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Abstract 
Rhythmic behavior is ubiquitous in both human and non-human animals, but it is 

unclear whether the cognitive mechanisms underlying the specific rhythmic behaviors observed 

in different species are related. Lab experiments combined with highly controlled stimuli and 

tasks can be very effective in probing the cognitive architecture underlying rhythmic abilities. 

Rhythmic abilities have been examined in the lab with explicit and implicit perception tasks, 

and with production tasks, such as sensorimotor synchronization, with stimuli ranging from 

isochronous sequences of artificial sounds to human music. Here, we provide an overview of 

experimental findings on rhythmic abilities in human and non-human animals, while critically 

considering the wide variety of paradigms used. We identify several gaps in what is known 

about rhythmic abilities. Many bird species have been tested on rhythm perception, but research 

on rhythm production abilities in the same birds is lacking. In contrast, research in mammals 

has primarily focused on rhythm production rather than perception. Many experiments also do 

not differentiate between possible components of rhythmic abilities, such as processing of 

single temporal intervals, rhythmic patterns, a regular beat, or hierarchical metrical structures. 

For future research, we suggest a careful choice of paradigm to aid cross-species comparisons, 

and a critical consideration of the multifaceted abilities that underlie rhythmic behavior. 

 

Keywords: Rhythm, beat, temporal processing, cross-species, non-human animals, 

music 
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Introduction 

Rhythmic behavior is ubiquitous in both human and non-human animals. To understand 

the origin and function of rhythmic behavior and the cognitive mechanisms underlying it, cross-

species comparisons can be informative [1,2]. However, the specific rhythmic behaviors 

exhibited by different species vary wildly, from humans dancing to a regular musical beat, to 

rhythmic katydid calls, to bird vocalizations containing precisely timed rhythmic patterns. It is 

currently unclear which behaviors exhibited by different species result from similar underlying 

rhythmic abilities and cognitive mechanisms, and which can be considered qualitatively 

different.  

One of the challenges in cross-species comparisons of rhythmic abilities lies in the 

definition of what constitutes rhythmic behavior. First, to compare rhythmic abilities across 

species, we must decompose these abilities into components, rather than considering them as 

one entity [2–4]. Indeed, specific components of rhythmic abilities may differ between human 

and non-human animals, such as the ability to perceive a regular beat [5], and the ability to 

perceive hierarchical rhythmical structure [6]. Second, while many important insights about 

rhythmic behavior result from observations in the natural environment (see for example [7,8], 

this volume), rhythmic features of natural behavior may have evolved in a specific functional 

context, or may be emergent from group behavior [9]. Such rhythmic behaviors may not be 

related to a general ability in an individual to perceive and/or produce arbitrary rhythmic 

patterns, and the cognitive architecture underlying this ability. 

Lab studies using arbitrary and highly controlled stimuli and tasks (e.g., rhythms and 

rhythmic behaviors not found in the natural environment or behavior of a species) can be very 

effective to study the cognitive mechanisms underlying the production and perception of 

rhythms. First, by using arbitrary stimuli in the lab, the various components of rhythms and 

rhythmic behavior that co-occur in the natural environment can be studied in isolation. For 

example, rhythmic calls often contain multiple types of structure, both in time, as well as in 

order. The use of artificial stimuli in which only one or a few carefully controlled components 

are present, allows for testing exactly which rhythmic aspects are perceived or drive a particular 

response. Second, humans have the ability to perceive and produce arbitrary rhythmic stimuli 

outside of a functional context. By focusing on the processing of artificially constructed 

sequences of simple tones or pulses that are not necessarily tied to a specific function, lab 

studies are well suited to probe whether other animal species can also apply rhythmic abilities 

flexibly across different contexts, stimuli and motor patterns. Related to this, a human or non-

human animal may never show a certain rhythmic behavior in its natural environment if it is 
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not functionally relevant (e.g., tapping to a non-metric rhythm), but lab studies may show that 

the capability to do so is present [10]. Finally, by using tasks that probe individuals, rather than 

groups, lab studies can focus on rhythmic abilities of the individual, rather than rhythms that 

are emergent from group interactions. 

Thus, highly controlled lab studies with arbitrary stimuli and tasks provide several 

advantages and possibilities for studying rhythmic abilities. However, rhythmic behavior has 

also been associated with social ([11]; [8], this volume), and emotional [12] factors that are 

hard to reproduce in a lab setting. Moreover, the lack of functional meaning in arbitrary stimuli 

that are unlike real music or vocalizations may affect the motivation to attend to such stimuli 

[13], making it necessary to artificially elicit the motivation to engage with rhythm in the lab 

(i.e., by using food as a reward). Finally, responses required in the lab may be far removed from 

rhythmic behavior in the natural environment (e.g., for humans, finger tapping may not have 

much to do with dancing in a social setting, and for a songbird, detecting isochrony may not be 

relevant to mate choice). Ultimately, understanding the full breadth of rhythmic abilities in 

human and non-human animals therefore requires both types of approaches: lab-based 

experiments with arbitrary stimuli and tasks, on which we focus here, as well as observations 

on and experiments with more natural stimuli and tasks, as discussed elsewhere ([14]; [7], this 

volume). 

In lab experiments, a great heterogeneity of paradigms has been used to probe rhythmic 

abilities, making cross-species comparisons difficult. To better understand which components 

of rhythmic abilities are similar across species, a comparison should be made between studies 

using similar methodology and probing similar aspects of rhythmic behavior. Here, as a starting 

point in this endeavor, we provide an overview of experimental findings on rhythmic abilities 

in human and non-human animals, and what these reveal about similarities and differences in 

these abilities. We critically consider the tasks and stimuli used, to arrive at recommendations 

for future research that aims to determine the cognitive mechanisms underlying rhythmic 

abilities across species.  

Components of rhythmic abilities 

Rhythm is often defined as “a sequence of events in time” [15], or a pattern of multiple 

time intervals demarcated by the onsets of those events [16]. While processing of one single 

duration (e.g., duration discrimination) is considered a very fundamental part of timing abilities 

in the broader sense [3], it can be dissociated from processing a sequence of multiple intervals 

[5]. Therefore, we focus on the perception and production of rhythmic sequences, spanning 
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multiple events. For an overview of single interval timing, we refer to several excellent reviews 

(e.g., [17,18]).  

In rhythmic sequences, several types of structure can be discerned (Figure 1). First, 

humans can perceive and produce rhythmic patterns of longer and shorter temporal intervals. 

Second, when a sequence contains accented events with a regular temporal spacing, humans 

can perceive a regular, periodic beat in response to a rhythm, and synchronize movement to the 

beat [19]. The beat is not always directly associated with the structure of the rhythmic pattern: 

A regular beat can be extracted from time-varying, non-isochronous rhythms, highlighting that 

it is a perceptual rather than a stimulus feature [15]. Finally, rhythms can contain hierarchical 

metrical structure, with the salience of events depending on the hierarchical ordering of beats 

(e.g., “meter”, such as alternating strong and weak beats in a march).  

 

 

Figure 1. Structure in rhythm. Coloring of events (black and white) indicates the perceived salience 
when a beat (dotted line) is present, or when a hierarchical metrical structure (dotted tree structure) 
creates more and less salient beats (grey shades; darker indicates more salient, with black being the most 
salient beats, and white subdivisions of the beat).  

 

The processes involved in perceiving rhythmic patterns and beats can be distinguished 

somewhat based on behavioral [20,21] and neural data [21]. However, it has also been proposed 

that the mechanisms used to process patterns and beats may be similar, both relying on 

oscillatory entrainment [22,23], or on probabilistic processes [24]. Similarly, while some 

consider meter to be a property of rhythm that is emergent from the presence of a beat in a 

dynamical systems perspective [25], others consider the hierarchical perception of meter as 

distinct from beat perception, and more related to language processing [6]. Thus, the precise 

Sequence of events

Rhythmic pattern 4 2 2 3 1 2 2

Beat

Meter

Musical notation
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relationship and interdependence of processing of rhythmic patterns, a beat, and meter remains 

a topic for future research [26,27]. It is also often not clear which type of structure elicits 

rhythmic behavior. For example, frequently used stimuli in rhythm studies – isochronous 

sequences – conceptually contain all three types of structure. Isochronous sequences have 

regularly spaced events, allowing for beat processing. Also, the pattern consisting of repeating 

single intervals can be learned [28]. Finally, even in isochronous sequences, humans perceive 

hierarchical structure in the form of alternating more and less salient tones [29]. Despite the 

relatedness of rhythmic patterns, beats, and meter, the division of rhythmic structure into these 

types provides a useful framework to compare paradigms and behaviors [26,30], and where 

possible, we will therefore consider whether rhythmic behavior is pattern-based, beat-based, or 

(hierarchical) meter-based. 

In humans, performance on perception and production tests of rhythmic abilities is 

correlated [3,4]. However, some individuals show normal perceptual and impaired production 

abilities, with normal performance in detecting small timing perturbations in isochronous 

sequences (anisochrony detection) and on a rhythm discrimination test, but an inability to 

synchronize their tapping to music [31]. Complementing this, two “beat-deaf” individuals were 

shown to have retained the capability to synchronize their tapping to a rhythm, while displaying 

perceptual deficits in anisochrony detection [32]. These findings suggest that perception and 

production of rhythm can be at least partially dissociated. Moreover, studying perceptual 

abilities in isolation provides the advantage of being able to test populations or animal species 

lacking the capability (or motivation) to perform certain rhythmic actions. For example, new-

born human babies have yet to learn how to synchronize movement to rhythm [33], but may be 

able to perceptually differentiate between sounds on and off the beat in musical rhythm [34] 

(but see [35]). Finally, perceptual tasks allow for perception to be probed without the possibly 

confounding factor of body movement [36]. Thus, in this overview, we will consider tasks 

probing perception and production abilities separately.  

Rhythm perception 

Perceptual tasks that require an overt estimation of time are considered explicit [37], 

such as discriminating between two rhythms (Figure 2C), or rating the rhythmicity of a 

sequence. Explicit tasks often require some training or instruction targeting the rhythm. In 

implicit tasks, a rhythm can be leveraged to enhance performance, but the task itself is unrelated 

to the rhythm [37]. For example, participants may detect pitch or intensity changes embedded 

in a rhythmic stream (Figure 2A), with better performance for events in metrically strong than 

in metrically weak positions [38]. Thus, in implicit tasks, processing of the task-relevant aspect 
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of the stimulus is expected to depend on the perceived rhythmic structure, but the rhythmic 

aspect of the stimulus itself is not task relevant nor explicitly trained. Implicit and explicit 

processing of rhythm rely to some extent on different neural networks [37], and have a different 

developmental trajectory in humans [39].  

 

 

Figure 2. Rhythm perception tasks. A) In implicit tasks, participants perform a task unrelated to the 
rhythm, such as detecting intensity changes. Performance is associated with the rhythmic structure, with 
better performance in more salient metrical positions. B) In explicit tasks, participants may for example 
discriminate between different categories of rhythms (I and II), or may judge whether two rhythmic 
patterns are the same (III) or different (IV). C) Variants of perceptual tasks have been done both in 
humans and non-human animals. For example, frogs’ mating preferences, measured as approach to a 
stimulus, can be used as a proxy for discrimination performance, and birds can be trained in 2AFC tasks. 

 

While implicit rhythm tasks have rarely been used in non-human animals, explicit 

rhythm tasks were used in birds, rats, crickets, and frogs. Birds and rats are usually first trained 

to discriminate two categories of rhythms (e.g., regular and irregular sequences, Figure 2B). 

Successful training indicates that the animal can differentiate between the sequences. However, 

this may not reveal whether the animals do this by attending to the rhythm or to some lower-

level feature, such as the presence of a specific interval in a specific position of a sequence. 

This requires subsequent presentation of test stimuli from the trained categories, but physically 

different (e.g., a different tempo) to probe generalization. Tasks include variants of Go/No-Go 

tasks, in which non-human animals get a food reward for responding to one but not the other 

type of rhythm, and two-alternative forced choice (2AFC) tasks, in which rewards are given 

when the correct response is chosen out of two responses each associated with a specific type 
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of rhythm, such as pressing a different lever for each rhythm type (Figure 2C). These tasks are 

similar to discrimination tasks often used in humans. While non-human animals of course do 

not provide explicit responses similar to humans, we consider these tasks explicit since the 

rhythm itself is task-relevant. Below we discuss findings from both explicit and implicit tasks 

in more detail. 

Explicit rhythm perception tasks  

Humans can differentiate between non-isochronous rhythms with regular accents 

(“strictly metrical rhythms”, with a strong beat, see Figure 2B-III for an example) and without 

regular accents (“weakly- or non-metrical rhythms”, with a weaker beat, see Figure 2B-IV for 

an example), by explicitly rating expected ease of tapping along [40,41], and beat presence 

[42]. Also, human ratings of rhythmicity show sensitivity to hierarchical structure [43,44].  

In discrimination tasks, humans can judge whether rhythms are in duple (“march”) or 

triple (“waltz”) meter [4], whether a metronome or non-isochronous metrical rhythm is 

speeding up or slowing down [4], and whether a beep track overlain on music is “on” or “off” 

the beat (Beat Alignment Test; BAT; [3,45,46]). Stimuli on these tasks vary in intensity, pattern, 

and metrical structure, and often include samples of real music, so it is not entirely clear what 

aspects of rhythmic abilities are probed. Also, while the BAT has been used to probe rhythm 

perception abilities in the general population [46], some of these explicit tasks use musical 

terminology and may therefore be less suitable for musical novices [40].  

A discrimination task of which variants have been used in non-human animals, is 

anisochrony detection (Figure 2B). Here, subjects are presented an isochronous sequence, in 

which one or multiple events can be displaced in time, and judge whether the sequence is 

“regular” (Figure 2B-I) or “irregular” (Figure 2B-II). Humans are generally capable of detecting 

irregularities around ten percent the size of the original isochronous interval, and many can 

detect irregularities that are much smaller [3,47–49]. Interestingly, while this task uses 

isochronous sequences – making it impossible to know whether the abilities probed are beat-

based, pattern-based, or both – the time difference detected by humans is typically 

approximately twice as small in anisochrony detection than in tasks probing single duration 

discrimination [50]. This can be explained either by assuming that humans leverage the 

regularity of the stimulus (beat-based), or that they benefit from the repeated presentation of 

the single interval [48]. 

Like humans, non-human animals can discriminate between regular and irregular 

sequences. Both rats (Rattus norvegicus) [51] and starlings (Sturnus vulgaris) [52,53] show 

tempo generalization on these tasks (e.g., they will differentiate between regular and irregular 
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test sequences at rates that were not trained), suggesting that they base discrimination on the 

overall rhythmic structure, not just on learning one interval. This is in contrast to zebra finches 

(Taeniopigea guttata) [54] and pigeons (Columba livia) [55]. Zebra finches can discriminate 

between regular and irregular sequences, but generalize less to tempo changes than starlings 

(but see [56] for evidence of somewhat more flexible rhythmic abilities in zebra finches). 

Pigeons have trouble not just in tempo generalization but also in discriminating regular and 

irregular sequences during training.  

In addition to discriminating regular and irregular sequences, humans can discern tempo 

differences between sequences with inter-onset intervals differing by as little as two percent in 

duration [48], but, like for anisochrony detection, whether this is beat-based or based on 

processing absolute durations (or both) is not clear. Similarly, several species of birds are 

sensitive to rate differences in isochronous sequences. This sensitivity may depend on different 

mechanisms in different species. Starlings can be trained to differentiate between sequences 

with rates of 4 (“slow”) and 8 (“fast”) events per second, and will generalize to comparisons of 

sequences at double tempo, with 8 events per second now eliciting “slow” responses, and 16 

“fast” responses, showing sensitivity to relative rate [57]. In contrast, pigeons base 

discrimination of different rates on the absolute lengths of events and intervals, rather than the 

sequence tempo [55]. Both canaries (Serinus canaria) and budgerigars (Melopsittacus 

undulatus) can also differentiate between sequences of different tempi, though it is unclear 

whether this is based on comparing absolute intervals or rates [58]. In crickets and frogs, mate 

preference has been used to study whether they differentiate between calls with different calling 

rates (Figure 2C). Calls or chirps are often large repetitive units made up of smaller units called 

pulses or syllables, and both calls and pulses have characteristic species-specific rates. 

Preferences for calls/chirps are often for faster rates, but preferences for pulse rates are often 

species-specific [59–61], indicating that these species are sensitive to rate differences. In 

crickets, this preference may be driven by differences in instantaneous stimulation [62], and/or 

by neurons that are tuned to a specific pulse rate [63], suggesting possible pre-existing 

preferences for a particular call rate. 

While discrimination of rate and regularity in isochronous patterns can be achieved by 

multiple mechanisms, including single duration perception, some studies have explicitly 

targeted pattern-based and beat-based rhythm perception. Using a 2AFC task, humans were 

shown to recognize whether two rhythmic patterns are the same (Figure 2B-III) or different 

(Figure 2B-IV, see [10,19,64,65]). Typically, humans perform better for patterns with than 

without a beat (“beat-based advantage”, see [19]). Thus, while these tasks explicitly test 
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perception of the rhythmic pattern, implicitly, beat-based perception can be probed by 

comparing performance on metrical and non-metrical rhythms [66]. Of note, auditory short-

term memory may affect task performance, especially for longer rhythms [67]. 

Both starlings [68] and zebra finches [69] can also discriminate between different 

rhythmic patterns, as can female crickets and frogs, who selectively move towards certain 

calling rhythms – demonstrating the ability to discriminate different rhythms [70]. Using a 

similar paradigm, budgerigars were shown to preferentially move towards metrical (females) 

or non-metrical (males) patterns [71]. Likewise, rats differentiate between “Happy Birthday” 

and a rhythmically scrambled version of the song [72]. While these studies explicitly targeted 

rhythmic pattern structure, performance could be based on memorizing only the first temporal 

interval [72]. Interestingly, jackdaws (Corvus monedula) were shown to not only distinguish 

two rhythmic patterns, but to maintain discrimination with tempo changes, suggesting more 

advanced abilities, based on the pattern, or even the beat [73], in contrast to zebra finches, 

budgerigars [74], and starlings [75], who seem to have limited ability to use the beat to 

distinguish stimuli, but rather attend to absolute durations.  

Implicit rhythm perception tasks 

Humans implicitly leverage rhythmic structure in isochronous sequences for the 

detection and discrimination of pitch differences [20,76], temporal shifts [77], sounds at hearing 

threshold [78], and silent gaps [79,80]. Humans also perform better at detecting timbre and 

intensity differences in salient metrical positions (“on the beat”) than in non-salient metrical 

positions (“off the beat”) in non-isochronous metrical rhythms (Figure 2A), possibly showing 

some sensitivity to hierarchical structure in rhythm [21,81–83]. Finally, humans can learn 

structure from patterns without a beat, and leverage this when detecting intensity or pitch 

changes in rhythmic sequences [20,21].  

The implicit influence of rhythm on performance can also be probed after a rhythm 

ceases, based on the idea that entrainment to a beat outlasts physical stimulation [84]. In 

humans, the effects of rhythmic stimulation last up to two cycles after input ceases, with better 

performance in phase than out of phase with the previous rhythmic context when detecting 

threshold sounds in noise [84], and when performing a pitch comparison task [85]. Note 

however, that the latter study could not be replicated [86], possibly due to only a proportion of 

humans showing lasting effects of a beat [27,86]. 

Surprisingly, studies using equivalent implicit paradigms in non-human animals are 

rare. Some work has been done in macaques, but with scalp EEG instead of behavioral 

responses as an outcome measure [87,88]. A rare study looking at how rhythm implicitly affects 
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behavior in zebra finches found that these birds more readily learned a novel song sequence in 

an isochronous than in a jittered context [89], akin to humans showing improved sequence 

learning when rhythmic structure is present [90], and suggesting that these birds can leverage 

regularity in a sequence to optimize perception. 

To sum up, in both explicit and implicit perceptual tasks, humans have been shown to 

be able to detect a beat, rhythmic patterns, and hierarchical metrical structure. These rhythmic 

abilities were shown in both musically trained and untrained subjects, though especially for 

explicit tasks [40] and the perception of hierarchical structure [43], training seems to improve 

performance. Using discrimination tasks akin to explicit timing tasks in humans, some species 

of birds, rats, crickets, and frogs were shown to discern different rhythmic patterns, but several 

of these findings can be explained by simple discrimination of single absolute temporal 

intervals. Rats, jackdaws, starlings, and possibly zebra finches show behavior (e.g., tempo 

generalization) that can only be explained by assuming they perceive relations between 

different intervals in a pattern. While this may appear to suggest that the ability for relative 

timing is somewhat rare, the overall paucity of non-human data makes it difficult to draw 

meaningful conclusions on why it is present in some, but not other species. 

Rhythm production 

The workhorse of rhythm production ability tests is sensorimotor synchronization 

(SMS, Figure 3): the coordination of movement with an external rhythm [91]. While the 

movement can be with any effector, in humans, most studies involve finger tapping. Variants 

of SMS probe whether subjects can maintain an internal representation of rhythm in the absence 

of a pacing signal, like in the synchronization-continuation task, which has an initial pacing 

signal (usually isochronous), after which a subject is required to continue tapping at the same 

rate. For excellent and comprehensive overviews of the tapping literature we refer to [91,92]. 

Here, we highlight a few findings of interest to cross-species comparisons.  

In SMS, measures of performance include the mean and variability of the inter-tap 

interval, and the asynchrony between movement and the pacing rhythm [92]. Humans tend to 

tap earlier than the pacing signal, a phenomenon known as negative mean asynchrony (NMA). 

NMA has been related to rhythmic anticipation abilities in SMS. However, the usefulness of 

NMA as a marker of rhythmic abilities can be questioned. First, any asynchrony shorter than 

the shortest possible reaction time (~150 ms) can be considered evidence of predictive behavior 

[92]. Second, with musical or instrument-specific training, NMA generally decreases to values 

close to zero [93], while rhythmic abilities likely do not become worse with training. Finally, 

while synchronization with different effectors has been suggested to originate from shared 
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underlying rhythmic abilities [94], NMA depends on the effector used for synchronizing, with 

larger NMA for foot than finger tapping [95], and no NMA for other movements, such as 

walking on the spot [96]. Thus, the origin of NMA and its relation to rhythmic abilities is not 

yet clear [92]. In SMS, when a pacing rhythm is perturbed (e.g., deviates from perfect 

periodicity), humans will adapt their tapping using two mechanisms: phase and period 

correction. The former is considered automatic, and subjects may be unaware of adjusting their 

taps to phase perturbations, while the latter requires intentional effort [91,92]. 

 

 

Figure 3. Rhythm production tasks. A) Sensorimotor synchronization (SMS) involves synchronizing 
movement to a rhythm, and varies from 1:1 synchronization to an isochronous sequence (I), to tapping 
the beat to a non-isochronous pattern (II), and tapping the pattern itself (III). In unpaced tasks, tapping 
is continued after the input ceases. B) Different movements can be used in SMS, such as finger taps in 
primates and humans, head bobs in sea lion and parrots, and chirps in katydids. 

 

Most humans are capable of synchronizing their movement to an external rhythm, but 

synchronization precision and range are affected by musical experience and age. Musicians 

outperform non-musicians on various tapping tasks [10,97–100], and tapping variability is 

larger in children and older adults [101]. Also, while humans are generally capable of tapping 

regular intervals between 150 and 2000 ms, the range of tapping in children and non-musicians 

is more restricted [91,102]. Synchronization accuracy also depends on the effector used, with 

reports of more coupled synchronization (i.e., less variable relative phase difference between 

the pacing signal and movement) to a beat with foot, hip, and torso movement than with head 

and hand movement [103,104], but also slower adjustment to perturbations in the pacing signal 

for lower limb movement than finger tapping [105,106], the latter possibly caused by increased 

biomechanical constraints on maintaining postural balance. 

Non-human animals in rhythm production studies are often trained with operant 

methods to synchronize an arbitrary motor action, like pressing a lever or pecking a key, with 

I

II

III

A B
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auditory (and occasionally visual) stimuli, akin to SMS in humans. Some initial research tested 

the timing abilities of humans and three rhesus macaques (Macaca mulatta) with 

synchronization-continuation [107]. Subjects were presented with a visual or auditory 

isochronous pattern and required to push a button synchronously with the stimulus for six 

intervals: three with the stimulus present, and three after the stimulus stopped. The macaques 

took an average of 16 months to reach stable performance. Unlike humans, they never tapped 

with an NMA (e.g., preceding the time of the stimulus). However, their asynchronies were 

faster than simple reaction times, suggesting some anticipatory behavior [92].  

In three subsequent studies, rhesus macaques [108] and Japanese macaques (Macaca 

fuscata) [109,110] achieved much higher performance than previously reported in SMS tasks, 

showing adjustment to tempo changes akin to humans [108], NMA, and generalization over 

different rates [108–110]. In all cases, the monkeys synchronized best to a visual metronome, 

contrary to the auditory advantage often reported for synchronization in humans. Importantly, 

in these monkey studies, anticipation was specifically rewarded, and feedback was given for 

every movement, showing the importance of motivational factors for rhythmic abilities ([7], 

this volume). Interestingly, budgerigars can be trained to synchronize their pecking to a 

metronome without requiring such substantial reward and feedback, showing both adaptation 

to tempo changes and occasional NMA [111]. Rats were shown to synchronize lever pressing 

with an isochronous audio-visual stimulus, with some tendency for anticipatory behavior as 

apparent from smaller asynchronies in response to regular than random sequences. However, 

only a few individuals managed the task, and only in a very limited range of tempi [112]. 

Some production studies have focused on spontaneous movement synchronization to 

rhythm. Japanese macaque pairs were individually trained to perform a button-pressing task 

and, when paired with a partner, spontaneously synchronized their button presses [113]. 

Similarly, spontaneous and cooperative synchronization of drumming was observed in a 

bonobo (Pan paniscus) subject when a human partner drummed near the subject’s preferred 

tempo, though it was unclear whether the bonobo relied on the rhythm or the visual input [114]. 

Likewise, one chimpanzee (Pan troglodites) (out of three tested) synchronized responses to an 

isochronous stimulus [115], and budgerigars adjusted their pecking to an isochronous sequence 

without being prompted to do so [116]. Note that while spontaneous synchronization can be 

shown in humans, the occurrence of this phenomenon depends strongly on contextual factors 

[116,117]. 

Similarly to spontaneous SMS in humans, primates, and birds, males of several insect 

and frog species interact with each other to achieve synchronized signals, although studies of 
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this do not use arbitrary stimuli and motor responses but rather naturally evolved (and hence 

likely context-specific) behavioral synchronization [118–128]. This synchronization capacity 

has been studied not only through field observations, but also by examining individual 

responses to playback or visual presentation of artificial stimuli in the lab 

[119,121,124,125,128]. Signaling frogs and insects demonstrate a form of SMS by maintaining 

a fixed phase relationship with such stimuli, often either close to 0° (“synchrony”) or 180° (out 

of phase; “alternation”). These patterns have been shown in both acoustic (katydids, frogs, 

cicadas) and visual (fireflies) modalities. Katydids were shown to adjust their responses 

differently to stimuli heard at different phases during their calling cycle – demonstrating a form 

of phase correction [121,124,128–130]. This has been studied using Phase Response Curves, 

which describe how katydids lengthen or shorten their calling periods in response to stimuli 

presented at different points in their calling cycle. Models and simulations based on these curves 

demonstrate how different forms of phase-locking to external stimuli are enabled. In addition 

to showing phase correction, katydids and frogs can entrain their calls to stimuli presented at a 

(limited) range of rates. Playback experiments have been particularly useful in demonstrating 

that different species of katydids and fireflies entrain to external stimuli using different 

mechanisms [121,124,127–130]. These include adjustment of calling periods and resetting their 

calling cycles or a combination of both. In almost all frog and katydid species studied so far, 

SMS involves simple acoustic units repeated at a regular intervals. However, at least one 

species of katydid demonstrates SMS of multiple components of a complex call, consisting of 

a trill and chirps [130]. This suggests that future work might be called for investigating the 

possibility of more complex rhythm abilities in frogs and katydids with complex calls. The 

SMS-like behavior observed in insects and frogs is reminiscent of SMS in humans, primates, 

and birds, with the calls of other individuals serving as the pacing signal for the synchronizing 

animal. However, it must be noted that this behavior typically occurs within the context of 

natural or simulated signal exchanges, and may therefore be more comparable with studies of 

interpersonal synchronization in humans, as discussed elsewhere (see for example [131], this 

volume). 

Many rhythm production studies, both in human and non-human animals, have used 

isochronous stimuli. However, SMS can range from synchronizing to a metronome (1:1 

mapping between movement and sound) to synchronization to (the beat of) non-isochronous 

metrical rhythms (Figure 3A) and real music. Humans are even capable of tapping the pattern 

of non-metrical rhythms, though synchronization is more precise when a beat is present [100], 

highlighting that humans leverage the beat to improve tapping a rhythmic pattern, similar to 
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improved performance for metrical rhythms in discrimination tasks. Humans can also tap 

multiple hierarchical levels of regularity in rhythm [132], and with training and maturation, 

tend to tap to higher levels [102]. The ability of producing movement synchronized to 

hierarchical structure was also shown in studies looking at whole body movement, with 

different effectors being synchronized to different levels of regularity [133].  

Few non-human animals have been shown to be able to synchronize to the beat of real 

music, which requires a more complex mapping of movement to sound than synchronizing to 

a metronome. A California sea lion (Zalophus californianus) was trained to entrain her head-

bobbing not only to a metronome, but also to real (human) music, showing generalization over 

different rates and stimuli, and phase and period correction mechanisms akin to humans 

[134,135]. Two parrots, a sulfur-crested cockatoo (Cacatua sulphurea) and a grey parrot 

(Psittacus erithacus), were also shown to be capable of moving on the beat of real music, 

maintaining synchronization at varying tempos [136,137]. This behavior is suggestive of beat 

perception, though real music contains regularities based on patterns and hierarchy as well.  

Additional production tasks have been used in humans, like synchronization-

continuation tasks with a rate change just before the continuation phase starts, to probe tapping 

flexibility [3], completely unpaced tapping to measure spontaneous motor tempo and variability 

[102], and rhythm reproduction tasks (Figure 3C-III), which require subjects to repeat a pattern. 

Tapping back a pattern can be somewhat dissociated from tapping a beat [138], suggesting 

partly separate mechanisms underlying rhythmic abilities based on patterns and beats. In all 

these tasks, tapping variability can be diminished through musical training [10,100,102]. While 

the motor component in unpaced tapping is comparable to that in SMS, neuroimaging evidence 

suggests a dissociation between externally and internally generated rhythms [139], in line with 

some humans showing impaired unpaced but intact paced tapping [140]. Also, whereas paced 

tapping tasks generally have good test-retest reliability, unpaced tasks were found to be 

unreliable on an individual level [47]. 

In summary, humans can show rhythmic movement related to the beat, the rhythmic 

pattern, and hierarchical structure. While primates can produce rhythmic movement 

synchronized to a metronome, this behavior strongly depends on motivational factors, such as 

a food reward that can be introduced in the lab setting. Also, like for insects and frogs, 

synchronization was only shown for a metronome, which could result from anticipation based 

on absolute intervals. Two parrots and a sea lion showed flexible movement synchronization to 

real music reminiscent of human behavior, which may result from beat-based processing.  
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Table 1  

Overview of rhythmic abilities shown in different species 

Task/ability Rhythmic component Species 

Implicit perception: 
leverage rhythmic 
structure for task 
performance 

Isochrony Humans [20,76–80]; Zebra finches [89] 

Pattern Humans [20,21] 

Beat; Metrical structure Humans [21,81–83] 

Explicit perception: 
discriminate 
differences in 
rhythmic structure 

Pattern similarity 

Humans [10,19,64,65]; Starlings [68]; Zebra 
finches [69]; Crickets [70]; Katydids [70]; 
Frogs [70]; Budgerigars [71]; Rats [72]; 
Jackdaws [73] 

Rate (isochronous) 
Humans [4,48]; Starlings [57]; Pigeons [55]; 
Canaries [58]; Budgerigars [58]; Crickets 
[61]; Frogs [59] 

Rate (non-isochronous) Humans [4] 

Isochrony Humans [3,47–49]; Rats [51]; Starlings 
[52,53]; Zebra finches [54,56] 

Beat; Metrical structure Humans [4,40–44]; Budgerigars [71] 

Synchrony between 
rhythm and metronome Humans [45,46] 

Paced production: 
synchronize movement 
to pacing signal 

Isochronous 
Humans [91,92]; Macaques [107–110]; 
Budgerigars [111]; Rats [112]; Sea lion 
[134,135] 

Beat (non-isochronous) Humans [91,92]; Parrots [136,137]; Sea lion 
[134,135] 

Pattern Humans [91,92,100] 

Metrical hierarchy Humans [91,92,102,132] 

Spontaneous (isochronous) 

Humans [116,117]; Macaques [113]; 
Bonobos [114]; Chimpanzees [115]; 
Budgerigars [116]; Katydids [121,124]; 
Frogs [119] 

Unpaced production: 
rhythmic movement 
after pacing signal 
ends 

Pattern reproduction Humans [100,138] 

Isochronous (continuation) Humans [91,92]; Macaques [107] 

Note. Overview of rhythmic abilities shown in different species, with (non-exhaustive) associated 
references.  
 

Discussion and outlook 

To better understand the function and cognitive underpinnings of rhythmic behavior, 

cross-species comparisons of experimental findings can be valuable. To arrive at a clear picture 

of which rhythmic abilities are shared between different species, rhythmic abilities must be 

subdivided, separating between perception and production of rhythmic patterns and taking into 
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account the multiple components of rhythmic structure. A summary of the rhythmic abilities 

discussed here can be found in Table 1. 

Concerning strict perception, many bird species, rats, frogs, and insects, were shown to 

distinguish rhythmic patterns. However, in most species, pattern recognition does not 

generalize to different tempi, suggestive of an absolute, duration-based, rather than a relative, 

beat-based mechanism involved. Beat-based perception, present in most humans, was only 

tentatively shown in jackdaws [73]. The absence of beat-based perception and limited flexibility 

fits into frameworks of rhythmic abilities coined elsewhere [2,141]. Concerning rhythm 

production, many diverse species are capable of predictive synchronization to an isochronous 

sequence. While at odds with the idea that beat-based synchronization is specific to a select 

number of species [1], the question is whether synchronization with a metronome necessarily 

evidences beat-based processing. First, the human capability to synchronize to variable, non-

isochronous, and hierarchically organized rhythms has not been shown in other species, with 

the exception of two parrots and a sea lion, that showed entrainment to music. Thus, like for 

perceptual abilities, rhythm production in humans seems exceptionally flexible when compared 

to most other species. Also, while some species show trained responses to arbitrary stimuli 

(humans, monkeys, some birds), others have only been shown to synchronize in the context of 

the natural behavior they show in rhythmic interactions (frogs), suggesting different underlying 

mechanisms. In summary, the research discussed here hints at beat-based processing, 

hierarchical processing, and tempo flexibility as being features of rhythm ability that are 

especially pronounced in humans (as suggested elsewhere – [2]). 

Notably, we identify several clear gaps in experimental research probing rhythmic 

abilities. First, hardly any perceptual rhythm tasks are attempted in primates and other 

mammals, nor in the bird species (cockatoos and parrots) that showed synchronization to real 

music. Although successful SMS implies detection of underlying rhythms, perceptual tasks can 

be more precisely controlled and allow investigation into what sound features synchronization 

may be based on. Second, implicit perceptual tasks, which can reliably show beat-based, 

pattern-based, and hierarchical rhythmic abilities in humans, are rarely used in non-human 

animals, but may provide an interesting addition to the non-human animal experiments. Third, 

motor synchronization tasks are lacking in some bird species that were tested on their perceptual 

rhythmic abilities (e.g., zebra finches). A clearer picture of both rhythm production and 

perception abilities may shed light on whether these are related, or can be dissociated in some 

species. Fourth, in production tasks in parrots, stimuli were real, acoustically rich music, 

making it hard to discern exactly which information the birds used to synchronize. In insects 
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and frogs, (semi)natural calls were used, which may be linked to interindividual 

synchronization, rather than to individual synchronization ability. A more standardized 

approach to stimulus and task selection might allow better comparability between species and 

experiments. Fifth, in both perception and production tasks, (isochronous) stimuli often do not 

allow for a clear differentiation between different types of structure processed in rhythm. Sixth, 

the range of non-human animals tested on rhythmic abilities in the lab is very limited and does 

not include species from all clades. While understandably related to practical limitations, this 

leaves large gaps in our understanding of rhythmic abilities across species. Related to this, while 

there is little evidence for some abilities in non-human animals (like hierarchical processing of 

rhythm), there is just as little evidence for the absence of these abilities: they have simply not 

been tested. Finally, future research may also differentiate between what is usually observed, 

and what is possible given the cognitive and neural constraints of a species. Testing the limits 

of rhythmic abilities – not only in non-human animals, but also in humans (for example in 

experts [10]) – may shed further light on the rhythmic abilities that give rise to rhythmic 

interactions across species and cultures. 
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