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INTRODUCTION

Rhodolith beds are widely distributed worldwide, from the tropics to the poles, and from
the lowermost intertidal zone to depths over 200m (Foster, 2001), and they are among the
largest macrophyte-dominated benthic communities in the world, along with kelp beds, seagrass
meadows, and coral reefs (Foster, 2001).

Rhodolith beds have been found throughout the world’s oceans, but exhibiting a highly
discontinuous global distribution, but larger concentrations of them are recorded off Southern
Japan, Western Australia and the Gulf of California, as well as in the Mediterranean and along
Norway, Ireland, Scotland, northeastern Canada, the Eastern Caribbean and Brazil (Foster, 2001).
The world’s largest beds occur in Abrolhos Shelf (Brazil)–SW Atlantic, which occupies 20.902 Km2

(Amado-Filho et al., 2012), a geographic area comparable to that estimated for Caribbean coral
reefs (21.600 Km2) and the Great Barrier Reef (20.055 Km2) (Vecsei, 2004).

There is an ongoing scientific interest in rhodolith beds (Riosmena-Rodríguez et al., 2017),
mainly because they: (1) provide habitat to a high biodiversity of seaweeds, invertebrates and fish,
also including some endemic, rare or commercially important species; (2) serve as recruitment
areas or refuges for several marine organisms; (3) are sources of calcium carbonate for a wide
variety of human application; (4) are sensitive to climate change and ocean acidification and (5)
serve as paleoenvironmental indicators of past oceanic conditions. The diversity of organisms living
on rhodoliths has been attributed to the provision of hard attachment surfaces on what would
otherwise be a soft bottom (Foster et al., 2007).

Today, rhodoliths are seen as marine biodiversity hotspots, acting as seedbanks, temporary
reservoirs for life history stages of ecologically important eukaryotic microalgae and macroalgae,
or as refugia for ecosystem resilience following environmental stress (Fredericq et al., 2019).

RHODOLITHS AS FOUNDATION SPECIES

Since the beginning of the 20th century, rhodoliths are recognized as foundation species,
because they house a great diversity of organisms (Weber-Van Bosse and Foslie, 1904)
(Figure 1A). Since then, several further studies have reiterated this more than secular
proposition, from the finding over 300 species of algae and invertebrates in rhodolith
beds in the Gulf of California (Steller et al., 2003), more than 450 species in the Iberian
Peninsula (Bordehore et al., 2003), 244 animals and 87 algal taxa recorded in Maltese Islands,
Mediterranean (Sciberras et al., 2009), and 26 families of polychaete worms in the Southern
Brazilian coast (Berlandi et al., 2012); including commercial species such as clams and
scallops (Kamenos et al., 2004). Many species, including some cnidarians, echinoderms and
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chitons, appear to be rhodolith-specific (Steller et al., 2003).
Foundation species are capable of define ecosystems, control

the biological diversity, and modulate critical ecosystem
processes (Ellison, 2019), all predictable ecological roles to be
performed by rhodolith beds.

WOULD CHEMICAL SIGNALING BE A
STRUCTURING COMPONENT OF
RHODOLITH BEDS?

For more than 50 years seaweeds have been known as sources
of secondary metabolites acting as positive chemical cues or
signals for settlement or/or metamorphosis inducers (Crisp,
1974), encompassing a large number of planktonic life stages of
a broad variety of benthic marine organisms, from bacteria to
marine invertebrates (Hadfield and Paul, 2001); but rhodolith-
forming coralline algae have been the most prolific in the
production of these chemicals. For example, chemicals from
species of the known components of rhodoliths, species
of Lithothaminion, Phymatolithon and Sporolithon, induce
settlement and/or metamorphosis of some invertebrates, such
as the serpulid worm Spirorbis rupestris (Gee, 1965), the chiton
Tonicella lineata (Barnes and Gonor, 1973), the sea urchin
Strongylocentrotus droebachiensis (Pearce and Scheibling, 1990),
and also species of high economic interest such as species of
the abalone Haliotis (Daume et al., 1999). Chemicals from
the rhodolith-forming species Lithophyllum yessoense exhibit
ecological role as multiple allelopathic against settlement
and germination of fleshy green, brown, and red marine
macroalgae (Kim et al., 2004). Other chemical-types produced by
rhodolith-forming coralline algae need more attention, such as
dimethylsulfoniopropionate (DMSP) that have been identified as
cryoprotectant, antioxidant, and possible defensive compounds
against grazer (McCoy and Kamenos, 2015) and was found at
high concentrations in the temperate rodolith-forming species
Lithothamnion glaciale and Phymatolithon calcareum (Kamenos
et al., 2008).

Species-specific colonization cues may also, or instead, be
associated with chemicals produced by microbiome/biofilm
growing on the rhodolith-forming coralline algal surface
(Huggett et al., 2006). Although more recent evidence has
revealed that biofilm on CCA did not promoted settlement
response in larvae of 11 coral species from Australia, Guam,
Singapore and Japan (Tebben et al., 2015). This conflicting theme
or even the possible interaction between secondary metabolites
and microbiomes needs to be targets of greater attention due to
the importance that may represent as micro-scale or also invisible
phenomenon relevant for the structuring of rhodolith beds.

An additional recognized ecological role from macroalgal
chemicals is the antifouling activity proportionate by formation
of reactive oxygen species (ROS), usually denominated “oxidative
burst” (Potin, 2008). We do not know evidence of this
phenomenon in rhodolith-forming coralline algae, but this
control on fouling may be a structuring mechanism exerted by
fleshy species of green, brown, and red macroalgae associated
with rhodolith beds worldwide. However, the only example

we known is the production of ROS by geniculated Corallina
officinalis after increases in temperature (Latham, 2008) and
induction by UV-radiation (Li et al., 2010), which may be
an indication that other calcareous algae, including rhodolith-
forming, may also produce them.

Epibionts are known for the adverse or harmful effects
they exert on basibionts, constituting selective pressure for the
evolution of all defensive/stimulating mechanisms in marine
macroalgae (Da Gama et al., 2014). An another invisible
mechanism to control epibionts is the epithallus sloughing
anti-fouling defense employed mainly by calcareous macroalgal
species, such as rodolith-forming species of Clathromorphum
(Pueschel and Miller, 1996), Hidrolithon (Keats et al., 1997),
Lithothamnion (Masaki et al., 1984), Neogoniolithon (Masaki
et al., 1984, Keats et al., 1997, Littler and Littler, 1999),
Spongites (Keats et al., 1993), Sporolithon (Keats et al., 1997),
and Phymattolithon (Johnson and Mann, 1986). However, there
is still scarce evidence of the ecological significance of this
mechanism under natural conditions, since most of the studies
were performed under laboratory conditions (Da Gama et al.,
2014); but for field evidences, see Johnson and Mann (1986) and
Keats et al. (1997).

In addition to rhodolith-forming algae, bacteria (Dobretsov
et al., 2009) and several other coralline (Kim et al., 2004), and
fleshy macroalgae (Longo and Hay, 2017) as soon as marine
invertebrates, such as sponges (e.g., Pawlik, 2011), gorgonians
(e.g., Ribeiro et al., 2017), corals (Changyun et al., 2008),
bryozoans (Sharp et al., 2007), and other benthic organisms
that live in rhodolith beds, can also produce diverse substances
capable of generating structuring-effects in these environments.

These examples mentioned above are isolated or non-
integrated sources about the importance of chemical signals and
cues as structuring components for the rhodolith beds. However,
they express the dimension that chemical signaling or anti-
fouling mechanisms can have for the ecology of rhodolith beds.

Despite the lack of these integrated ecological studies, there
is evidences that these chemical signals can be applied to efforts
of coral reef restoration (Pollock et al., 2017). The structuring
potential of chemical mediation in rhodolith beds is also of
enormous interest in the current context of global changes
(McCoy and Kamenos, 2015). For example, a minimal increase
in temperature causes a change in the structure of the microbial
community on the surface of Neogoniolithon fosliei and the
ability to induce coral larvae metamorphosis (Webster et al.,
2011). In this same scenario of global changes, an increase in
the concentration of CO2 promoted a change in the recruitment
of the Acropora millepora coral over encrusting calcareous algae
(Doropoulos et al., 2012). In a relatively recent review, several
aspects related to the ecology and physiology of calcareous algae
were brought together in order to understand their responses
to global climate change (McCoy and Kamenos, 2015). In view
of the crucial importance of chemical signaling for the diversity
of tropical and temperate marine communities, this review
expresses a concern about the need to know the impacts of
climate change on chemical signaling.

Marine chemical ecology studies are unequivocal in revealing
the relevant ecological roles of secondary metabolites in inter-
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and intra-specific relationships among marine organisms and
their strong and cascade effects on population structure,
community organization, and ecosystem function (Hay, 2009).
Secondary metabolites and other chemicals are true keystones,
since through convergent evolution they inform phylogenetically
diverse species (Ferrer and Zimmer, 2013), and also maintain
marine biodiversity (Pereira et al., 2017).

In coral reefs, the chemically mediated ecological roles
seem to have their greatest expression compared with other
marine environments (Hay, 2009), encompassing actions such
as defense against consumers and pathogens, interference in the

evolution of feeding preferences and specialization in tri-trophic
interactions, antifouling and allelopathy property, and cascade
effects on population regulation and structuring community.
Therefore, we believe that chemical mediations exhibit the
same dimension and importance as structuring for rhodolith
beds as well as for coral reefs. Although invisible, chemicals
and epithallus sloughing from the rhodolith-forming coralline
algae and associated bacteria, fleshy macroalgae and marine
invertebrates seems to be a major venue by which is promoted
and maintained the biodiversity of rhodoliths beds worldwide
(Figure 1B). However, the presence and importance of chemical
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FIGURE 1 | (A) A diverse community of macroalgae and invertebrates inhabiting a rhodolith bed at the Abrolhos Bank, Brazil. Photo by Áthila Bertoncini/Rede
Abrolhos. (B) Possible mediation among organisms in rhodolith beds that may be key for its community structuring.
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mediation in rhodolith beds are still overlooked and should be
adequately recognized in future integrated studies.
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