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Rhythm Quantization 

for Transcription 

Automatic music transcription is the extraction of 

an acceptable musical description from performed 
music. Interest in this problem is motivated by the 
desire to design a program that automatically no- 
tates a performance. In general, when directly oper- 
ating on an acoustical recording of polyphonic music 

(polyphonic pitch tracking), this task has proven to 
be a difficult and as-yet unsolved problem. Surpris- 
ingly, even a simpler subtask still remains difficult, 
namely, producing an acceptable notation from a list 
of onset times (e.g., a sequence of MIDI events) un- 
der unconstrained performance conditions. 

Although quantization of a "mechanical" perfor- 
mance is rather straightforward, the task becomes 

increasingly difficult in the presence of expressive 
variations, which can be thought of as systematic 
deviations from a pure mechanical performance. In 
such unconstrained performance conditions, two 

types of systematic deviations from exact values 
occur. At small time scales, notes can be played 
accented or delayed. At large scales, tempo can 

vary; for example, the player can accelerate (or de- 

celerate) during performance, or slow down (ritard) 
at the end of the piece. In any case, these timing 
variations usually obey a certain structure, since 

they are mostly intended by the performer. More- 

over, they are linked to several attributes of the 

performance such as meter, phrase, form, style, 
etc. (Clarke 1985). To devise a general computa- 
tional model (i.e., a performance model) that takes 
all these factors into account is quite difficult. 

Another observation important for quantization 
is that we perceive a rhythmic pattern not as a se- 

quence of isolated onsets, but rather as a perceptual 
entity comprised of onsets. This also suggests that 
attributes of neighboring onsets such as duration, 
timing deviation, etc. are correlated in some way. 

This correlation structure is not fully exploited in 
commercial music software that performs auto- 
mated music transcription and score typesetting. 
The usual approach taken is to assume a constant 

tempo throughout the piece and to quantize each on- 
set to the nearest grid point implied by the tempo 
and a suitable prespecified minimum note duration 

(e.g., eighth, sixteenth, etc.). Such a grid-quantiza- 
tion scheme implies that each onset is quantized to 
the nearest grid point independently of its neighbors; 
thus, all of its attributes are assumed to be indepen- 
dent, and hence the correlation structure is not em- 

ployed. The consequence of this restriction is that 
users are required to play along with a fixed metro- 
nome and without any expression. The quality of 
the resulting quantization is only satisfactory if the 
music is performed according to the assumptions 
made by the quantization algorithm. In the case of 

grid quantization, this is a mechanical performance 
with small and independent random deviations. 

More elaborate models for rhythm quantization in- 
Computer Music Journal, 24:2, pp. 60-76, Summer 2000 

? 2000 Massachusetts Institute of Technology. 

60 Computer Music Journal 



directly take the correlation structure of expressive 
deviations into account. In one of the first quantiza- 
tion attempts, Longuet-Higgins (1987) used the hier- 
archical structure of musical rhythms. Desain, 
Honing, and de Rijk (1992) used a relaxation network 
in which pairs of time intervals were attracted to 

simple integer ratios. Pressing and Lawrence (1993) 
used several template grids, and compared both on- 
sets and inter onset intervals (IOIs) to the grid, se- 

lecting the best quantization according to some 
distance criterion. The Kant system by Agon and col- 

leagues (1994) developed at IRCAM used more so- 

phisticated heuristics, but was in principle similar to 
the method of Pressing and Lawrence (1993). 

The main criticism of these models is that the as- 

sumptions about the expressive deviations are im- 

plicit and are usually hidden in the model, and thus 
it is not always clear how a particular design choice 
affects the overall performance for a range of musi- 
cal styles. Moreover, it is not directly possible to 
use experimental data to tune model parameters to 
enhance the quantization performance. In this ar- 

ticle, we describe a method for quantization of on- 
set sequences. We begin by stating the transcription 
problem and defining the relevant terminology. Us- 

ing the Bayesian framework, we describe probabilis- 
tic models for expressive deviation and notation 

complexity, and show how different quantizers can 
be derived from them. Finally, we train the result- 

ing model on experimental data obtained from a 

psychoacoustical experiment, and compare its per- 
formance to simple quantization strategies. 

Problem Description 

We defined automated music transcription as the ex- 
traction of an acceptable description (music notation) 
from a music performance. In this study, we concen- 
trate on a simplified problem, where we assume that a 
list of onset times is provided, excluding tempo, pitch, 
or note-duration information. Given any sequence of 
onset times, we can in principle easily find a notation 

(i.e., a sequence of rational numbers) to describe the 

timing information arbitrarily well. Equivalently, we 

can find several scores describing the same rhythmic 

figure for any given error rate, where by "error" we 

mean some distance between onset times of the per- 

Figure 1. Different quanti- 
zations of an onset se- 

quence. A performed onset 

sequence example (a). A 
too-accurate quantization 
(b); although the resulting 
notation represents the 

performance well, it is un- 

acceptably complicated. 

Too-simple notation (c); 

although the notation is 

simpler, it offers a very 

poor description of the 

rhythm. The desired quan- 
tization (d) balances accu- 

racy and simplicity. 

C4 r a ?- a 4a 

(a) 

(b) 

(c) 

(d) 

formed rhythm and the mechanical performance (e.g., 
as would be played by a computer). 

Consider the performed simple rhythm in Figure 
la (from Desain and Honing 1991). A very fine-grid 
quantizer produces a result similar to Figure lb. 

Although this is an accurate representation, the re- 

sulting notation is far too complex. Another ex- 
treme case is the notation in Figure 1 c. Although 
this notation is simple, it is unlikely that it is the 
intended score, since this would imply unrealistic 

tempo changes during the performance. Musicians 
would probably agree that the "smoother" score 
shown in Figure 1 d is a better representation. 

This example suggests that a good score must be 

"easy" to read while representing the timing infor- 
mation accurately. This is apparently a trade-off, 
and a quantization schema must balance these two 

conflicting requirements. In the following section, 
we define more concretely what we mean by a 

simple score and an accurate representation. 

Rhythm-Quantization Problem 

Definitions 

In this section, we give formal definitions of the 
terms that we use in the derivations to follow. A 

performed rhythm is denoted by a sequence [ti], 
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where each entry is the time of occurrence of an 
onset. We denote a set with the typical element x, 
as {xi) If the elements are ordered (e.g., to form a 

string), we use [xi]. For example, the performed 
rhythm in Figure la is represented by tI 

= 0, t2 = 

1.18, t3 
= 1.77, t4 = 2.06, etc. We also use the terms 

"performance" and "rhythm" interchangeably 
when we refer to an onset sequence. 

An important subtask in transcription is tempo 
tracking, i.e., the induction of a sequence of points 
(beats) in time, which coincides with the human 
sense of rhythm (e.g., foot tapping) while listening 
to music. Significant research has already been 
done on psychological and computational model- 

ing aspects of this behavior (Large 1995; 
Toiviainen 1999). 

We call such a sequence of beats a tempo track, 
and denote it by 7 = 

[rj], where ri is the time at 
which the jth beat occurs. We note that for auto- 
matic transcription, 7 is to be estimated from [ti] . 

Once a tempo track 7 is given, the rhythm can 
be divided into a sequence of segments, each of du- 
ration t. - t-i_. The jth segment contains K. onsets, 
which we enumerate by k = 1... K.. The onsets in 
each segment are normalized and ienoted by 

t, =[t] for all t1? t1i i 
< where 

k ti 
- 

j-1 

tr = t 

___11 

(1) 
Sj --Tj-1 

Note that this is merely a re-indexing from a 

single index i to a double index (k,f). When an ar- 

gument applies to all segments, we will drop the 
index j. In other words, the onsets are scaled and 
translated such that an onset just at the end of the 

segment is mapped to unity and another just at the 

beginning to zero. The segmentation of a perfor- 
mance is given in Figure 2. 

Once a segmentation is given, the quantization 

process reduces to mapping onsets to locations, 
which can be described by simple rational num- 
bers. Because Western musical notation is gener- 
ated by recursive subdivisions of a whole note, it 

is also convenient to generate possible onset-quan- 
tization locations by regular subdivisions. We let S 

= [si] denote a subdivision schema, where [si] is a 
sequence of small prime numbers. Possible quanti- 
zation locations are generated by subdividing the 

unit interval [0,1]. At each new iteration i, the in- 
tervals already generated are divided further into 

si 
equal parts, and the resulting endpoints are added 
to a set C . Note that this procedure places the 

quantization locations on a grid of points cn, 
where two neighboring grid points have the dis- 
tance 1/ Fsi. We denote the first iteration number 
at which the grid point c is added to C as the 

depth of c with respect to S. This number is de- 
noted as d(clS). 

As an example, consider the subdivision S = [3,2,2]. 
The unit interval is divided first into three equal 
pieces, then the resulting intervals into two, and so 
on. At each iteration, generated endpoints are added 
to the list. In the first iteration, 0, 1/3, 2/3, and 1 are 
added to the list. In the second iteration, 1/6, 3/6, 
and 5/6 are added, etc. The resulting grid points 
(filled circles) are depicted in Figure 3. The vertical 
axis corresponds to d(clS). 

If a segment t is quantized (with respect to S, the 
result is a K-dimensional vector with all entries on 
some grid points. Such a vector we call a code vector, 
and denote as c = [ck]. i.e., cC x C C ... x C = CK. We 
call a set of code vectors a code book. Since all en- 
tries of a code vector coincide with some grid points, 
we can define the depth of a code vector as 

d(c S)= d(c I S). (2) 
ckEC 

A score can be viewed as a concatenation of 
code vectors c.. For example, the notation in Fig- 
ure 4a can be represented by a code-vector se- 

quence as in Figure 5. Note that the representation 
is not unique: both code-vector sequences repre- 
sent the same notation. 

Performance Model 

As described in the introduction, musical perfor- 
mances are subject to several types of systematic 
deviations. In the absence of such deviations, every 
score would have only one possible interpretation. 
Clearly, two natural performances of a piece of mu- 
sic are never the same. Even performances of very 
short rhythms show deviations from a strict me- 
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Figure 2. Segmentation of 
a performance by a 

tempo track (vertical 
dashed lines): 7 = [0.0, 

1.2, 2.4, 3.6, 4.8, 6.0, 7.2, 

8.4]. The resulting seg- 
ments are t = [0], t = 

[0.475,0.717], etc. 

Figure 3. Depth of grid- 

point c by subdivision 
schema S = [3,2,2]. 

A= 1.2 

, C V 0? CV , VO V 0) 
c 

•cJ 
c: atoo 3 CD o Cc 

c,- 66 66o 666o 

I% ) _0iO) m Y U . r- -co P .- N CO C) C 

d d d o d o d d 0 d 

Figure 2 

Figure 3 d(clS) 

1 
....... 

* * * 
. 

2 I 
I I * 

0 1/2 1 
c 

chanical performance. In general terms, a perfor- 
mance model is a mathematical description of such 

deviations; it describes how likely a score is mapped 
to a performance (see Figure 4). Before we describe a 

probabilistic performance model, we briefly review 

a basic theorem of probability theory. 

Bayes's Theorem 

The joint probability p(A,B) of two random vari- 
ables A and B defined over the respective state 

spaces SA and S, can be factorized in two ways: 

p(A, B)= p(B I A)p(A)= p(A I B)p(B) (3) 

where p(A I B)denotes the conditional probability 
of A given B for each value of B, this is a probabil- 
ity distribution over A. Therefore ?p(A I B) = 1 for 

any fixed B. The marginal distribution of a vari- 
able can be found from the joint distribution by 
summing over all states of the other variable: 

p(A)= p(A,B)= p(A I B)p(B). (4) 
BESB BeSB 
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Figure 4. A simplified 
schema of onset quantiza- 
tion: a notation (a) de- 

fines a score (b) which 

places onsets on simple 
rational points with re- 

spect to a tempo track 

(vertical dashed lines). 
The performer "maps" (b) 
to a performance (c). This 

process is not determinis- 

tic; in every new perfor- 

mance of this score, a 

(slightly) different perfor- 
mance would result. A 

performance model is a 

description of this sto- 
chastic process. The task 

of the transcriber is to re- 

cover both the tempo 
track and the onset loca- 

tions in (b), given (c). 

(a) 

S, . o 

(c) 

V ci C 

F: s " a 14 

It is understood that summation is to be replaced 
by integration if the state space is continuous. 

Bayes's theorem results from equations 3 and 4: 

p(A B)p(B) 

BESB 

The proportionality follows from the fact that the 

denominator does not depend on B, because B is al- 

ready summed over. This rather simple-looking 
equation has surprisingly far-reaching conse- 

quences and can be directly applied to quantization. 
Consider the case that B is a score and SB is the set 
of all possible scores. Let A be the observed perfor- 
mance. Then equation 5 can be written as 

p(score performance) oc p(performance score) x p(score) (6) 
posterior oc likelihood x prior. 

The intuitive meaning of this equation can be 
better understood if we think of quantization as a 
score-selection problem. Since there is usually not 
a single correct notation for a given performance, 
several possibilities will exist. The most reason- 
able choice is to select the score c which has the 

highest probability given the performance t. Tech- 

nically, we name this probability distribution as 
the posterior p(clt). The name posterior comes 
from the fact that this quantity appears after we 
observe the performance t. Note that the posterior 
is a function over c, and assigns a number to each 
notation after we fix t. We look for the notation c 
that maximizes this function. Bayes's theorem 
tells us that the posterior is proportional to the 

product of two quantities, the likelihood p(tlc) and 

the prior p(c). Before we explain the interpretation 
of the likelihood and the prior in this context, we 

first summarize the ideas in compact notation as 

p(c t) ocP(t c)p(c). (7) 

The best code vector c* is given by 

c = arg maxp(c t) (8) 
coCK 

In technical terms, this problem is called a 
maximum aposteriori (MAP) estimation problem, 
and c* is called the MAP solution of this problem. 
We can also define a related quantity L (minus log 
posterior) and try to minimize this quantity rather 
then maximizing equation 7 directly. This simpli- 
fies the form of the objective function without 

changing the locations of local extrema, because 

log(x) is a monotonically increasing function. The 

quantity L is defined as 

L = -log p(c I t) oc -log p(t cI ) + log 
1 

(9) 
p(c), 

The -log p(t I c) term in equation 9, which is the 
minus logarithm of the likelihood, can be inter- 

preted as a distance measuring how far the rhythm 
t is played from the perfect mechanical perfor- 
mance c. For example, if p(t I c) is of the form 

exp(- (t - c)2), then -log p(t I c) would be (t - c)2, the 

square of the distance from t to c. This quantity can 
be made arbitrarily small if we use a fine grid, how- 

ever, as mentioned in the introduction. This would 

eventually result in a complex notation. 

However, a suitable prior distribution prevents 
this undesired result. The log 

p) term, which is 

large when the prior probability p(c) of the code 
vector is small, can be interpreted as a complexity 
term that penalizes complex notations. The best 

quantization balances these two terms in an opti- 
mal way. The precise form of the prior will be dis- 

cussed later. 
The form of a performance model, i.e., the likeli- 

hood, can be in general very complicated. How- 

ever, in this article we consider a subclass of 

performance models where the expressive timing 
is assumed to be an additive-noise component that 

depends on c. The model is given by 
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Figure 5. Two equivalent 

representations of the no- 

tation in Figure 3a by a 

code-vector sequence. 
Here, each horizontal line 

segment represents one 
vector of length 1 beat. 
The endpoint of one vec- 

tor is the same point in 
time as the beginning of 
the next vector. Note that 

the only difference be- 
tween two equivalent rep- 
resentations is that some 

beginning points and end- 

points are swapped. 

v - - -- 

ti = C + Ei (10) 

where e, is a vector that denotes the expressive 

timing deviation. In this article we assume that E, 
is normally distributed with zero mean and covari- 
ance matrix 1,(c), i.e., the correlation structure de- 

pends upon the code vector. We denote this 
distribution as EocN (0, 1, (c)). Note that when E is 
the zero vector, ZE 

- 0, the model reduces to a so- 
called mechanical performance. 

Example 1: Scalar Quantizer (Grid Quantizer) 

We now provide a simple example that applies 
these ideas to quantization. Consider a one-onset 

segment t = [0.45]. Suppose we wish to quantize 
the onset to one of the endpoints, i.e., we are using 
effectively the code book C = {[0],[1]}. The obvious 

strategy is to quantize the onset to the nearest grid 
point (e.g., a grid quantizer), and so the code vector 

c = [0] is chosen as the winner. 

The Bayesian interpretation of this decision can 
be demonstrated by computing the corresponding 
likelihood p(t I c) and the prior p(c). It is reasonable 
to assume that the probability of observing a per- 
formance t given a particular c decreases with the 
distance It - cl. One such probability distribution 

having this property is the normal (Gaussian) dis- 
tribution. Because there is only one onset, the di- 
mension K = 1, and the likelihood is given by 

(t C) 
= 

1 (t- c 

p 2Ct c) 2 
202 

. 
(11) 

If both code vectors are equally probable, a "flat" 

prior can be chosen, i.e., p(c) = [1/2,1/2]. The result- 

ing posterior p(c I t) is plotted in Figure 6. The deci- 

sion boundary occurs at t = 0.5, where p(c ll t) = p(c,2 
I t). The winner is given as in equation 8: 

V V V" V V 

V VVVV V V 

c' = arg max p(c I t). (12) 
C 

Different quantization strategies can be imple- 
mented by changing the prior. For example, if c = 

[0] is assumed to be less probable, we can choose 
another prior, e.g., p(c) = [0,3,0.7]. In this case, the 
decision boundary shifts from 0.5 toward 0.0, as 

expected. 

Example 2: Vector Quantizer 

Assigning different prior probabilities to notations 
is only one way of implementing different quanti- 
zation strategies. Other decision regions can be 

implemented by varying the conditional probabil- 
ity distribution p(tIc). In this section we demon- 
strate the flexibility of this approach for 

quantization of groups of onsets. 
Consider the segment t = [0.45,0.52] depicted in 

Figure 7. Suppose we wish to quantize the onsets 

again only to one of the endpoints, i.e., we are us- 

ing effectively the code book C = {[0,0],[0,1],[1, 1]}. 
The simplest strategy is to quantize every onset to 
the nearest grid point (e.g., a grid quantizer) and so 
the code vector c = [0,1] is the winner. However, 
this result might be not be desirable, since the in- 
ter-onset interval (IOI) has increased more than 14 
times (from 0.07-1.0). It is less likely that a human 
transcriber would make this choice, since it is per- 
ceptually not very realistic. 

We could try to solve this problem by employing 
another strategy. If 6 = t2 - t1 > 0.5, we use the 

code vector [0,1]. If 8< 0.5, we quantize to one of 
the code vectors [0,0] or [1,1], depending on the av- 

erage of the onsets. Using this strategy, the quanti- 
zation of [0.45,0.52] yields [0,0]. 

Although considered to be different in the litera- 

ture, both strategies are just special cases that can 

be derived from Equation 9 by making specific 
choices about the correlation structure (covariance 
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Figure 6. Quantization of 
an onset as Bayesian infer- 
ence. When p(c) = [1/2,1/2], 
at each t, the posterior 

p(clt) is proportional to the 

solid lines, and the deci- 

sion boundary is at t = 

0.5. When the prior is 

changed to p(c) = [0.3,0.7) 

(dotted lines), the decision 

boundary moves toward 0. 

Figure 7. Two onsets. 

0.45 

t p(tlc)p(cl) p(tlc2)p(C2) 

p(c -0.5 

C1 p(c,)=0.3 
v C2 

005 

Figure 6 

Figure 7 

matrix 1E) of expressive deviations. The first strat- 

egy assumes that the expressive deviations of both 
onsets are independent of each other. This is ap- 
parently not a realistic model for timing devia- 
tions in music. The latter corresponds to the case 
where onsets are linearly dependent; it was as- 

sumed that t2 = t1 + 6, and only 6 and 
tI 

were con- 
sidered in quantization. This latter operation is 

merely a linear transformation of onset times, and 
is implied by the implicit assumption about the 
correlation structure. Indeed, some quantization 
models in the literature focus directly on IOIs 
rather then on onset times. 

More general strategies, which can be difficult to 
state verbally, can be specified by different choices 
of I, and p(c). Some examples for the choice 

Y.P= and constant p(c) are depicted in Figure 8. The el- 

lipses denote the set of points that are equidistant 
from the center, and the covariance matrix 

Ie. 
de- 

termines their orientation. The lines denote the de- 
cision boundaries. The interested reader is referred 
to the work of Duda and Hart (1973) for a discussion 
of the underlying theory. 

Likelihood for the Vector Quantizer 

For modeling the expressive timing e in a segment 
containing K onsets, we propose the following 
parametric form for the covariance matrix: 

S1 

Pl,2 " 
Pl,K 

E (C)= p2 1,2 1 Pn,m 

Pn,m (13) 

LPl,K 
... ... ( 

where 

Pn,m = 
q exp(-- (cm - Cn)2). (14) 

Here, cm and 
cn 

are two distinct entries (grid 
points) of the code vector c, and 7 is a parameter 
between -1 and 1 that adjusts the correlation 

strength between two onsets. The other param- 
eter, X, adjusts the correlation as a function of the 
distance between entries in the code vector. When 
X is zero, all entries are correlated by the same 
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Figure 8. Tiling for 
choices of pand constant 

p(c). Onset quantization 

(i.e., grid quantization) 
used by many commer- 
cial notation packages 

corresponds to the case 

where p = 0. The IOI 

quantization appears 
when p - 1. Note that 

different correlation 
structures imply different 

quantization decisions, 
not necessarily onset or 

IOI quantization. The 

cross corresponds to the 

rhythm t = [0.45,0.52]. 

p=O 

1 

,-,•l 
/2 

0 1/2 1 

t1 

1t 

p 0.7 

0 1/2 1 

t1 

amount, namely 77. 
When X is large, the correlation 

rapidly approaches zero with increasing distance. 
This particular choice for p(e)reflects the obser- 

vation that onsets that are close to each other tend 
to be highly correlated. This can be interpreted as 
follows: if the onsets are close to each other, it is 
easier to quantify the IOI and then select an appro- 
priate translation for the onsets by keeping the IOI 
constant. If the grid points are far away from each 

other, the correlation tends to be weak (or some- 
times negative), which suggests that onsets are 

quantized independently of each other. In the fol- 

lowing section, we empirically verify this claim. 

p =0.3 

1 

..'1/2 

0 1/2 1 

ti 

p=l 

. - 
. 
. . . . 

.. 

/12/2 

0 1/2 1 

t1 

Prior for the Vector Quantizer 

The choice of the prior p(c) reflects the complexity 
of code vector c. In this article, we propose a com- 

plexity measure from a probabilistic point of view. 
The complexity of a code vector c = [c,] is deter- 
mined in this measure by the depth of ci with re- 

spect to the beat (see equation 2) and the time 

signature of the piece (see Figure 9). 
The prior probability of a code vector with re- 

spect to S is chosen as 

p(c I S) ocexp(-yd(c I S)). (15) 
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Figure 9. Complexity of a 

notation: when no other 

context is available, both 

onset sequences will 

sound the same (a); how- 

ever, the first notation is 

more complex (b). The as- 

sumed time signature de- 
termines the complexity 
of a notation. 

(b) 

Note that if y = 0, the depth of the code vector 
has no influence upon its complexity. If it is large 
((y = 1)), only very simple rhythms get reasonable 

probability mass. This choice is also in accordance 
with intuition and experimental evidence: simpler 

rhythms are more frequently used than complex 
ones. The marginal prior of a code vector is found 

by adding all possible subdivision schemes: 

p(c)= Ip(c I S)p(S) (16) 

where p(S) is the prior distribution of subdivision 
schemata. 

For example, one can select possible subdivision 
schemas as S, = [2,2,2], S2 

= [3,2,2], andS3 = [2,3,2]. 
If we have a preference toward the time signature 
(4/4), the prior can be taken as p(S) = [1/2,1/4,1/4]. 
In general, this choice should reflect the relative 

frequency of time signatures. We propose the fol- 

lowing form for the prior of S = 
[si]: 

p(S) oc exp(--X w(si)) (17) 

where w(si) is a simple weighting function given in 
Table 1. This form favors subdivisions by small 

prime numbers, reflecting the intuition that rhyth- 
mic subdivisions by prime numbers such as 7 or 
11 are far less common than subdivisions such as 
2 or 3. The parameter ? distributes probability 
mass over the primes. When ? = 0, all subdivision 
schemata are equally probable. As ? increases 
without limit in the positive direction, only subdi- 
visions with si = 2 have nonzero probability. 

Verification of the Model 

To choose the likelihood p(t I c) and the prior p(c) 
in a way that is perceptually meaningful, we ana- 

Table 1. w(si) 

si 

2 3 5 7 11 13 17 o/w 

w(si) 0 1 2 3 4 5 6 

lyzed data obtained from a psychoacoustical ex- 

periment in which ten well-trained subjects (nine 
conservatory students and a conservatory profes- 
sor) participated (Desain et al. 1999). The experi- 
ment consisted of a perception task and a 

production task. 

Perception Task 

In the perception task, the subjects were asked to 
transcribe 91 different stimuli. These rhythms 
consisted of four onsets to. . .t3, where to and t3 
were fixed and occurred exactly on the beat (see 
Figure 10). First a pulse was provided to subjects, 
and then the stimulus was repeated three times 
with an empty bar between each repetition. Sub- 

jects were allowed to use any notation as a re- 

sponse and to listen to the stimulus as often as 
desired. In total, subjects used 125 different nota- 

tions, of which 57 were used only once and 42 
were used more than 3 times. An example is 
shown in Figure 1 la. From this data, we estimate 
the posterior as 

q(c, 
t 

c)=n,(Ci) 
/ 

n(c,) (18) 
where nk (ci) denotes the number of times the 
stimulus tk is associated with the notation c,. 
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Figure 10. Stimulus of 
the perception task (a) 
and the stimuli for the 

perception experiment 
(b). The dots denote the 

rhythms tk, where 

k = 1.. .91. Grid spacing 
is 56 msec. 

to t1 t2 3 

(a) 

Stimuli 

1 

0 1 

(b) ti 

Production Task 

In the production task, the subjects were asked to 

perform the rhythms that they notated in the per- 
ception task. An example is shown in Figure 1 lb. 
For each notation c, we assume a Gaussian distribu- 
tion where 

qc(tIci) 
= 

N(Mpi,1j). (19) 

The mean and the covariance matrix are esti- 
mated from production data by 

i 1 k 
tk ik 

1; 

= (t 
k, 

- 

_ 
,)(t', 

- 
/I, 

(20) 

where 
tki 

is the kth performance of c, and N, is the 

Figure 11. Perception (a) 
and production (b) of the 

rhythm [2 1 1] (c = 

[0.5,0.75]). The diamond 

corresponds to the me- 
chanical performance. In 

(a), the size of the circles 
is proportional to the esti- 
mated posterior q(c I tk). 
In (b), the dots correspond 
to performances of the 

rhythm. 

3/4 

2/3 

*l /2- 

1/3 

1/4 

0 
0 1/4 1/3 1/2 2/3 3/4 

t1 

(a) 

3/4 

2/3 

,.1/2 

1/3 

1/4 

0 1/4 1/3 1/2 2/3 3/4 
ti 

(b) 
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total count of these performances in the data set. In 

the previous section, we proposed a model in which 
the correlation between two onsets decreases with 

increasing inter-onset interval. The correlation co- 
efficient and the estimated error bars are depicted 
in Figure 12, where we observe that the correlation 
decreases with increasing distance between onsets. 

Estimation of Model Parameters 

The probabilistic model p (c I t) described in the 

previous section can be fitted by minimizing the 
distance to the estimated target q (c I t). A well- 
known distance measure between two probability 
distributions is the Kullback-Leiber (KL) diver- 

gence (Cover and Thomas 1991), given as 

KL(q I1 p) = I dxq(x)log q(x) (21) 
p(x) 

The integration is replaced by summation for 

discrete-probability distributions. It can be shown 
that KL(q II p) 2 0 for any q,p and vanishes if and 

only if q = p (Cover and Thomas 1991). 
The KL divergence can be interpreted as a 

weighted average of the function log q(x)/p(x) with 

respect to weighting function q(x). If q(x) and p(x) 
are significantly different for some x (for which q(x) 
is sufficiently large), the KL divergence would also 
be large, and would indicate that the distributions 
are different. On the other hand, if the distribu- 
tions have almost the same shape, log q(x)/p(x) = 1 
for all x and the KL divergence would be close to 
zero since log(l) = 0. 

The KL divergence is an appropriate measure for 
the rhythm-quantization problem. We observed 
that for many stimuli, subjects gave different re- 

sponses, and consequently it is difficult to choose 

just one "correct" notation for a particular stimu- 
lus. In other words, the mass of the target distribu- 
tion q(c I t) is distributed among several code 
vectors. By minimizing the KL divergence, one can 
approximate the posterior distribution by preserv- 
ing this intrinsic uncertainty. The optimization 
problem for the perception task can be set as 

Table 2. Subdivisions 

i Si 

1 [2,2,2,2] 

2 [3,2,2] 

3 [3,3,2] 

4 [5,2] 

5 [7,2] 

6 [11] 

7 [13] 

8 [5,3] 

9 [17] 

10 [7,3] 

min KL(q(c I t)s(t) 1 p(e I t)s(t)) 

s.t. C > 0,-1 < 7 < 1, (22) 

A,, ?, yunconstrained 

where s(t) o S3(t - tk) is the distribution of the 
stimuli. This is a distribution that has positive 
mass only on the stimuli points tk. This measure 
forces the model to fit the estimated posterior at 
each stimulus point tk. We note that 

I t) 
P(t I c;a,A, 

r)p(c;4,y) 
p(c t) = p(t c;a,2A,7)p(c;.,y). (23) 

This is in general a difficult optimization prob- 
lem, owing to the presence of the denominator. 

Nevertheless, because the model has only five free 

parameters, we were able to minimize equation 22 

by a standard BFGS quasi-Newton algorithm 
(Matlab function fminu). In our simulations, we 
observed that the objective function was rather 

smooth, and the optimum found was not sensitive 
to starting conditions, which suggests that there 
are not many local minima present. 

70 Computer Music Journal 



Figure 12. Estimated cor- 
relation coefficient as a 

function of Ac = c2 - c1 on 
all subject responses: pro- 
duction (a); and percep- 
tion (b). 
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Table 3. Optimization results, CRtarget 
= 48.0; = indicates values fixed during 

optimization; ! indicates values estimated from production data 

Model Prior Likelihood Results 

Label y a A7 KL 
CRmodel/CRtarget 

I 1.35 0.75 0.083 2.57 0.66 1.30 77.1 

II 1.34 0.75 0.086 =0 =0 1.41 71.3 

III 1.33 0.77 0.409 =0 =0.98 1.96 51.4 

IV 1.34 0.74 0.084 =0 0.39 1.34 75.3 

V =0 =0 0.085 =0 =0 1.92 29.7 

VI =0 =0 0.083 2.54 0.66 1.89 32.7 

VII 1.43 0.79 !0.053 !3.07 !0.83 1.89 84.3 

Results 

The model was trained on a subset of the percep- 
tion data by minimizing equation 22. In the train- 

ing, we used 112 different notations (out of 125 
that the subjects used) that could be generated by 
one of the subdivision schemas in Table 2. To 

identify the relative importance of model param- 
eters, we optimized equation 22 by clamping some 

parameters. 
We use a labeling of different models as follows: 

Model I is the complete model, where all param- 
eters are unclamped. Model II is an onset quan- 
tizer ( =21I), where only prior parameters are 
active. Model III is (almost) an IOI quantizer, 
where the correlation between onsets is taken to 
be p = 0.98. Model IV is similar to Model I, with 
the simplification that the covariance matrix is 
constant for all code vectors. Since 2 = 0 and p = 71, 
Model V is an onset quantizer with a flat prior, 
similar to the quantizers used in commercial nota- 
tion packages. Model VI has only the performance 
model parameters active. 

In Model VII, the parameters of the performance 
model p (t I c) were estimated from the production 
data. The model was fitted to the production data 

q by minimizing 

KL 
(!(c I t)q(t) I p(c I t)q(t)) (24) 

where q(c,) = 
nk(,) 

/ 
Ink(,), i.e., a histogram ob- 

k 

. 

k, 

. 
tained by counting the subject responses in the 

perception experiment. 
Although approximating the posterior at stimuli 

points was our objective in the optimization, for 
automatic transcription we were also interested in 

the classification performance. At each stimuli tk 
by selecting the response that the subjects chose 
the most, i.e., ck = arg maxq(c tk), we could 
achieve the maximum possible classification rate 
on this data set, given as 

CRtarget xnk(ckX100. (25) 

Here, Z = 
nk(ck) , the total number of measure- 

ments. Similirly, if we select the code vector with 

the highest predicted posterior Ck = arg max p(c tk) at 

each stimulus, we achieve the classification rate of 

the model denoted as 
CRmode1. 

The results are 
shown in Table 3. The clamped parameters are 

tagged with an "equal" sign. The results shown are 
for a code book consisting of 112 code vectors, 
which the subjects used in their responses and 
could have been generated by one of the subdivi- 
sions in Table 2. 

Model I performs the best in terms of the KL di- 

vergence. However, the marginal benefit obtained by 
choosing a correlation structure-which decreases 
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with increasing onset distances (obtained by varying 
X)-is rather small. One can achieve almost the 
same performance by having a constant correlation 
between onsets (Model IV). By comparing Model IV 
to Models II and III, we can say that, under the given 
prior distribution, the subjects are employing a 

quantization strategy that is somehow between pure 
onset quantization and IOI quantization. The choice 
of the prior is important, which can be seen from the 
results of Models V and VI, which perform poorly 
due to the flat prior assumption. 

Model VII suggests that for this data set (under 
the assumption that our model is correct) the per- 
ception and production processes are different. 
This is mainly owing to the spread parameter T, 
which is smaller for the production data. The inter- 

pretation of this behavior is that subjects deviate 
less from the mechanical mean in a performance 
situation. However, this might be because perfor- 
mances were carried out devoid of any context, 
thereby forcing the subjects to concentrate on ex- 
act timing. It is interesting to note that almost the 

same correlation structure is preserved in both ex- 

periments. This suggests that there is some rela- 

tionship between the production and perception 
process. The classification performance of Model 
VII is surprisingly high; it predicts the winner ac- 

curately. However, the fit of the posterior is poor, 
which can be seen by the high KL-divergence score. 

For visualization of the results, we employ an 

interpolation procedure to estimate the target pos- 
terior at other points than the stimuli (see the ap- 
pendix). The rhythm space can be tiled into 

regions of rhythms that are quantized to the same 
code vector. Estimated tiles from experimental 
data are given in Figure 13a. 

In practice, it is not feasible to identify explic- 
itly a subset of all possible code vectors that have 
nonzero prior probability. For example, the num- 
ber of notations that can be generated by subdivi- 
sions in Table 2 is 886, whereas the subjects used 

only 112 of these as responses. This subset must 

be predicted by the model as well. A simple grid 

quantizer tries to approximate this subset by as- 

signing a constant prior probability to code vectors 

only up to a certain threshold depth. The proposed 

prior model can be contrasted to this schema in 

that it distributes the probability mass in a percep- 
tually more realistic manner. To visualize this, we 

generated a code book consisting of all 886 code 
vectors. The tilings generated by Model I and 
Model V for this code book are depicted in Figures 
13b and 13c. To compare the tilings, we estimate 
the ratio 

Match = 
Amatch 

x 100 (26) 
Aotal 

where Amatch is the area where the model matches 
with the target, and Atotal is the total area of the 

triangle. Note that this is just a crude approxima- 
tion to the classification performance under the 

assumption that all rhythms are equally probable. 
The results are shown in Table 4. 

Discussion and Conclusion 

In this article, we developed a vector quantizer for 

transcription of musical performances. We consid- 
ered the problem in the framework of Bayesian 
statistics, where we proposed a quantizer model. 

Experimentally, we observe that even for quantiza- 
tion of simple rhythms, well-trained subjects give 
quite different answers. Clearly, in many cases, 
there exists more than one correct notation. In 
this respect, probabilistic modeling provides a 
natural framework. 

The quantizer depends upon two probability 
models: a performance model, and a prior. The per- 
formance model generalizes simple quantization 
strategies by taking the correlation structure of the 
music into account; for example, onset quantiza- 
tion appears as a special case. The particular para- 
metric form is shown to be perceptually 
meaningful, and facilitates efficient implementa- 
tion. It can also be interpreted as a suitable dis- 
tance measure between rhythms. 

The prior model can be interpreted as a com- 

plexity measure. In contrast to the likelihood, 
which has a rather standard form, the prior reflects 

our intuitive and subjective notion about the com- 

plexity of a notation, and derives from consider- 
ation of time signatures and the hierarchical (i.e., 
tree-like) structure of musical rhythms. The model 
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Figure 13. Tilings of the 

rhythm space: target (a); 
Model l, (?, y, aX, r) = 

(1.25,0.75,.083,2.57,0.66) 
(b); and Model V, (4, y, a, X, 
i) = (0,0,0.085,0,0). c). The 
tiles denote the sets of 

rhythms, which would be 

quantized to the same 

code vector. Both Models I 

and V use the same code 

book of 886 code vectors. 
Since Model V assigns the 
same prior probability to 

all code vectors, the best 

code vector is always the 

nearest code vector (in 
Euclidian distance), and 

consequently, the rhythm 
space is highly fragmented. 
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Table 4. Amount of match between tilings generated by the target and models 

I II III IV V VI VII 

Match 58.8 53.5 36.1 59.0 3.8 3.1 56.7 

is verified and optimized by data obtained from a 

psychoacoustical experiment. The optimization 
results suggest that prior and likelihood param- 
eters can be optimized independently, since 

clamping one set of parameters affects the optimal 
values of others only very slightly. This property 
makes the interpretation of the model easier. 
Since we explicitly state the probability model, we 
can make comparisons between models by using 
the KL divergence as a goodness of fit measure. In- 

deed, any other model that computes a posterior 
distribution p(c I t) could be compared in a quanti- 
tative manner using this framework. A class of 
statistical tests to determine whether one model is 

significantly better than another is known as 

bootstrapping (Efron and Tibshirani 1993). This 
methods can be used to estimate error bars on the 

KL-divergence measures to determine any signifi- 
cant differences between models. 

We must stress the point that the particular pa- 
rameter settings we found from our data do not 

represent the ultimate means of performing quan- 
tization for every circumstance. First, the model 
does not use any other attributes of notes (e.g., du- 
ration or pitch), which might provide additional 
information and hence a better quantization. Sec- 

ond, we have not addressed the context informa- 
tion. Theoretically, such improvements could be 

integrated by proposing more complex likelihood 
and prior models. As already demonstrated, since 
all the assumptions are stated as distributions, cor- 

responding optimal parameters can be estimated 
from experimental data. A practical but important 
limitation is that parameter estimation in more 

complex models requires a larger data set; other- 

wise, the estimation can be subject to overfitting. 
A large data set is difficult to collect, since one ef- 

fectively must rely on psychoacoustical experi- 
ments, which are inherently limited in the 
number of experimental conditions one can im- 

pose (e.g., number of onsets, tempo, context, etc.). 
Nevertheless, we believe that the current frame- 
work is a consistent and principled way to investi- 

gate the quantization problem. 

Acknowledgments 

This research is supported by the Technology 
Foundation STW, applied science division of NWO, 
and the technology program of the Dutch Ministry 
of Economic Affairs. The first author is thankful to 
David Barber for stimulating discussions. 

References 

Agon, C., G. Assayag, J. Fineberg, and C. Rueda. 1994. 
"Kant: A Critique of Pure Quantification." Proceed- 
ings of the International Computer Music Confer- 
ence. San Francisco: International Computer Music 

Association, pp. 52-59. 

Clarke, E. F. 1985. "Structure and Expression in Rhyth- 
mic Performance." In P. Howell, I. Cross, and R. 
West, eds. Musical Structure and Cognition. London: 
Academic Press. 

Cover, T. M., and J. A. Thomas. 1991. Elements of In- 

formation Theory. New York: Wiley. 
Desain, P., R. Aarts, A. T. Cemgil, B. Kappen, H. van 

Thienen, and P. Trilsbeek. 1999. "Robust Time- 
Quantization for Music." Preprint 4905-H4 of Audio 

Engineering Society (AES) 106th Convention. 
Munich, Germany: AES. 

Desain, P., and H. Honing. 1991. "Quantization of Mu- 
sical Time: A Connectionist Approach." In P. M. 
Todd and D. G. Loy, eds. Music and Connectionism. 

Cambridge, Massachusetts: MIT Press, pp. 150-167. 

Desain, P., H. Honing, and K. de Rijk. 1992. "The Quan- 
tization of Musical Time: A Connectionist Ap- 
proach." In Music, Mind, and Machine: Studies in 

Computer Music, Music Cognition, and Artificial In- 

telligence. Amsterdam: Thesis Publishers, pp. 59-78. 

Cemgil, Desain, and Kappen 75 



Duda, R. 0., and P. E. Hart. 1973. Pattern Classification 
and Scene Analysis. New York: Wiley. 

Efron, B., and R. Tibshirani. 1993. An Introduction to 
the Bootstrap. New York: Chapman and Hall. 

Large, E. W. 1995. "Beat Tracking with a Nonlinear Os- 
cillator." In Working Notes of the IJCAI Workshop 
on AI and Music: International Joint Conferences on 

Artificial Intelligence. Montreal, pp. 24-31. 

Longuet-Higgins, H. C. 1987. Mental Processes: Studies 
in Cognitive Science. Cambridge, Massachusetts: 
MIT Press, p. 424. 

Pressing, J., and P. Lawrence. 1993. "Transcribe: A 

Comprehensive Autotranscription Program." Pro- 

ceedings of the International Computer Music Con- 

ference. San Francisco: International Computer 
Music Association, pp. 343-345. 

Toiviainen, P. 1999. "An Interactive MIDI Accompa- 
nist." Computer Music Journal 22(4):63-75. 

Appendix: Estimation of the Posterior 
from Subject Responses 

Let tk be the stimuli points. The histogram esti- 

mate at tk is denoted by q(ci I tk), We define a kernel 

t-to 
2 

G(t;to, ) = exp(- (27) 
2a2 

where IIx II is the length of the vector x. Then the 

posterior probability of ci at an arbitrary point t is 

given as 

q(c t) = Cak(t)q(ci tk) (28) 
k 

a(t)= G(t;tk1, o 
where XG(t;t,,a). We have taken (Y = 0.04. 

r 
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