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Evolved magmas, including highly explosive rhyolites, are mainly

generated by extraction of viscous melts from solid residues either

in (1) partial melting zones within the crust (dominantly

up-temperature evolution with newly formed silicic melt), or in (2)

long-lived crystallizing mush zones fed by mafic to intermediate

magmas (dominantly down-temperature evolution with residual

silicic melt). Although both processes undoubtedly occur and are

generally coupled, allowing for mixing between mantle and crustal

components, we argue that combined field, thermal, geochemical,

and geophysical observations favor residual melt extraction from

crystalline mushes as the likely scenario in all tectonic settings.

Depending on the main melting process in the mantle, two

end-member differentiation trends occur: (1) a dry lineage leading

to hot-reduced rhyolites and granites in magmatic provinces fueled

by decompression melting of the mantle; (2) a wet lineage leading

to cold-oxidized rhyolites and granites in subduction zones dominated

by flux melting of the mantle.

KEY WORDS: rhyolite; REE; differentiation; plutonic^volcanic

connection; mush

I NTRODUCTION
The origin of rhyolites deserves much attention as they
generate some of the largest volcanic eruptions on record
(see issue of Elements on Supervolcanoes, February 2008).
One possible mechanism to produce these high-viscosity,
volatile-rich, but generally crystal-poor magmas is by
extracting interstitial melt trapped within large, upper
crustal mush zones (defined as ‘as mixture of crystals and
silicate liquid whose mobility is inhibited by a high fraction
of solid particles’ Bachmann & Bergantz, 2004; Hildreth,

2004; Eichelberger et al., 2006; Miller & Wark, 2008). This
interstitial melt extraction appears to occur most efficiently
when mush zones contain 50^60 vol. % crystals so that
chamber-wide convection currents are hindered by the for-
mation of a quasi-rigid crystalline skeleton (rheological
transition from liquid to solid behavior occurs at �50^60
vol. % crystals, Marsh, 1981; Brophy, 1991; Vigneresse et al.,
1996; Petford, 2003) but the permeability is still high
enough that melt can be efficiently extracted (McKenzie,
1985; Wickham, 1987; Bachmann & Bergantz, 2004). Most
of these mush zones end up forming silicic plutons
(Lipman, 1984; Bachmann et al., 2007b; Hildreth &
Wilson, 2007; Lipman, 2007), although some erupt as crys-
tal-rich ignimbrites (Lipman et al., 1997; Lindsay et al.,
2001; Bachmann et al., 2002; Maughan et al., 2002).
A potential geochemical test for this hypothesis is to

compare the composition of aplites with high-silica rhyo-
lites. Aplites are highly evolved, fine-grained dyke-like
structures, commonly found within granitic bodies (sensu
lato), which are thought to also form by interstitial melt
extraction from highly crystalline silicic magmas (e.g.
Jahns & Tuttle, 1963; Miller & Mittlefehldt, 1984; Hibbard
& Watters, 1985; Eichelberger et al., 2006). This geochem-
ical comparison between aplites and high-silica rhyolites
was recently attempted by Glazner et al. (2008), who
reported significant differences in Sr, Yand rare earth ele-
ment (REE) concentrations between them, and therefore
challenged the hypothesis that voluminous high-silica
rhyolites could be derived by melt extraction from large
crystalline mushes of granodioritic composition.
The purpose of this paper is to re-examine the relation-

ship between rhyolites, silicic plutons (granite sensu lato)
and aplites from different tectonic settings (convergent
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margins, divergent margins, and hotspots, fueled by differ-
ent mantle melting regimes). When integrating indepen-
dent lines of evidence from geochemical, geophysical and
field observations, we argue that rhyolites, silicic plutons
and aplites have a clear genetic connection. This connec-
tion appears not to be restricted to any particular tectonic
setting as co-magmatic silicic plutons, rhyolites, and aplites
in a given magmatic province typically represent respec-
tively the solidified mush zones, and the interstitial liquids
extracted from them at different stages of evolution.

TRACE ELEMENTS AND
CRYSTAL RESIDUES
The Earth’s magmatism can be roughly divided in two
main trends on the basis of the dominant melting process
in the mantle. In a convergent margin environment, mafic
magmas (the primary drive of the Earth’s magmatism; e.g.
Hildreth, 1981) arise dominantly as a result of flux melting,
induced by addition of volatiles to the mantle wedge from
the subducting slab (e.g. Davies & Stevenson, 1992;
Schmidt & Poli, 1998; Ulmer, 2001; Parman & Grove,
2004), and differentiation trends commonly follow a fairly
wet (and oxidized) path. In contrast, drier, more reduced
conditions dominate in areas of mantle upwelling charac-
teristic of hotspots, continental rifts, and mid-ocean ridges
(MOR), as magmatism is produced by near-adiabatic
decompression melting of the mantle (e.g. Kushiro, 2001).
The difference in PH2O and fO2 that prevails in the

source regions of the different tectonic settings leads to dif-
ferent mineral assemblages. For example, the stability
of hydrous minerals, clinopyroxene and oxides is enhanced
at the expense of plagioclase in subduction zones (e.g.
Holloway & Burnham, 1972; Gaetani et al., 1993).

Because the mineral assemblage present during magma
evolution controls the concentrations of trace elements in
igneous rocks (e.g. Rollinson, 1993), silicic magmas pro-
duced in wet environments show significant differences in
trace element concentrations from those in dry environ-
ments at comparable silica contents.
As pointed out by Christiansen (2005) and Christiansen

& McCurry (2008), rhyolites can be divided in two cate-
gories: (1) the hot^dry^reduced rhyolites, occurring
mostly above areas of mantle upwelling (hotspots and con-
tinental rifts); (2) the cold^wet^oxidized rhyolites, typi-
cally found in subduction zones. This observation appears
robust despite the presence of hot^dry^reduced rhyolites in
some subduction zones (e.g. Puyehue rhyolite, Gerlach
et al.,1988) and cold^wet^oxidized examples in extensional
environments (e.g. Bishop Tuff; Hildreth, 1979; even if the
BishopTuff magma is not as oxidized as most arc rocks, e.g.
Scaillet & Evans, 1999). Both types of rhyolites have very
similar major element concentrations, but show different
trace element contents; in particular, for rare earth ele-
ments (REE, Fig. 1). In wet^oxidized environments, crys-
tallization of amphibole and titanite, which sequester
middle REE (MREE) and heavy REE (HREE) (þ Y)
(Frey et al., 1978; Hildreth, 1979; Lipman, 1987; Wones,
1989; Bachmann et al., 2005; Davidson et al., 2007a;
Glazner et al., 2008), produces an increasingly pronounced
U-shaped pattern with progressive differentiation. A deep
Eu negative anomaly is not expected, because (1) plagio-
clase crystallization (which removes Eu and Sr from the
melt) can be delayed in water-rich environments (e.g.
Johannes & Holtz, 1996), and (2) titanite and amphibole
do not take up Eu as much as the other REE (lower parti-
tion coefficient for Eu than adjacent REE; e.g. Bachmann
et al., 2005). In contrast, the dry, reduced magmas crystal-
lize abundant olivine, pyroxenes, and plagioclase, which
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Fig. 1. Typical REE patterns for the two types of high-SiO2 rhyolite (cold^wet^oxidized and hot^dry^reduced; see text for details) and aplites
from different tectonic settings. FC glass refers to interstitial glass from the Fish Canyon magma (Bachmann et al., 2005). Most patterns taken
from Glazner et al (2008). Other data obtained from the literature (see text) and Appendix 1.
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do not host REE (except Eu in plagioclase). This assem-
blage produces REE patterns that show deep, negative Eu
anomalies with otherwise fairly straight and distinctively
high light REE (LREE) and HREE concentrations [the
‘seagull’ pattern of Glazner et al. (2008)].
With the exception of garnet, phases other than amphi-

bole, titanite and plagioclase are unlikely to play a major
role in the shape of REE patterns. In highly evolved
systems (470wt % SiO2), REE-rich mineral phases such
as allanite, chevkenite, and monazite are common
(e.g. Wolff & Storey, 1984; Bea, 1996), but as they occur
late in the evolution of magmas and are always in low
modal amounts, they have less opportunity to significan-
tly fractionate REE. Only garnet is known to be an impor-
tant residual phase in high-pressure hydrous mafic
magmas (e.g. Hildreth & Moorbath, 1988; Mu« ntener &
Ulmer, 2006) and strongly sequesters HREE.
Rhyolites, silicic plutons, and aplites from similar

tectonic environments have REE patterns that match
those described above (seagull vs MREE^HREE depleted;
Fig. 1). Most arc rhyolites [e.g. data from Andean rhyolites
of Glazner et al. (2008, fig. 1c) and examples from
the Aegean Arc, the Andes and the Taupo Volcanic zone
(Fig. 1; see also supplementary data and figure, available
for downloading at http//:www.petrology.oxfordjourn
als.org; Bryant et al., 2006;Wilson et al., 2006)] have lower
MREE and HREE than high-silica rhyolites from hotspot
systems and continental rifts. Conversely, REE patterns of
aplites from titanite-free hosts (Glazner et al. 2008, fig. 1d)
and alkaline leuco-granite (e.g. Charoy & Raimbault,
1994), are much more ‘seagull-like’, resembling the patterns
of rhyolites from hotspots or continental rifts (e.g.
Yellowstone, Coso, and Long Valley systems). Glazner
et al. (2008) did not reach this conclusion because their
focus was on REE (and Sr, Y) concentrations in aplites
from theTuolumne Intrusive Suite, produced by a regional
magmatic pulse related to Cretaceous subduction
(Bateman & Chappell, 1979), and they compared them
with high-silica rhyolites from several magmatic centers
not directly resulting from subduction processes
[Yellowstone area, Coso volcanic field, SW Nevada volca-
nic field, Long Valley magmatic system (Glazner et al.,
2008, fig. 1b)], although all tectonic settings were compared
in their fig. 1c.
Admittedly, some aplites do form more pronounced

U-shaped patterns than even the wettest, coldest rhyolites,
but this should be expected. Aplites are mostly generated
very late in the evolution of large plutonic bodies and are
commonly associated with pegmatites, as pointed out by
Glazner et al (2008) and several others [at least as far
back as Jahns & Tuttle (1963), including those in the
Tuolumne Intrusive Suite, studied by Fournier (1968)].
Aplites are typically mobilized after high-silica rhyolites,
and therefore record more extreme differentiation patterns

(particularly in REE) in water-rich and high-fO2 environ-
ments. Highly evolved cupolas in plutonic bodies (leuco-
granites) present the same characteristics (i.e. U-shaped
REE patterns; e.g. Lipman, 1987; Bryant et al., 2006). In
addition, we expect a continuum of REE pattern between
the two types of rhyolites; the wettest rhyolites from areas
of mantle upwelling (e.g. Bishop Tuff) can have patterns
that overlap with arc rhyolites (e.g. Glazner et al., 2008,
fig. 1b), and the driest arc-related rhyolites can have
seagull-like patterns (e.g. Mitropolous & Tarney, 1992).

VOLAT ILES , MUSH
TEMPERATURE AND
ERUPTABI L ITY
Apart from the difference in REE patterns between rhyo-
lites and aplites, other arguments have been raised against
the mush extraction model for hot^dry rhyolites (e.g.
Streck & Grunder, 2008). For instance, the magmatic tem-
peratures of these rhyolites are generally higher than those
recorded for near-solidus, granodiorite mushes; also, the
lack of intermediate compositions erupted in bimodal vol-
canic fields suggests a paucity of potential source mushy
reservoirs. These two observations can be reconciled with
the mush model if one considers that there are both hot
and cold types of crystalline mush and that intermediate
magmas have a lower probability of erupting in tectonic
environments that produce the driest magmas as volatile
saturation is delayed until more evolved compositions are
obtained.
As for rhyolites, granites (sensu lato) have been categor-

ized as hot^dry or cold^wet on the basis of geochemical
arguments and zircon saturation temperatures (e.g.
Clemens et al., 1986; Frost & Frost, 1997; King et al., 2001;
Miller et al., 2003). Therefore, we propose that in hotspot
systems and continental rifts, source mushes have hot^dry
granito|« d compositions (e.g. Barbarin, 1990; Frost & Frost,
1997; Frost et al., 1999; Edwards & Frost, 2000; Schmitt
et al., 2000), leading to high-silica rhyolites such as those
found inYellowstone, Coso, and SW Nevada, whereas con-
vergent margins have mushes of cold^wet granodioritic
composition (which sometimes erupt as large crystal-rich
ignimbrites called the Monotonous Intermediates;
Lindsay et al., 2001; Bachmann et al., 2002; Maughan et al.,
2002; Bachmann et al., 2005) and will lead to arc rhyolites
(Bachmann et al., 2007a; Hildreth, 2007; Fig. 2).
We concur that magmas with intermediate compositions

between basalts and rhyolites, which could act as source
mush zones for hot^dry^reduced rhyolites in hotspot sys-
tems and continental rifts (Streck & Grunder 2008), are
rare in the volcanic record [the ‘Daly Gap’; recognized
since Daly (1925) in bimodal volcanic fields] but not in the
plutonic realm. Although alkaline plutonic bodies of inter-
mediate composition (syenites, alkali granitoids) may be
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scarcer than calc-alkaline granodiorites, they cannot be
considered rare (e.g. Clemens et al., 1986; Eby, 1990;
Chappell et al., 1998; Frost et al., 2001) and are typically
found in the same tectonic settings as the hot^dry^reduced
rhyolites.
The paucity of erupted intermediate magmas is a likely

consequence of the same fundamental difference that
generates distinct types of REE patterns: abundance
of volatiles in the magmatic crustal column. As demon-
strated by the seminal work of Geist et al. (1995) on rhyo-
lites fromVolca' n Alcedo (Galapagos Archipelago), evolved
magmas are expected to be eruptible only after they
become saturated with volatiles (either by progressive
enrichment as a result of crystallization of anhydrous
phases and/or addition from the surrounding crust). In
both tectonic settings, basalts generally erupt from deep
sources by processes independent of volatile saturation,
but when these mafic magmas stall in the crust (triggering
differentiation), the compositions of subsequently erupted
magmas depends on the relative timing of volatile satura-
tion and rheological lock-up, as follows.
In volatile-rich systems, under upper crustal conditions,

volatile saturation is reached at intermediate compositions,
increasing the likelihood that such compositions will be
erupted (Fig. 3). Therefore, andesite^dacitic compositions
dominate the volcanic record in subduction zones (e.g.
Gill, 1981). More evolved compositions (rhyolites) are rare
in subduction zones (Hildreth, 2007) because (1) their par-
ental magmas (andesite or dacite) erupt, and (2) when
they do form, rapid crystallization induced by volatile
exsolution renders these volatile-laden systems generally
too crystal-rich to erupt (Cashman & Blundy, 2000;
Miller et al., 2003).
In drier systems, rheological lock-up by cooling-induced

crystallization is reached before volatile saturation for the
intermediate compositions. Therefore, most alkaline ande-
sites and dacites do not erupt. More differentiation is
required for volatiles to accumulate and eruption to occur
(Fig. 3), leading to the observed bimodal distribution of

chemical compositions of erupted products in hotspots
and continental rifts.

DIST ILL ING RHYOLITES
Silicic magmas can form either by partial melting of
metaigneous and metasedimentary supracrustal materials
(see recent references e.g. Bindeman et al., 2008; Bryan
et al., 2008; Glazner et al., 2008; Streck & Grunder, 2008)
or by fractional crystallization (� assimilation) of mafic
parents [countless references since Daly (1914) and Bowen
(1928)]. The mush model favors neither of them, as the
50^60 vol. % crystal window can be achieved by either
partial melting (up temperature) or progressive crystalli-
zation (down temperature). As discussed above, trace
(and major) element geochemistry mostly reflects P^T^
PH2O and fO2 conditions in the magma source zones, but
has generally been unsuccessful in discriminating between
the two processes (see Brophy, 2008). However, by examin-
ing lines of evidence that are largely independent of geo-
chemistry, we conclude that crustal melting will be
typically less important than fractional crystallization in
producing high-SiO2 magmas. We also stress that magma
columns will be dominated by mush zones (e.g. Marsh,
2004) and interstitial liquid extraction when magmas
reach intermediate crystallinities.
Melting of pre-existing crustal rocks has been a popular

hypothesis for decades, and has become the paradigm for
generating silicic magmas following the recognition of
‘restitic material’ (xenoliths and xenocrystic material) in
most large silicic units (e.g. Friedman et al., 1974; Worner
et al., 1985; Chappell et al., 1987; Gunnarsson et al., 1998;
Charlier et al., 2007; Bindeman et al., 2008; Bryan et al.,
2008). In addition, unambiguous isotopic evidence for recy-
cling of crustal material (e.g. Faure, 2001; Davidson et al.,
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2007b) indicates that silicic magmas are open to mass
exchange with surrounding crust, and the presence in the
rock record of peraluminous felsic rocks suggests that some
evolved magmas may be pure partial melts of pelitic mate-
rial (Munksgaard, 1984; Pichavant et al., 1988; Mahood
et al., 1996; Zeck & Williams, 2002; Clarke et al., 2005).
Lastly, at least since the publication of the famous memoir
by Tuttle & Bowen (1958), crustal melting is thought to
alleviate the heat and room problems associated with the
emplacement of large bodies of silicic magmas in the mid-
to upper crust.
However, modeling efforts to better constrain the heat

budget in basalt^crust interaction (Barboza et al., 1999;
Babeyko et al., 2002; Dufek & Bergantz, 2005; Annen et al.,
2006) has led to different views, particularly for the large
and abundant metaluminous units. State-of-the-art numer-
ical simulations of the energy balance between mafic
magmas and the pre-existing crust illustrate how difficult
it is to form volumetrically significant amounts of pure
crustal melts, even in the deep crust (Barboza et al., 1999;
Babeyko et al., 2002; Dufek & Bergantz, 2005; Annen et al.,
2006). A very high heat flow from the mantle is required
(460 mW/m2; Babeyko et al., 2002), and even in these hot
conditions, only the lowermost crust can melt in any signif-
icant amounts (using the well-constrained melting beha-
viors of pelites and amphibolites; Barboza et al., 1999;
Babeyko et al., 2002; Dufek & Bergantz, 2005; Annen et al.,
2006). Even remelting young intrusive rocks requires
large amounts of enthalpy and volatiles (Brown, 2007).
Heat and water that inevitably escape during solidification
must be replenished by the incoming magmas (e.g. Miller
et al., 2003).
In addition to the numerical models of heat and mass

transfer within the crust, field observations in exposed
crustal sections (the natural laboratories) are also in dis-
agreement with crustal melting being the dominant pro-
cess in producing voluminous silicic magma bodies.
Crustal sections, although sparse (Barboza & Bergantz,
2000; Greene et al., 2006; Jagoutz et al., 2007; Hacker et al.,
2008), suggest that widespread crustal melting does not
occur even when large pools of mafic melts intrude the
lower to mid-crust (Barboza & Bergantz, 2000). Careful
investigations of these sections (Voshage et al., 1990;
Barboza et al., 1999; Greene et al., 2006; Jagoutz et al.,
2007) all conclude that fractional crystallization of
mantle-derived basalts occurring synchronously with
some assimilation (energy-constrained AFC; e.g. Reiners
et al., 1995; Bohrson & Spera, 2001; Thompson et al., 2002)
is the dominant differentiation process.
We argue that, by analogy to basaltic lenses in mid-

ocean ridges (e.g. Sinton & Detrick,1992), magmas feeding
upper continental crust reservoirs are also generated by
interstitial liquid extraction from crystalline mushes
(Fig. 4; see also Wickham, 1987; Quick et al., 1994). The

presence of crustal ‘restitic’ material in silicic magmas
(including xenocrysts) can be reconciled by partial assim-
ilation of wall-rocks (both in the lower and upper crust;
e.g. DePaolo, 1981; DePaolo et al., 1992; Bohrson & Spera,
2001; Beard et al., 2004, 2005), and does not necessarily
require an origin by pure crustal melting. Most silicic
magmas bodies unquestionably undergo open-system
behavior and can blend components from both the mantle
and the crust [many decades of references, at least since
Daly (1914) and Bowen (1928)]. Energy-efficient reactive
bulk assimilation has been recognized in both plutonic
(Voshage et al., 1990; Beard et al., 2004, 2005) and volcanic
(Charlier et al., 2007) environments.

THE CHEMICALLY AND
THERMALLY OPEN- SYSTEM
MUSH MODEL AS THE EARTH ’S
WAY OF PRODUCING SIL IC IC
MAGMAS
The varieties of physical processes that produce distinct
trends of magmatic differentiation are rarely fully
expressed through a single chemical index or line of evi-
dence. The mush model discussed herein is based on speci-
fic and explicit links between plutons and volcanic systems,
and much of the supporting evidence, including field rela-
tionships, temporal^compositional relationships and geo-
physical observations, has been summarized elsewhere
(Bachmann & Bergantz, 2004; Hildreth, 2004; Marsh,
2004; Bachmann et al., 2007b; Lees, 2007). Hence, we
stress, using all the lines of evidence we could assemble,
that interstitial liquid extraction from highly crystalline,
long-lived mushes that are open to additions of mass and
heat can provide a rationalizing framework to explain
compositional diversity among magmas. Crystal mushes
physically and chemically control magmatic differentiation
and can produce the distinct characteristics observed in
rhyolites, from the hot and dry conditions in continental
rifts and hotspots, to the colder and wetter magmas more
typical in subduction zones.
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