonalize the mixing matr
~Brodsky-Lepage kernels! to leading logarithmic accuracy.
Section III is devoted to the analysis of QCD sum rules f
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54 2183r MESON LIGHT-CONE DISTRIBUTION AMPLITUDES . . .
the distributions in the transversely polarizedr meson, while
Sec. IV contains the sum rules for the longitudinally pola
izedr meson. Section V contains a summary and some c
cluding remarks. We also include two appendices contain
the discussion of more technical issues.

II. THE r MESON DISTRIBUTION AMPLITUDES

A. Definitions

We define the light-cone distributions as matrix eleme
of quark-antiquark nonlocal gauge invariant operators
lightlike separations@3#. For definiteness we consider th
r1 meson distributions; the difference tor0 andv is just a
trivial isospin factor in the overall normalization. The com
plete set of distributions to leading twist accuracy involv
four wave functions@8#:1

^0uū~0!smnd~x!ur1~p,l!&5 i ~em
~l!pn2en

~l!pm! f r
'~m!

3E
0

1

du e2 iupxf'~u,m!,

~2.1!

^0uū~0!gmd~x!ur1~p,l!&

5pm

e~l!x

px
f rmrE

0

1

du e2 iupxf i~u,m!

1S em
~l!2pm

e~l!x

px D f rmrE
0

1

du e2 iupxg'
~v !~u,m!,

~2.2!

^0uū~0!gmg5d~x!ur1~p,l!&52
1

4
emnrse

~l!nprxs f rmr

3E
0

1

du e2 iupxg'
~a!~u,m!,

~2.3!

where the gauge factors

PexpF igE
0

1

da xmAm~ax!G
are understood in between the quark fields.

In the above definitionspm and en
(l) are the momentum

and the polarization vector of ther meson, respectively. The
integration variableu corresponds to the momentum fractio
carried by the quark. The normalization constantsf r and
f r
' ~to be detailed later! are chosen in such a way that

E
0

1

du f~u!51

1To be precise, one more twist-two contribution exists to the m
trix element in Eq.~2.1!. This additional term is proportional to
mr
2 and will be omitted in what follows. V.B. would like to thank X

Ji for a discussion on this point.
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n

for all four distributionsf5f' ,f i ,g'
(v) ,g'

(a) . The functions
f'(u,m) andf i(u,m) give the leading twist distributions in
the fraction of total momentum carried by the quark in trans-
versely and longitudinally polarized mesons, respectively
The functionsg'

(v)(u,m) andg'
(a)(u,m) are to a large extent

analogous to the spin structure functiong2(x,Q
2) in polar-

ized lepton-nucleon scattering. Similarly to the latter, they
receive contributions of both leading twist two and nonlead-
ing twist three, and the twist-two contributions are related to
the longitudinal distributionf i(u,m) by Wandzura-Wilczek-
@10# type relations:

g'
~v !,twist two~u,m!5

1

2 F E
0

u

dv
f i~v,m!

v̄
1E

u

1

dv
f i~v,m!

v G ,
g'

~a!,twist two~u,m!52F ūE
0

u

dv
f i~v,m!

v̄
1uE

u

1

dv
f i~v,m!

v G .
~2.4!

Here and belowv̄[12v, etc. Equation~2.4! is derived in
Appendix A and presents one of our main results.

The remaining twist-three contributions tog'
(v) , g'

(a) can
be written in terms of three-particle quark-antiquark-gluon
wave functions of transversely polarized vector mesons, cf
@3,12#, and will not be considered in this paper. From now on
we will drop the superscript ‘‘twist two,’’ which is always
implied.

For some applications it is more convenient to rewrite Eq.
~2.2! as

^0uū~0!gmd~x!ur1~p,l!&

5pm~e~l!x! f rmrE
0

1

du e2 iupxF i~u,m!

1em
~l! f rmrE

0

1

du e2 iupxg'
~v !~u,m!, ~2.5!

introducing a new distribution function

F i~u,m!5
1

2 F ūE
0

u

dv
f i~v,m!

v̄
2uE

u

1

dv
f i~v,m!

v G . ~2.6!

Equation~2.6! follows directly from Eqs.~2.4! and ~2.5! by
integration by parts.

B. Conformal expansion and renormalization

The separation between the quark and the antiquark i
Eqs. ~2.1!–~2.3! is assumed to be lightlike, i.e.,x250. Ex-
tracting the leading behavior of the matrix elements on the
light cone one encounters UV divergences, whose regula
ization yields a nontrivial scale dependence, which can be
described by renormalization group methods@2,1#. The con-
formal invariance of QCD at tree level implies that operators
with different conformal spin do not mix with each other to
leading logarithmic accuracy. For the leading twist distribu-
tions f'(u,m) andf i(u,m) it follows that the coefficients
an of their expansion in Gegenbauer polynomialsCn

3/2(x)

a-

.
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2184 54PATRICIA BALL AND V. M. BRAUN
@13# ~that is in contributions of operators with definite co
formal spin! are renormalized multiplicatively to that accu
racy:

f~u,m!56u~12u!F11 (
n52,4, . . .

an~m!Cn
3/2~2u21!G ,

an~m!5an~m0!S as~m!

as~m0!
D ~g~n!2g~0!!/~2b0!

~2.7!

with b05112(2/3)nf . The one-loop anomalous dimension
are @14#

g~n!
i 5

8

3 S 12
2

~n11!~n12!
14(

j52

n11

1/j D ,
g~n!

' 5
8

3 S 114(
j52

n11

1/j D . ~2.8!

Note thatg (0)
' Þ0, so that f r

' in Eq. ~2.1! depends on the
renormalization scale~see Sec. III!.

The conformal expansion of the distributionsg'
(v) , g'

(a) is
more complicated and was derived in@8# using the approach
of Refs. @15,16#. We do not repeat the result in this pape
since to leading twist accuracy these distributions are
independent functions, but can be expressed in terms
f i(u,m). We find

g'
~a!~u,m!56u~12u!F11

1

6
a2

i ~m!C2
3/2~j!1••• G ,

g'
~v !~u,m!5

3

4
~11j2!1

3

16
a2

i ~m!~15j426j221!1•••,

F i~u,m!5
3

2
u~12u!jF11

1

4
a2

i ~m!~15j2211!1••• G .
~2.9!

Here and below we use the notationj52u21 as shorthand.
The leading contributions in Eq.~2.9! agree with the ‘‘as-
ymptotic distributions’’ that were derived in Ref.@12# by a
different method, but erroneously identified as being of tw
three.2 We also would like to mention that the twist-thre
contribution to theg' distributions is not power suppresse
as compared to the twist-two part, but not likely to be n
merically large.

C. Nonperturbative input

The decay constantsf r , f r
' and the coefficientsan in the

Gegenbauer expansion~2.7! are intrinsic hadronic quantities
and must be determined either experimentally or by nonp
turbative methods. In particular, the decay constantf r is
measured@17,18#:

2It is worthwhile to note that these leading terms correspond to
sum of contributions of leading and next-to-leading conformal sp
see@8#.
n-
-

s

r,
not
of

ist
e
d
u-

er-

f r65~19567! MeV, f r05~21665! MeV.
~2.10!

For other quantities, most of the existing information come
from QCD sum rules. In what follows we summarize an
update these calculations, taking into account radiative c
rections and resolving some discrepancies in earlier studi

III. TRANSVERSELY POLARIZED r MESONS

A. The tensor coupling

The normalization of the leading twist quark-antiquar
distribution in the transversely polarizedr meson is deter-
mined by the tensor couplingf r

' , defined by

^0uūsmndur1~p,l!&5 i ~em
~l!pn2en

~l!pm! f r
' , ~3.1!

which can be estimated by studying the correlation functio
of two tensor currents within the framework of QCD sum
rules @19#. We refer the reader to the reviews@20,3#, for a
detailed explanation of the method; the latter reference de
specifically with the determination of distribution functions
A somewhat troublesome point in studyingf r

' is that the
tensor current also couples to the positive parity3

JPC5112 stateb1(1235) @18#:

^0uūsmndub1
1~p,l!&5 i emn

abea
~l!pb f b1

' . ~3.2!

The correlation function of two tensor currents thus contai
two Lorentz structures:

Pmn5 i E d4yeiqy^0uT@ ū~y!smjx
jd~y!d̄~0!snjx

ju~0!#u0&

5
1

q2
@~qx!~qmxn1qnxm!2~qx!2gmn#P2~q2!

1
1

q2
@~qx!~qmxn1qnxm!2~qx!2gmn

2q2xmxn#P1~q2!. ~3.3!

To compactify the Lorentz structure we have contracted t
correlation function in two indices by the lightlike vector
xm @3#. TheP6(q2) were calculated in@9# and correspond to
intermediate states with positive~negative! parity, respec-
tively:

P7~q2!52
1

8p2q
2ln

2q2

m2 F11
as

3p S ln2q2

m2 1
7

3D G
2

1

24q2 K as

p
G2L 1

16p

9q4
^Aasq̄q&2F4961G ,

~3.4!

the
in,

3B(1235) in the old classification.
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where we used vacuum saturation for the contributions
four-fermion operators.

The correlation functionP2(q2) can be used to extract
the value off r

' , see, e.g.,@9#. Note, however, that it has a
higher dimension than the correlation function of vector cu
rents@19#, since in the latter case current conservation allo
us to include one power ofq2 in the Lorentz structure. The
higher dimension significantly reduces the accuracy of t
sum rule, as it increases its sensitivity to higher resonan
and the continuum. In addition, the sign of the four-qua
contribution is reversed, which makes it impossible to ge
stable sum rule for ther meson mass in this case, see@9#. To
overcome this difficulty, Chernyak and Zhitnitsky suggest
to sum contributions of opposite parities. Since one has
assume

P1~0!1P2~0!50

to avoid an unphysical singularity atq250 in Eq. ~3.3!, it is
legitimate to write a dispersion relation for the structure
of

r-
ws

he
ces
rk
t a

ed
to

P2~q2!1P1~q2!

q2
52

1

4p2 ln
2q2

m2 F11
as

3p S ln2q2

m2 1
7

3D G
2

1

12q4 K as

p
G2L 1

128p

81q6
^Aasq̄q&2.

~3.5!

Chernyak and Zhitnitsky speculated@3# that the approxima-
tion of local duality for the continuum contributions may b
satisfied with better accuracy in sum rules with summatio
over different parity contributions, and noted that an add
tional advantage of using Eq.~3.5! is that contributions of
particular four-fermion operators that are suspected to viola
vacuum saturation cancel identically in this case. The pri
to pay is that the sum rule contains an additional contributi
of theb1~1235! meson; since its mass, however, is very clos
to the continuum threshold in ther meson channel, one may
expect that this contamination has a minor effect.

One can thus write down several different sum rules f
f r
' , each of which has its own advantages and disadva
tages; their agreement indicates consistency of the approa
Using Eq.~3.5! one obtains
e2mr
2/M2

~ f r
'!2~m!1e2mb1

2 /M2
~ f b1

' !2~m!5
1

4p2E
0

s0
dse2s/M2S 11

as

p F791
2

3
ln
s

m2G D2
1

12M2 K as

p
G2L 2

64p

81M4 ^Aasq̄q&2.

~3.6!

On the other hand, starting from the correlation functionsP7(q2), one gets

mr
2e2mr

2/M2
~ f r

'!2~m!5
1

8p2E
0

s0
r

sdse2s/M2S 11
as

p F791
2

3
ln
s

m2G D1
1

24K as

p
G2L 1

208p

81M2 ^Aasq̄q&2, ~3.7!

mb1
2 e2mb1

2 /M2
~ f b1

' !2~m!5
1

8p2E
0

s
0

b1

sdse2s/M2S 11
as

p F791
2

3
ln
s

m2G D1
1

24K as

p
G2L 2

80p

81M2 ^Aasq̄q&2, ~3.8!
r-

-

where s0
r.1.5 GeV2 @19# and s0

b1.2.3 GeV2 @9# are the
continuum thresholds in ther andb1 channels, respectively
The continuum thresholds0 for the ‘‘mixed parity’’ sum rule
~3.6! is discussed below.M2 is the Borel parameter. Note
that the sign of the contribution of four-fermion operators
Eq. ~3.6! is opposite to the result given in@6,3#. We have
recalculated this contribution and confirm the sign as o
tained in@9#.

In the numerical analysis we useas(m51 GeV)50.56,
i.e., L

M̄S

(3)
50.4 GeV, corresponding to the world averag

as(mZ)50.119 @18#. For the condensates we take the sta
dard values@19#

K as

p
G2L 5~0.01260.006! GeV4,

^Aasq̄q&250.56~20.25 GeV!6. ~3.9!

The sum rules and the couplings are evaluated
m51 GeV. We have checked that changing the scale in
.

in

b-

e
n-

at
the

rangem25(1–2) GeV2 does not have any noticeable ef-
fect, provided the extracted couplings are related by reno
malization group scaling:4

f'~1 GeV!5Fas~1 GeV!

as~m! G4/27f'~m!.

We start with the ‘‘pure parity’’ sum rules in Eqs.~3.7!
and ~3.8!. The values of the couplings extracted from these
sum rules are shown in Figs. 1~a! and 1~b! as functions of the
Borel parameter for several choices of the continuum thresh
olds. Requiring best stability in the ‘‘working window’’ of
the Borel parameter 1,M2,1.5 GeV2, we find

f r
'5~160610! MeV, s0

r51.5 GeV2, ~3.10!

4In this paper we stay consistently withinO(as) accuracy and do
not attempt a renormalization group improvement of sum rules~see,
e.g.,@21#!.
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f b1
' 5180 MeV, s0

b152.7 GeV2. ~3.11!

Note thats0
r coincides with the value quoted in@19#, while

for b1 we get a somewhat larger value than obtained in R
@9#. This difference, however, affects the coupling only ve
slightly: with s0

b152.3 GeV2 we get f b1
' 5170 MeV with a

somewhat worse stability. Note also that it is difficult t
specify more precisely the value of the continuum thresho
s0

r : the stability of the sum rule does not change much w
s0

r in the interval~1.3–1.5! GeV2 ~although the value off r
'

does!, which is precisely the disadvantage of having a su
rule of high dimension.

Turning to the ‘‘mixed parity’’ sum rule~3.6!, we first
note that the contribution ofb1 is numerically suppressed by
the exponential factor exp@(mb1

2 2mr
2)/M2#, so that a modest

accuracy inf b1
' is sufficient. Using the value in~3.11! as

input and requiring best stability of the sum rule~3.6! by
varyingM2 and the continuum threshold@see Fig. 2~a!#, we
get

f r
'5~16365! MeV, s052.1 GeV2. ~3.12!

The higher value ofs0 ~compared tos0
r) is expected, since

the part of the continuum contribution coming fromb1 is
taken into account explicitly on the left-hand side of the su
rule ~3.6!.

On the other hand, since theb1 state is rather wide and its
mass is very close to the continuum threshold in the pu
122 channel, it is natural to expect that an equally good fit
the sum rule can be obtained by ignoring this contribution
the left-hand side of Eq.~3.6! and fitting the value of the
continuum threshold to include it effectively. Remarkably,
this case we find a very similar value for ther coupling, see
Fig. 2~b!:

f r
'5~160615! MeV, s0

r5~1.060.2! GeV2.
~3.13!

FIG. 1. ~a! f r
'(1 GeV) from Eq.~ 3.7! as a function of the Borel

parameterM2 for different values of the continuum thresholds0 .
~b! The same forf b1

' (1 GeV) from Eq.~ 3.8!.
ef.
ry

o
ld
ith

m

m

re
to
on

in

Note that the sum rule now ‘‘wants’’ a much lower value of
s0 . It is instructive to observe that the accuracy is now
worse, since the sum rule remains stable for a rather larg
interval ofs0 . This is natural because, in this case, we do no
incorporate additional information about theb1 meson con-
tribution.

To summarize, we find that the positive parityb1 meson
contributes significantly to the ‘‘mixed parity’’ sum rule, but
it is not possible to separate this contribution from the con-
tinuum. In effect, the admixture of positive parity states can
be described by lowering the duality interval for ther meson
to 1 GeV. Our final result for ther meson tensor coupling is

f r
'5~160610! MeV. ~3.14!

This value is lower by about 20% than CZ’s result@3# and
agrees surprisingly well with an old SU~6! symmetry rela-
tion, f r

'5( f p1 f r)/2'0.17 GeV@22#.
As discussed in@6,3#, an alternative method to determine

f r
' could be to consider the correlation function of the tensor
with the vector current, which is not contaminated by posi-
tive parity states:

E d4yeiqy^0uT@ ū~y!gmd~y!d̄~0!sabu~0!#u0&

5@gamqb2gbmqa#x~q2!. ~3.15!

The correlation function was calculated in@23,12# and reads5

x~q2!5
2^q̄q&
q2 H F12

2as

3p S 2ln m2

2q2
11D G

1
m0
2

3q2
10

1

q4
1•••J . ~3.16!

5The radiative correction to the quark condensate contribution is
new result.

FIG. 2. ~a! f r
'(1 GeV) from Eq.~ 3.6! as a function of the Borel

parameterM2 for different values of the continuum thresholds0 .
f b1
' (1 GeV) is put to 180 MeV.~b! The same with theb1 contribu-

tion put to the continuum, i.e.,f b1
' 50.
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Herem0
2[^q̄gsGq&/^q̄q&. Note that the perturbative contri

bution vanishes to all orders and that the dimension-se
operatorq̄G2q has zero coefficient at tree level@23#. The
corresponding sum rule reads~cf @6,3,23#.!:

e2mr
2/M2

f r
'~m! f r522^q̄q&F11

4

3

as

p S lnM2

m2 2gE2
1

2

2E
s0

`ds

s
e2s/M2D 2

1

3

m0
2

M2 10
^gs

2G2&
M4 G ,

~3.17!

and yields f r
''200 MeV as illustrated in Fig. 3. Here w

use f r5205 MeV, ^q̄q&(1 GeV)5(20.25 GeV)3, and
m0
250.65 GeV2 at the scale 1 GeV. The accuracy of th

sum rule is, however, not competitive to the ones above:
uncertainty in the quark condensate alone gives a 10% e
in addition, the study in@23# indicates possible large contri
butions of excited states to this sum rule, e.g., fro
r8(1600). Its significance is, however, that it allows a det
mination of the relativesign of f r

' and f r , which proves to
be positive.

B. Deviations from the asymptotic form

The deviation of the distribution function from its asymp
totic form f'(u);u(12u) is quantified by the coefficients
an in the expansion~2.7!. Since the corresponding anoma
lous dimensions are ordered withn, one can expect that, a
least for large scalesm, only a few first terms are important
The QCD sum rule approach can be used to estimatea2

' .
The traditional procedure developed by Chernyak and Z
nitsky is to write down the sum rule for the second mome
of the wave function, which is related toa2

' by simple alge-
bra:

E
0

1

du~2u21!2f'~u,m!5
1

5
1
12

35
a2

'~m!. ~3.18!

The corresponding sum rule is obtained from the correlat
function of the tensor current with the similar operator wi

two extra covariant derivativesū(y)smjx
j( iDJ •x)2d(y). We

find it more appropriate to consider the sum rules directly
the coefficients in the expansion in Gegenbauer polynomi

FIG. 3. f r
'(1 GeV) from Eq.~3.17! as function of the Borel

parameterM2 for s051.5 GeV2.
-
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which in general correspond to correlation functions of the
tensor current with the conformal operators:

V'
T~n!~y!5 i n~] .!

nF ū~y!s'.Cn
3/2S DW .2DQ .

DW .1DQ .
D d~y!G ,

where the dots stand for the projection on the lightlike vector
xm , and] is the total derivative. Note that one of the indices
of thes matrix is projected ontoxm , while the other one has
to be taken transverse to the (x,q) plane, whereq is the r
meson momentum, see@16# for more details.

As a general property of conformal operators@24# the
tree-level perturbative contribution to the corresponding cor-
relation function vanishes~for nÞ0) and the perturbative
contribution to the corresponding sum rule starts with
O(as). As a result, these sum rules are necessarily less
stable than the sum rules for moments, and their accuracy i
seemingly worse. The better accuracy of the sum rules for
moments is, however, completely illusory since in this case
the major contribution comes from the trivial first term in Eq.
~3.18!, corresponding to the asymptotic distribution function,
and the contribution of interest is numerically suppressed.
Since we should not expect good stability for the sum rule
for a2 , we evaluate this sum rule using precisely the same
values of the continuum threshold and the same ‘‘window’’
of the Borel parameter as in the sum rules forf r

' . The in-
stability of the sum rule then gives an estimate of the accu-
racy of the result.6

It is important to note that the necessity to separate the
contribution of leading twist does not allow for the separa-
tion of contributions of opposite parity in the diagonal sum
rules. Indeed, one may try to start from a correlation function
like the one in Eq.~3.3! with two open Lorentz indices@and
with the substitution of one of the tensor currents by
Vm

T(n)(y)#, and try to isolate the negative parity contribution
by taking the projectionqmqnPmn

T(n)5(qx)n12P2T(n)(q2).
However, the same projection for the defining equation~2.1!
vanishes identically since, to leading twist accuracy, contri-
butions of orderq25mr

2 must be put to zero. Thus, this pro-
jection is in fact saturated by higher twist contributions and
is irrelevant for our analysis. Therefore, one cannot get rid of
the contribution of states with positive parity and it is more
convenient to consider the correlation function@12,3#:

i E d4yeiqy^0uT@ ū~y!smjx
jd~y!d̄~0!smjxj

3~ iDJ •x!nu~0!] u0&522~qx!n12PT~n!~q2!. ~3.19!

6It has become common practice to choose different values of the
continuum threshold in the sum rules for different moments. To our
point of view, the higher fitted values ofs0 for higher moments
n52,4, . . . generally reflect the increase of the overall mass scale
in the correlation function, due to the increasing contribution of
higher resonances. This rise has nothing to do with the change o
the interval of duality for ther meson contribution of interest,
which is in fact more likely todecrease.
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It is easy to check that the trace over Lorentz indices pi
up the required transverse components.

The complete results for the sum rules for the coefficie
in the Gegenbauer expansion for arbitraryn are given in
Appendix B. Note that in this case the mass scale in
correlation functions rises asM2;n2 for n large as com-
pared with the increaseM2;n for the moments. This make
the sum rule approach essentially useless for the evalua
of an with n.2. For the particular casen52 we get, using
the correlation function~3.19!:

e2mr
2/M2

~ f r
'!2~m!

18

7
a2

'~m!1 b1 meson

5
1

2p2

as~m!

p
M2@12e2s0 /M

2
#
2

5

1
1

3M2 K as

p
G2L 1

64p

9M4 ^Aasq̄q&2. ~3.20!

This sum rule is equivalent to that for the second mom
considered in@6,3#:

e2mr
2/M2

~ f r
'!2~m!E

0

1

du~2u21!2f'~u,m!1 b1 meson

5
1

20p2E
0

s0
dse2s/M2H 11

as

p S 591512ln
s

m2D J
1

1

36M2 K as

p
G2L 1

64p

81M4 ^Aasq̄q&2. ~3.21!

provided one takes the same value of the continuum thre
old as in the sum rule for the tensor coupling~3.6!. Note that
the sign of the contribution of the four-quark condensate
opposite to the result of@6,3#.7

The value ofa2
' that follows from the sum rule~3.20! is

plotted as a function of the Borel parameter in Fig. 4. No
that we do not have an independent estimate for the con
bution of theb1 meson in this case; so we neglect it and ta

7We have recalculated this contribution and obtain the oppo
sign for all moments, see Appendix B. For the casen50 our result
agrees with@9#.

FIG. 4. a2
'(1 GeV) from Eq.~ 3.20! as a function of the Borel

parameterM2 for s051 GeV2.
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a low value for the continuum threshold,s051 GeV2, on the
right-hand side. From this we get as our final result

a2
'~m51 GeV!50.260.1. ~3.22!

This has to be compared witha2
'(m51 GeV)520.17 from

@6,3#; the difference in sign is mainly due to the opposite
sign in the contribution of the four-fermion operators in
@6,3#.

We have investigated whether adding theb1 contribution
as a free parameter and requiring best stability in the ran
1,M2,1.5 GeV2 could change the result. We have also
tried to follow the standard procedure to use the sum ru
~3.21! with s0 fitted to get best stability. In both fits the value
of a2

' tends to increase by some 30–50%, but we do not fin
this evidence significant enough to influence our estimate.

To avoid an admixture of positive parity states, one ca
consider, instead of Eq.~3.19!, the correlation function

E d4yeiqy^0uT@ ū~y!gmd~y!d̄~0!sabx
b

3~ iDJ •x!nu~0!#u0&5@gam~qx!2xmqa#~qx!nx~n!~q2!.

~3.23!

The results forx (n)(q2) are available from@25#. The corre-
sponding sum rule fora2

' reads

e2mr
2/M2

f r
'~m! f ra2

'~m!52
14

3
^q̄q&F11

29

18

as

p S lnM2

m2 2gE

1const2E
s0

`ds

s
e2s/M2D

22
m0
2

M2 1
85

216

^gs
2G2&
M4 G , ~3.24!

where we used vacuum saturation for the contribution o
dimension seven. The constant in the radiative correction
the quark condensate contribution is not calculated yet. U
fortunately, due to the large coefficient in front of the con
tribution of the mixed condensate, its contribution almos
identically cancels the leading quark condensate contrib
tion, and the answer depends crucially on the contribution
dimension seven, which is poorly known~it is suspected that
vacuum saturation is strongly violated in this case!. Thus,
from this sum rule one can only get a rough estimat
ua2

'u,0.5.

IV. LONGITUDINALLY POLARIZED r MESONS

Since the decay constantf r is measured experimentally
@we use the average valuef r5(205610) MeV in the nu-
merical analysis#, we only need an estimate of the coefficien
a2

i describing the deviation of the distributionf i from its
asymptotic form. The corresponding QCD sum rule calcula
tion has been done by Chernyak and Zhitnitsky in Ref.@4#.
We update this calculation by taking into account radiativ
O(as) corrections and using an up-to-date value of th
strong coupling that is slightly larger than the value used
Ref. @4#. The radiative corrections can be extracted from

site
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paper by Gorskii@26#, where he calculated the correlatio
function of two axial vector currents~with extra derivatives!,
which in perturbation theory and for massless quarks co
cides with the vector correlation function. The complete
sults for arbitrary moments are given in Appendix B. F
n52 we get the sum rule

e2mr
2/M2

f r
2 18

7
a2

i ~m!5
1

4p2

as~m!

p
M2@12e2s0 /M

2
#

1
1

2M2 K as

p
G2L 1

32p

9M4 ^Aasq̄q&2,

~4.1!

which is equivalent to the sum rule for the second mom
considered in@4#:

e2mr
2/M2

f r
2E

0

1

du~2u21!2f i~u,m!

5
1

20p2 S 11
5

3

as

p DM2~12e2s0 /M
2
!

1
1

12M2 K as

p
G2L 1

16p

81M4 ^Aasq̄q&2. ~4.2!

With the same input parameters as in Sec. III, the numer
analysis yields~see Fig. 5!:

a2
i ~m51 GeV!50.1860.10. ~4.3!

This is in perfect agreement with the original estima
a2

i (m51.1 GeV).0.18 @4#. It also coincides within the er-
rors with our result fora2

' , Eq. ~3.22!, which means that the
distribution amplitudesf i andf' are similar.

V. SUMMARY AND CONCLUSIONS

Extending earlier studies@4,6,3#, we have performed a
reanalysis ofr meson quark-antiquark light-cone distributio
amplitudes of leading twist. In general, their complete
consists of several independent functions, but we h
shown that, to our~twist-two! accuracy, two of the existing
distributions in transversely polarizedr mesons can be re
lated to the distribution with longitudinal polarization. Th
theoretical status of these relations is identical to the statu
the Wandzura-Wilczek relation@10# between the polarized

FIG. 5. a2
i (1 GeV) from Eq.~4.1! as a function of the Borel

parameterM2 for s051.5 GeV2.
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structure functions of the nucleon,g1(x,Q
2) andg2(x,Q

2).
We have given a detailed reanalysis of the QCD sum rule

for the first two moments of the distribution amplitudes,
complementing existing sum rules by the calculation of ra-
diative corrections. Our final results for the distribution am-
plitudes of quarks in longitudinally polarized and trans-
versely polarizedr mesons are shown in Figs. 6~a! and 6~b!,
respectively.

We deviate from the results of@6,3# mainly in the shape
of the distribution amplitude for the transversely polarized
r meson, see the short-dashed curve in Fig. 6~b!. We find
that the distributions in longitudinally and transversely polar-
ized r mesons coincide, to our accuracy, whereas in@6,3# a
significant difference has been claimed. This contradiction is
largely due to an opposite sign of the contribution of four-
fermion operators in the corresponding sum rule. We note
that the sign as given in@6,3# also contradicts an independent
calculation in Ref.@9#, which apparently remained unno-
ticed. One more consequence of this sign difference is tha
our result for the tensor couplingf r

' is 20% lower than in
@6,3#.

A discussion of the phenomenological consequences o
our results goes beyond the scope of this paper. Since in ha
exclusive processes one typically deals with integrals ove
quark distributions of type

f rE
0

1

du
f~u,Q!

u~12u!
56 f r@11a2~Q!1•••#,

the change in shape of the transverser distribution suggested
by the results of this paper may increase the rate of the pro
duction of transversely polarizedr mesons by a factor 2. The
consequences for exclusive semileptonic and radiativeB de-
cays will be considered in a separate publication@27#.

FIG. 6. Final results for the wave functionsf i ~a! andf' ~b! at
m51 GeV ~solid lines!. Long dashes, asymptotic wave functions;
short dashes,f' according to CZ@3#.
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APPENDIX A: TRANSVERSE SPIN DISTRIBUTIONS

The derivation of relations between longitudinal an
transverse quark spin distributions in the longitudinally po
larized r meson is in principle straightforward and can b
done similarly to the classical Wandzura-Wilczek analys
for polarized leptoproduction@10#. The major difference is
that one must include operators with total derivatives an
that higher twist operators corresponding to total derivative
of lower twist operators cannot be neglected.

It is convenient to consider the relevant nonlocal operat
at symmetric quark-antiquark separations:

ū~2x!gmd~x!

5(
n

xm1
•••xmn

1

n!
ū~0!DJ m1

•••DJ mn
gmd~0!. ~A1!

Sincex250 the arising local operators are traceless~contrac-
tions of the typegmmk

vanish by the equations of motion!, but
not fully symmetric in Lorentz indices because of the distin
guished indexm. Therefore, they contain a mixture of con-
tributions of twist two and twist three, which have to be
separated:

ū~2x!gmd~x!5@ ū~2x!gmd~x!# twist two

1@ ū~2x!gmd~x!# twist three. ~A2!

The leading twist-two contribution by definition contains
contributions of symmetrized operators:

@ ū~2x!gmd~x!# twist two

[ (
n50

`
xm1

•••xmn

n!
ū~0!H 1

n11
DJ m1

•••DJ mn
gm

1
n

n11
DJ mDJ m1

. . .DJ mn21
gmnJ d~0!. ~A3!

Fortunately, the sum can be reexpressed in terms of a n
local operator@28#,

@ ū~2x!gmd~x!# twist two5E
0

1

dv
]

]xm
ū~2vx!x”d~vx!, ~A4!

which is easily verified by expanding. An identical expres
sion is valid for the nonlocal operator with an additionalg5
in between the quarks.

Using the equations of motion, the difference
ū (2x)gmd(x)2@ ū(2x)gmd(x)# twist two can be written in
terms of operators containing total derivatives and quar
antiquark-gluon operators, see@28#. Neglecting quark
masses, one finds
e

d
-
e
is

d
s

or

-

on-

-

k-

@ ū~2x!gmd~x!# twist three52gsE
0

1

duE
2u

u

dvū~2ux!

3@uG̃mn~vx!xnx”g5

2 ivGmn~vx!xnx” #d~ux!

1 i em
nabE

0

1

uduxn]a@ ū

3~2ux!gbg5d~ux!#,

@ ū~2x!gmg5d~x!# twist three52gsE
0

1

duE
2u

u

dvū~2ux!

3@uG̃mn~vx!xnx”

2 ivGmn~vx!xnx”g5#d~ux!

1 i em
nabE

0

1

uduxn]a@ ū

3~2ux!gbd~ux!#, ~A5!

where Gmn is the gluon field strength,
G̃mn5(1/2)emnabG

ab, and]a is the derivative over the total
translation:

]a@ ū~2ux!gbd~ux!#[
]

]ya
@ ū~2ux1y!gbd

3~ux1y!#uy→0 . ~A6!

Note that Eqs.~A4! and~A6! are exact operator relations.
Taking the matrix element between the vacuum and ther
meson state, we get

^0u@ ū~2x!gmd~x!# twist twour1~p,l!&

5E
0

1

dv
]

]xm
^0uū~2vx!x”d~vx!ur1~p,l!&

5E
0

1

dv
]

]xm
~e~l!x! f rmrE

0

1

due2 i jvpxf i~u!

5em
~l! f rmrE

0

1

dvE
0

1

due2 i jvpxf i~u!

2 ipm~e~l!x! f rmrE
0

1

dvvE
0

1

duje2 i jvpxf i~u!

5pm

~e~l!x!

~px!
f rmrE

0

1

due2 i jpxf i~u!1S em
~l!

2pm

e~l!x

px D f rmrE
0

1

duE
0

1

dve2 i jvpxf i~u!, ~A7!

wherej[2u21 and to arrive at the last line we have used
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E
0

1

dvvE
0

1

duje2 i jvpxf i~u!

5
i

pxE0
1

dvvE
0

1

du
]

]v
e2 i jvpxf i~u!5

i

pxE0
1

duf i~u!

3Fe2 i jpx2E
0

1

dve2 i jvpxG . ~A8!

Note that the matrix element of the twist-two operator pro
duces both Lorentz structures, and henceg'

(v)(u,m) is non-
zero to this accuracy.

Specific for the kinematics in exclusive processes is t
generation of an additional twist-two contribution by twist
three operators proportional to the total derivativ
]a→2 ipa , which would vanish in deep inelastic scattering
Taking the matrix element for the twist-three operator in th
first of Eqs. ~A5! and neglecting three-particle quark
antiquark-gluon distributions of twist three@12# we get

^0u@ ū~2x!gmd~x!# twist threeur1~p,l!&

52
1

2
~px!2S em

~l!pm

e~l!x

px D f rmrE
0

1

v2dv

3E
0

1

due2 i jvpxg'
~a!~u,m!. ~A9!

Since, on the other hand,

^0uū~2x!gmd~x!ur1~p,l!&

5pm

e~l!x

px
f rmrE

0

1

due2 i jpxf i~u,m!

1S em
~l!2pm

e~l!x

px D f rmrE
0

1

due2 i jpxg'
~v !~u,m!,

~A10!

we obtain relations betweeng'
(v)(u,m), g'

(a)(u,m), and
f i(u,m) by comparing the Lorentz structures. At this stage
is convenient to introduce the moments

Mn
i 5E

0

1

dujnf i~u,m!, Mn
v5E

0

1

dujng'
~v !~u,m!,

Mn
a5E

0

1

dujng'
~a!~u,m!. ~A11!

Expanding Eqs.~A7!, ~A9!, and ~A10! in powers of (px),
we get

Mn
v5

1

2

n~n21!

n11
Mn22

a 1
1

n11
Mn

i . ~A12!

Similar manipulations with the axial vector operator~2.3!
produce one more relation

1

2
Mn

a5
1

n12
Mn

v . ~A13!
-

e
-
e
.
e

it

Note that the contribution of the leading twist operator
^0u@ ū(2x)gmg5d(x)# twist twour1(p,l)& vanishes identically
in this case, and the answer is generated entirely by twist
three operators, which are reduced to total derivatives.

Combining Eqs.~A12! and ~A13! we get a simple recur-
rence relation

~n11!Mn
v5~n21!Mn22

v 1Mn
i , ~A14!

the solution of which yields the first relation in Eq.~2.4!. The
second one then follows from Eq.~A13! after some algebra.

APPENDIX B: QCD SUM RULES
FOR ARBITRARY MOMENTS

In this appendix we collect some more definitions and
give the sum rules for the Gegenbauer momentsan of the
longitudinal and transverser meson distribution amplitudes
for arbitraryn.

We first relate thean to hadronic matrix elements of local
operators. To leading logarithmic accuracy, the relevant mul-
tiplicatively renormalizable operators are:

VV~n!~y!5(
j50

n

cn, j~ ix]!n2 j ū~y!x” ~ ixDJ ! jd~y!,

Vm
T~n!~y!5(

j50

n

cn, j~ ix]!n2 j ū~y!smnx
n~ ixDJ ! jd~y!, ~B1!

where xm is a lightlike vector,smn5( i /2)@gmgn2gngm#,

andDJ m5]Wm2]Qm22igAm
a (y)la/2. The cn,k are the coeffi-

cients of the Gegenbauer polynomials such that
Cn
3/2(x)5(cn,kx

k. Expanding the defining relations forf,
Eqs.~2.1!–~2.3!, around the lightcone, one finds

^0uVV~n!~0!ur&5~px!nf rmr~ex!E
0

1

duCn
3/2~2u

21!f i~u,m!

5~px!nf rmr~ex!
3~n11!~n12!

2~2n13!
an

i ~m!,

^0uVm
T~n!~0!ur&5~px!ni f r

'@em~px!2pm~ex!#E
0

1

duCn
3/2~2u

21!f'~u,m!

5~px!ni f r
'@em~px!

2pm~ex!#
3~n11!~n12!

2~2n13!
an

'~m!. ~B2!

The QCD sum rules@19# are obtained by matching the rep-
resentation in terms of hadronic states to the operator produc
expansion in the Euclidean region for the correlation func-
tions
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~qx!n12PV~n!~q2!5 i E d4yeiqy^0uTVV~n!~y!V†V~0!~0!&,

22~qx!n12PT~n!~q2!

5 i E d4yeiqy^0uTVm
T~n!

3~y!V†T~0!m~0!&. ~B3!

Note that the contraction overm in the second relation auto
matically projects onto the transverse componentV'

T(n) ,
which is a conformal-invariant operator, whereasVm

T(n) is
not. We find the following sum rules foran

' ~for evenn):

e2mr
2/M2

~ f r
'!2~m!

3~n11!~n12!

2~2n13!
an

'~m!

5
1

2p2

as~m!

p
M2@12e2s0 /M

2
#E

0

1

duuūCn
3/2~2u21!

3S lnu1 lnū1 ln2
u

ū
D 1

1

24M2 K as

p
G2L ~n213n22!

1
8p

81M4 ^Aasq̄q&2~n21!~n11!~n12!~n14!.

~B4!

The radiative correction in Eq.~B4! is a new result. Simi-
larly, we obtain foran

i :

e2mr
2/M2

f r
2 3~n11!~n12!

2~2n13!
an

i ~m!

5
3

4p2

as~m!

p
M2@12e2s0 /M

2
#r n

i 1
1

24M2 K as

p
G2L

3~n11!~n12!1
8p

81M4 ^Aasq̄q&2~n11!

3~n12!~n213n27!. ~B5!

In this case a compact answer for the radiative correction
in Eq. ~B4! is not available, but ther n

i are related to the
radiative corrections to the axial vector correlation functi
~with extra derivatives! and for arbitraryn can be expressed
in terms of the coefficientsAk8 calculated in@26#:
-

s as

on

r n
i 5 (

k50

n

cn,k
Ak8

~k11!~k13!
. ~B6!

In particular

A0851, A285
5

3
, A485

59

27
, A685

353

135
,

r 0
i 5

1

3
, r 2

i 5
1

3
, r 4

i 5
1

6
, r 6

i 5
83

810
.

For completeness and for comparison with@3#, we also give
the sum rules for the moments^jn&5*dujnf(u,m):

~ f r
'!2~m!^jn&'~m!e2mr

2/M2

5
3

2p2E
0

s0
dsE

0

1

du e2s/M2
uū~2u21!nH 11

as

3p S 6
2

p2

3
12ln

s

m2 1 lnu1 lnū1 ln2
u

ū
D J

1
n21

n11

1

12M2 K as

p
G2L 1

64p

81M4 ~n21!^Aasq̄q&2,

~B7!

f r
2^jn& ie

2mr
2/M2

5
3

4p2~n11!~n13! S 11
as

p
An8DM2~1

2e2s0 /M
2
!1

1

12M2 K as

p
G2L

1
16p

81M4 ~4n27!^Aasq̄q&2. ~B8!

Note the difference in sign in the last term of Eq.~B7! with
respect to Eq.~4.25! in Ref. @3#.8

8After completion of this paper we learned that the results o
Gorskii, Ref. @26#, were rederived in@29# in a form that is more
similar to our Eq.~B4!. We thank A. V. Radyushkin for bringing
this reference to our attention.
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