
ALEA, Lat. Am. J. Probab. Math. Stat. 18, 439–467 (2021)
DOI: 10.30757/ALEA.v18-20

Rhythmic behavior of an Ising Model
with dissipation at low temperature

Raphaël Cerf 1, Paolo Dai Pra 2,3, Marco Formentin 2,4 and
Daniele Tovazzi 2

1 DMA, Ecole Normale Supérieure, CNRS, PSL University, 75005 Paris.
Laboratoire de Mathématiques d’Orsay, CNRS, Université Paris– Saclay, 91405 Orsay.
2 Department of Mathematics “Tullio Levi-Civita”, University of Padova, Via Trieste 63,
35121 Padova, Italy.
3 Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134
Verona, Italy
4 Padova Neuroscience Center, University of Padova, via Giuseppe Orus 2, 35131 Padova,
Italy.
E-mail address: paolo.daipra@univr.it
E-mail address: marco.formentin@unipd.it
E-mail address: raphael.cerf@ens.fr
E-mail address: daniele.tovazzi@unipd.it

Abstract. In this paper we consider the Glauber dynamics for the one-dimensional
Ising model with dissipation, in a mesoscopic regime obtained by letting inverse
temperature and volume go to infinity with a suitable scaling. In this limit the
magnetization has a periodic behavior. Self-organized collective periodicity has
been shown for many mean-field models but, to our knowledge, this is the first
example with short-range interaction. This supports the view that self-organized
periodicity is not linked with the mean-field assumption but it is a thermodynamic
phenomenon compatible with short range interactions.

1. Introduction

Rhythmic behavior emerges in many biological and socioeconomic complex sys-
tems (Izhikevich, 2007; Turchin and Taylor, 1992; Weidlich and Haag, 1983), and
may involve a wide range of time scales: from the fraction of a second of neural
rhythms, to the years of ecological and epidemiological rhythms. Such a behavior
cannot be ascribed to the single units of the system (e.g. cells or individual animals)
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but it is the result of the interactions within the network. In recent years many
stylized models have been proposed to identify possible origines of time-periodicity
(Giacomin and Poquet, 2015; Lindner et al., 2004; Scheutzow, 1985a,b; Shinomoto
and Kuramoto, 1986; Aleandri and Minelli, 2019). Existing examples are mostly
restricted to mean-field interaction, i.e., the interaction network is the complete
graph (Andreis and Tovazzi, 2018; Dai Pra et al., 2013; Collet et al., 2015, 2016;
Jahnel and Külske, 2014; Luçon and Poquet, 2020+; Luçon and Poquet, 2020). It
has been shown that periodicity may emerge in the thermodynamic limit in pres-
ence of some time-symmetry breaking features, such as dissipation (Collet et al.,
2015; Dai Pra et al., 2013), delay (Ditlevsen and Löcherbach, 2017; Touboul, 2019),
asymmetry in the pair interaction (Collet et al., 2016; Fernández et al., 2009).

In this paper we consider a dissipative version of the Glauber Dynamics for the
Ising model with nearest neighbor interaction. The dissipative model is obtained
from the standard Glauber Dynamics by introducing a linear mean-reversion that
drives the logarithm of the rates to a reference value (e.g. zero) in the intervals
between two consecutive spin-flips. The corresponding mean-field model has been
fully solved in Dai Pra et al. (2013). The picture that emerged is the following. The
Glauber dynamics, as the number N of spins diverges to infinity, converges to a
deterministic limit (macroscopic) evolution. In absence of dissipation this evolution
can be expressed in term of a single scalar parameter, the magnetization, which
evolves according to a nonlinear ordinary differential equation. At the critical value
of the inverse temperature βc = 1 this evolution exhibits a pitchfork bifurcation:
for β ≤ βc the equilibrium m = 0 is a global attractor, while as β > βc two nonzero
stable equilibria bifurcate from the null solution. As dissipation is turned on, the
macroscopic evolution can be reduced to a two dimensional ordinary differential
equation, still possessing a critical value βc for the inverse temperature, which now
becomes a Hopf bifurcation: as β > βc a unique stable periodic orbit stems from
the null solution.

Our aim is to show that the macroscopic evolution of the magnetization may be
time-periodic also in the dissipative nearest neighbor Ising model. The mean-field
case suggests that periodic orbits emerge in the dissipative model for temperatures
that would lead to spontaneous magnetization in the non dissipative system. It
would therefore be natural to consider the nearest neighbor Ising model on the two
dimensional lattice. This is however far beyond our mathematical understanding.
Note that, unlike in the mean-field case, there is no way of reducing the dynamics
in the thermodynamic limit to a finite-dimensional dynamical system. Thus we
base our analysis on the asymptotic dynamics of droplets. Unfortunately, we do
not have sufficient control on the dynamics of the droplets in the two dimensional
case. For this reason we consider the dissipative Ising model in one dimension.

It is well known that, at any fixed positive temperature, no spontaneous mag-
netization occurs. However magnetization can be produced by letting the inverse
temperature β diverge as the volume N goes to infinity. Indeed, consider an Ising
model on Λ = {−N,−N + 1, . . . , N − 1, N} with positive boundary condition and
focus on the spin at the origin; an elementary computation, based on the trans-
fer matrix Baxter (1982), shows that in equilibrium the probability of the event
{σ0 = +1} is

P+
N,β(σ0 = +1) =

[
coshN+1(β) + sinhN+1(β)

]2[
coshN+1(β) + sinhN+1(β)

]2
+

[
coshN+1(β)− sinhN+1(β)

]2 .
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Whenever N = o
(
e2β
)
the limβ,N P

+
N,β equals one, while this limit is between

zero and one when N is of order e2β . In this paper we assume the stronger
condition

lnN

β
→ c ∈ [0, 1[.

Note that the condition c < 2 would suffice for the equilibrium magnetization
to be one. However the microscopic dynamics of the dissipative system changes
dramatically as c crosses 1. For c < 1, starting from all equal spins, a droplet of
opposite sign forms and invades the space with high probability before the formation
of other droplets. For 1 < c < 2, several droplets form and merge before the space
is invaded. This last situation is more complicated and requires further work, not
yet fully under control. Our analysis is based on the study of the distribution of
two stopping times: T1 is the time the first spin flip occurs, i.e., when the first
droplet forms; Tc is the time needed after T1 for the initial configuration of, say,
all negative spins, to be replaced by all positive spins (covering time). We prove,
under a condition weaker than the c < 1 we just mentioned, that T1, when properly
rescaled, has a deterministic limit, with also a control on the fluctuations. Note
that this differs from the usual Glauber dynamics with no dissipation, where T1 is
simply exponential. When c < 1, after the occurrence of the first spin flip, with
overwhelming probability, the droplet grows with linear speed until it fills the space.
This covering time is much smaller than T1, so at the time scale of T1 we observe
periodic pulsing between homogeneous configurations.

The paper is organized as follows. In Section 2 we describe the model under
consideration and state our main results. All the proofs are postponed to Section 3.

2. Description of the model and results

In this section we present an Ising model with dissipation and we describe the
results we aim to prove.

Let S = {−1,+1} and consider a configuration of N -spins σ ∈ SΛN , where

ΛN = {1, 2, . . . , N} ⊆ Z

represents the set of sites of the spins. We assume periodic boundary condition, i.e.
σN ≡ σ1 and σ0 ≡ σN .
The stochastic Ising model with dissipation α ≥ 0 and inverse temperature β > 0 is
the Markov process (σ(t), λ(t))t≥0 with values in SΛN×RN evolving according to the
following dissipated dynamics: at a given time t ≥ 0, each transition σi(t)→ −σi(t),
i ∈ ΛN , occurs with rate

ri(t) := exp(−σi(t)λi(t)), (2.1)

where {λi(t)}i∈ΛN is a family of stochastic processes (local fields) evolving according
to

dλi(t) = −αλi(t)dt+ βdmi(t), i ∈ ΛN (2.2)
with α, β > 0 and

mi(t) =
∑
j∼i

σj(t), i ∈ ΛN , (2.3)
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where j ∼ i denotes the set of sites j which are neighbors of i (namely, i − 1 and
i + 1). Formally speaking, (σ(t), λ(t))t≥0 is a Markov process with infinitesimal
generator

LNf(σ, λ) =
∑
i∈ΛN

exp[−σiλi]
(
f(σi, λ− 2βσiv

i)− f(σ, λ)
)
− αλifλi(σ, λ), (2.4)

where fλi represents the partial derivative of f with respect to λi, σi is the con-
figuration obtained by flipping the state of the i-th spin and vi is a N -dimensional
vector such that

vik =

{
1, k = i+ 1 or k = i− 1,

0, otherwise.
In what follows, we will assume initial conditions on the form :

σi(0) = −1, λi(0) = −λN,β(i), for any i ∈ ΛN . (2.5)

Remark 2.1. By taking α = 0 (i.e. ruling out dissipation), we obtain a Glauber
dynamics for the classical 1-dimensional Ising model with periodic boundary con-
ditions, inverse temperature β and magnetic fields λi(0).

Our aim is to show that in a suitable large volume - low temperature limit, the
total magnetization of the system has a rhythmic behavior after a proper time scal-
ing: we briefly describe the phenomenon here.
Assuming initial conditions (2.5), the analysis of the evolution of (σ, λ)t≥0 is di-
vided into two parts. We begin by studying the occurrence time of the first spin
flip. Unlike the case with no dissipation (α = 0), where this time is exponentially
distributed, the dissipation produces a much higher concentration of the distribu-
tion of this time: indeed, it will converge to a deterministic value as γ,N ↑ +∞.
After the first spin-flip occurs, the change in the local field and the low temperature
(β ↑ +∞) favours the growth of a “droplet” (just a segment in the one-dimensional
case) of +1 spins, which invades the whole state space in an extremely short time
scale. At this point we are back to the situation of all equal spins. We will show
that by assigning the initial local fields λi(0) in a suitable way, the local fields at
the time the droplet has invaded the space is essentially opposite to the initial one,
producing the iteration of the same phenomenon. Since the two parts of the evolu-
tion (waiting for the first spin-flip and covering by the droplet) occur on different
time scales, we will consider a time-rescaled magnetization process to analyse the
macroscopic behavior.
To guarantee that the phenomenon described above occurs with overwhelming prob-
ability, we will assume that β,N ↑ ∞ in such a way that lnN

β → c ∈ [0, 1[. This
assumption guarantees that, after the first spin-flip, the droplet of +1 spins covers
the whole space before the birth of other droplets. As we will see in Section 3.2, this
allows a good understanding for the time taken by the droplet to cover ΛN . Indeed,
if lnN

β → c ∈ [1, 2[, a single droplet cannot invade the whole space: in this case, the
box of size N is too big to be covered by a single droplet, and many other droplets
of +1 spins appear. We believe that this does not rule out periodic behavior, but
it makes the analysis considerably harder.

In what follows, we will see that in the regime lnN
β → c ∈ [0, 1[ the waiting

time for the first spin flip is large, but has small fluctuations. These fluctuations,
however, have an impact on the growth time of the droplet. For this reason, while
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the waiting time of the first spin flip, rescaled by its mean, has a deterministic
limit, the rescaled growth time of the droplet keeps some randomness in the limit.
Due to this fact, the macroscopic evolution will not be strictly periodic, but it will
present regular oscillations with stochastic rhythm.

Before stating our main results, we introduce the graphical construction of the
process, that will be useful in the proofs to couple it with other processes.

Let {Ni}i∈N be a family of i.i.d. Poisson processes of intensity e4β and denote
the successive arrival times of the i-th Poisson process with {τi,n}n. Each arrival
time τi,n is associated with a random variable Ui,n, uniformly distributed on [0, 1].
The random variables {Ui,n}i,n are independent among themselves and indepen-
dent from the Poisson processes {Ni}i∈N. This concludes the construction of the
probability space. For a fixed N > 1, the process (σ, λ) evolves as follows: each
site i ∈ ΛN is associated with the process Ni; then, each point τi,n is accepted for
a spin flip only if

exp[−σi(τi,n)λi(τi,n)]

e4β
> Ui,n.

Whenever a point (τi,n) is accepted, the spin at site i is flipped and the values of
the local fields are updated in the following way:

λk(τi,n) =

{
λk(τ−i,n)− σi(τ−i,n)2β, k = i+ 1, i− 1

λk(τ−i,n), otherwise

At any time in which there is no accepted spin flips, the local fields evolves according
to

λ̇i(t) = −αλi(t), i ∈ ΛN .

One can check that this construction provides the rates prescribed by (2.4). Other
processes will be later coupled with (σ, λ) using this graphical construction.

2.1. First spin flip. In this paper we will prove asymptotic results in the limit as β
and N go simultaneously to infinity. In this section we assume the low temperature
condition

lim
Ne−β

β
= 0, (2.6)

that is weaker that what we will assume later on. Here and later, “lim” stands for
lim

N,β↑+∞
.

We begin by considering initial conditions of the form

σi(0) = −1 , λi(0) = λN,β(i) = λN,β + o(i,N, β) , 1 ≤ i ≤ N , (2.7)

where λN,β is a family of real numbers, o(i,N, β) is a family of real random variables
such that, as N and β go simultaneously to infinity, the following condition holds:

∀ε > 0 limP

(
sup
i
|o(i,N, β)| > ε

)
= 0 . (2.8)

This last condition states that the initial local fields are nearly constant. More
general initial conditions for the local fields will be considered later. To avoid
unnecessary complications, we also assume that the limit

lim
λN,β
lnN
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exists.
Our first goal is to study the time T1 of the first spin flip, defined as

T1 = inf
{
t ≥ 0 : ∃ i ∈ ΛN , σi(t) = 1

}
.

Theorem 2.2. Under assumptions (2.6), (2.7) and (2.8), we have the following
asymptotic behavior:

(a) if lim
λN,β
lnN < −1 then

XN,β := α lnN

(
T1 −

1

α
ln

(
−λN,β
lnN

)
− ln lnN

α lnN
− lnα

α lnN

)
(2.9)

converges in distribution as β,N → +∞ to a random variable X whose
distribution is given by

P (X > x) = exp (−ex) ; (2.10)

(b) if lim
λN,β
lnN ≥ −1 then T1 converges to zero in probability as β,N → +∞.

Theorem 2.2 states that, provided −λN,β is sufficiently large,

T1 =
1

α
ln

(
−λN,β
lnN

)
+

ln lnN

α lnN
+

lnα

α lnN
+

XN,β

α lnN
+ o

(
1

lnN

)
.

We will later choose λN,β in such a way that ln
(
−λN,β
lnN

)
converges to a strictly

positive constant.
To analyze the evolution of the system after T1, we will also compute the value

of the local fields immediately before the first spin flip:

λi(T
−
1 ) = λi(0)e−αT1 = − lnN + ln lnN + lnα+XN,β + o(i,N, β), (2.11)

where o(i,N, β) satisfies (2.8). Thus the initial value λN,β is essentially “forgotten”
at time T1.

2.2. Covering time. Now we study the evolution of the spin system after time T1,
so consider the processes (σ̃(t), λ̃(t))t≥0 such that

σ̃i(t) = σi(t+ T1)

λ̃i(t) = λi(t+ T1)
t ≥ 0, i ∈ ΛN .

By the strong Markov property, the evolution of (σ̃(t), λ̃(t))t≥0 is still described by
(2.1) and (2.2). Define

Tc := inf{t > 0 : σ̃i(t) = 1 for all i ∈ ΛN}
the time needed to reach the homogeneous configuration with all spins equal to +1.
The following theorem describes the asymptotic behavior of Tc as β,N ↑ +∞, and
it implies, in particular, that Tc → 0 as N → +∞. In what follows we assume (2.7)
as initial condition for the local fields.

Theorem 2.3. Let β,N ↑ +∞ in such a way that

lim
lnN

β
= c , lim

λN,β
lnN

< −1 , (2.12)

with c ∈ [0, 1[, and assume that conditions (2.7) and (2.8) hold. Then
Tc

N2

2α lnN e
−2β−XN,β

P−→ 1 (2.13)
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in probability, and
Tc

N2

2α lnN e
−2β

P−→ Z, (2.14)

where XN,β is defined in (2.9) and Z is a random variable distributed as e−X , with
X being the random variable introduced in (2.10). Moreover

λi(T1 + Tc) = 4β − lnN + ln lnN + α+XN,β + o(i,N, β), (2.15)

where o(i,N, β) satisfies (2.8).

Remark 2.4. The proof of Theorem 2.3 is based on the fact that, with probability
that goes to one as N → +∞, the droplet of spin +1 that forms at time T1 grows
at nearly constant speed up to the covering time Tc. This fact holds true, with no
change in the proof, even if

lim
λN,β
lnN

≥ −1.

In this case λi(T−1 ) ' λN,β as T1 ' 0, so

λi(T1 + Tc) = 4β + λN,β + o(i,N, β).

Thus, at time T1 + Tc the state of the system is the same as the initial state (2.7)
with all signs changed: all spins equal +1 and the local fields are nearly constant.
Moreover

lim
λi(T1 + Tc)

lnN
> 1,

due to the condition lim lnN
β = c ∈ [0, 1]. This allows to iterate the analysis.

2.3. Oscillating behavior. The result of Section 2.2 shows that starting with an
initial condition which is constant (say −1) for the spins and nearly constant for
the local fields, after two droplet expansions, with probability that goes to one as
N → +∞, the systems reaches a state of the form (2.7), with

λi = −4β + lnN − ln lnN +O(i,N) (2.16)

where O(i,N) is a bounded correction. It is therefore natural to assume λi(0) to
be as in (2.16). By the results above the following facts follow.

Theorem 2.5. Let γN,β = 4β − lnN + ln lnN and take the initial conditions

σi(0) = −1, λi(0) = −γN,β +O(i,N), i ∈ ΛN .

Fix n ∈ N and define the following stopping times, for j = 1, . . . , n

T1,j := inf

{
t >

j−1∑
k=0

(T1,k + Tc,k)
∣∣∣ σi(t) = (−1)j+1 for some i ∈ ΛN

}

−
j−1∑
k=0

(T1,k + Tc,k),

Tc,j := inf

{
t > T1,j +

j−1∑
k=0

(T1,k + Tc,k)
∣∣∣ σi(t) = (−1)j+1 for all i ∈ ΛN

}

−T1,j −
j−1∑
k=0

(T1,k + Tc,k)
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with T1,0 = Tc,0 = 0. Let {Yi}ni=1 be a sequence of i.i.d. random variables distributed
according to

P (Y1 > y) = exp (−ey) , ∀ y ∈ R.
Suppose β,N ↑ +∞ with the condition

lim
β,N

lnN

β
= c ∈ [0, 1[.

Then, for any j = 1, . . . , n,

α lnN

(
T1,j −

1

α
ln

(
−γN,β
lnN

)
− ln lnN

α lnN
− lnα

α lnN

)
d−→

γ,N↑+∞
Yj

Tc,j
N2

2α lnN e
−2β

d−→
β,N↑+∞

Zj ,

where Zj is distributed as e−Yj .

These results show that the system is governed by two time scales. The first spin
flip is concentrated around the time

t(1, N) =
1

α
ln

(
−γN,β
lnN

)
− ln lnN

α lnN
− lnα

α lnN
∼ 1

α
ln

(
4− c
c

)
as N → +∞, lnN

β → c ∈ [0, 1[ (note that if c = 0 then tN → +∞). The droplet
expansion occurs at the time scale

t(c,N) =
N2e−2β

2α lnN
,

which goes to zero as N → +∞, lnNβ → c ∈ [0, 1[. This suggests to consider the
time change for the magnetization process

mN (t) :=
1

N

∑
i∈ΛN

σi(t)

given by

θN (t) = t(1, N)

∫ t

0

1{|mN (t)|=1}dt+ t(c,N)

∫ t

0

1{|mN (t)|<1}dt, (2.17)

which “speeds up" time whenever all the spins are equal and we are waiting for
the following flip and “slows down" time whenever we are observing the very fast
invasion of a droplet of spins of the opposite sign. Then, we define a time-scaled
version of the total magnetization process by

m̃N (t) := mN (θN (t)). (2.18)

By Theorem 2.5 and the analysis performed in the proof of Theorem 2.3, we expect
that the process m̃N converges to a stochastic process x̃ with the following behavior:
x̃(0) = −1, then it does not move for a unit of time, then it takes a random time
Z1 to linearly grow from −1 to +1; after reaching +1, it does not move for a unit
of time, then it takes a random time Z2 to linearly decrease from +1 to −1 and so
on, where the random variables Z1, Z2, . . . are given in Theorem 2.5. We expect a
linear profile between −1 and +1 and also between +1 and −1 since in the proof
of Theorem 2.3 we saw that during the growth of the droplet each step occurs
essentially at the same time.



Rhythmic behavior of an Ising Model with dissipation at low temperature 447

Let us give a formal definition of the limiting process x̃: consider the determin-
istic trajectory x(t) such that

x(t) =


−1 for t ∈ [0, 1[,

2t− 3 for t ∈ [1, 2[,

+1 for t ∈ [2, 3[,

−2t+ 7 for t ∈ [3, 4[,

and then extended periodically on R+ for t ≥ 4. Then, consider the family of
random variables {Zi}i≥1 defined in Theorem 2.5 and define the following time-
changing process:

φ(t) =

∫ t

0

(
1{|x(s)|=1} +

∑
i≥1

Z−1
i 1{s∈[2i−1,2i[}

)
ds . (2.19)

Finally, the limiting process is defined as

x̃(t) = x(φ(t)). (2.20)

Theorem 2.6. Let γ and {Zi}i≥1 as in Theorem 2.5. Suppose β,N ↑ +∞ with the
condition lnN

β = c ∈ [0, 1[. Then, for any T > 0, the process (m̃N (t))t∈[0,T ] defined
by (2.18) converges, in the sense of weak convergence of stochastic processes, to
(x̃(t))t∈[0,T ] defined by (2.19)-(2.20).

2.4. Smoothly varying initial condition. We have seen that if the initial local fields
are nearly constant then the system evolves by periodic droplet formations and
expansions; moreover when the droplet expansion terminates, the local fields are
nearly constant with absolute value given by

4β − lnN + ln lnN + α+Xi,

up to corrections that vanish in the limit as N → +∞, where the Xi’s are random
variables, independent for different iterations, with distribution

P (Xi > x) = exp (−ex) .

We show next that these nearly constant profiles for the local fields are stable under
perturbations that are sufficiently small and regular. More specifically, assume

λi(0) = λN,βΦ

(
i

N

)
+ o(i,N, β), (2.21)

where o(i,N, β) is as in (2.8), Φ : [0, 1] → (0,+∞) is a C2 function, with a unique
minimum x∗ ∈ (0, 1), and Φ′′(x∗) > 0 and a unique maximum x∗, with Φ′′(x∗) < 0.
With no loss of generality, we assume that Φ(x∗) = 1. In the following theorem we
also assume the usual initial condition σi(0) ≡ −1.

Theorem 2.7. Assume that Φ takes its values in [1, 2], lim
λN,β
lnN ≤ −1 and

lim lnN
β = c ∈ [0, 1[.

(i) Denoting by T1,1 the time of the first spin flip,

α lnN

(
T1,1 −

1

α
ln

(
−λN,β

lnN

)
− 3

2α

ln lnN

lnN
− 1

α lnN
ln

(
α

√
Φ′′(x∗)

2π

))
(2.22)

converges in distribution to a random variable X as in (2.10).
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(ii) Using the notations introduced in Theorem 2.5, let T1,1 + Tc,1 be the first
time all spins become −1. Then Tc,1 converges to zero as N → +∞ in
probability, and

λi(T1,1 + Tc,1) =4β − Φ

(
i

N

)[
lnN − 3

2
ln lnN − ln

(
α

√
Φ′′(x∗)

2πΦ(x∗)

)
−XN,1

]
+ o(i,N, β),

where XN,1 converges in distribution to a random variable X as in (2.10).
(iii) After the j-th droplet expansion, j ≥ 2, the local fields are given, up to the

sign, by∣∣∣∣∣λi
(

j∑
k=1

(T1,k + Tc,k)

)∣∣∣∣∣
= 4β −

(
Rj−1Φ

)( i

N

)[
lnN − 3

2
ln lnN − ln

(
α

√
(Rj−1Φ)′′(x∗)

2π(Rk−1Φ)(x∗)

)
−XN,j

]
+ o(i,N, β),

where the sequence (XN,j)j≥1 converges to an i.i.d sequence, and Rj−1

denotes the j − 1-st iteration of the map

Rφ(x) =
4− cΦ(x)

4− cΦ(x∗)
.

Noting that for each x ∈ [0, 1] we have RjΦ(x)→ 1 as j → +∞, this last result
shows that nearly constant profiles are attracting.

3. Proofs

3.1. First spin flip: proof of Theorem 2.2. By the definition, the time T1 is the
minimum of N independent variables, whose distributions are time–inhomogeneous
exponential laws, whence

∀t ≥ 0 P (T1 > t) = exp

(
−

∑
1≤i≤N

∫ t

0

exp
(
λN,β(i)e−αs

)
ds

)
. (3.1)

We begin by performing the asymptotic expansion of the integral inside the
exponential. More precisely, let us define

I(γ, t) =

∫ t

0

exp
(
− γe−αs

)
ds .

Our first goal is to expand this integral in the limit as γ goes to +∞.
A natural technique would be to use Laplace’s method of expansion. However,

this integral is simple enough to be handled conveniently through an integration by
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parts, as follows. We write

I(γ, t) =

∫ t

0

((
γαe−αs

)
exp

(
− γe−αs

)) 1

γαe−αs
ds

=

[
exp

(
− γe−αs

) 1

γαe−αs

]t
0

−
∫ t

0

exp
(
− γe−αs

) 1

γe−αs
ds

=
exp

(
− γe−αt

)
γαe−αt

−
exp

(
− γ
)

γα
− 1

γ

∫ t

0

exp
(
αs− γe−αs

)
ds . (3.2)

Let us define

∀γ ≥ 0 ∀t ≥ 0 F (γ, t) =
exp

(
− γe−αt

)
γαe−αt

.

The function F is the principal part of the asymptotic expansion of I in the regime
where γ tends to +∞ and t stays bounded. In fact, from (3.2), we have on one
hand

I(γ, t) ≤ F (γ, t) , (3.3)

and on the other hand

I(γ, t) ≥ F (γ, t)− e−γ

γα
− eαt

γ
I(γ, t) . (3.4)

Inequalities (3.3) and (3.4) yield that

0 ≤ F (γ, t)− I(γ, t) ≤ e−γ

γα
+
eαt

γ
I(γ, t)

≤ e−γ

γα
+
eαt

γ
F (γ, t) , (3.5)

whence

I(γ, t) = F (γ, t) +O
(e−γ
γα

+
eαt

γ
F (γ, t)

)
. (3.6)

We now give estimates for P (T1 > t) using (3.1) and the inequalities above. We
begin with the case in which

lim
λN,β
lnN

< −1.

By (3.6) we obtain, taking into account that −λN,β > lnN for N large and using
(2.7):∑

1≤i≤N

I(−λN,β(i), t)

=
∑

1≤i≤N

F (−λN,β(i), t) +O
( NeλN,β
−λN,βα

+
eαt

−λN,β

∑
1≤i≤N

F (−λN,β(i), t)
)

=
( ∑

1≤i≤N

F (−λN,β(i), t)
)(

1 +O
( eαt

−λN,β

))
+O

( 1

α lnN

)
. (3.7)

Using (2.7), we see that

F (−λN,β(i), t) = F (−λN,β , t)(1 + o(1)),
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where the term o(1) can be chosen not dependent on i, so

P (T1 > t) = exp

[
−N exp (λN,βe

−αt)

−λN,βαe−αt

(
1 + o(1) +O

(
eαt

−λN,β

))
+O

(
1

α lnN

)]
.

(3.8)
We now choose t = t(N) so that P (T1 > t) has a finite nonzero limit as N → +∞.
We set

t =
1

α
ln

(
−λN,β
lnN

)
+ u (3.9)

for some u = u(N) that goes to zero as N → +∞. Note that, with this choice,

O

(
eαt

−λN,β

)
= o(1).

Inserting (3.9) in (3.8) and using e−αu = 1− αu+ o(1), we get

P
(
T1 >

1

α
ln
(−λN,β

lnN

)
+ u
)

= exp

(
−

exp
(
αu lnN + o(lnN)

)
αlnN

(
1 + o(1)

)
+O

(
1

α lnN

))
.

(3.10)

Now we choose u so that
exp

(
αu lnN + o(lnN)

)
αlnN

is bounded away form zero and infinity. Thus we take

u =
ln lnN

α lnN
+

v

α lnN
, (3.11)

for v ∈ R. Replacing u with this expression we get

P
(
T1 >

1

α
ln
(−λN,β

lnN

)
+

ln lnN

α lnN
+

v

α lnN

)
= exp

(
− 1

α
exp

(
v + o(1)

))
. (3.12)

which completes the proof for the case

lim
λN,β
lnN

< −1.

Note that, setting c := − lim
λN,β
lnN , we have seen, in particular, that for c > 1,

T1 →
1

α
ln c

in probability. Using the fact that, for each t > 0, P (T1 > t) is decreasing in λN,β ,
by comparison it follows that T1 → 0 in probability whenever c ≤ 1.

3.2. Covering time: proof of Theorem 2.3. Before going into the details of the proof,
we give an intuition of what happens during the covering. Let i ∈ {1, 2, . . . , N} be
such that

σ̃i(0) =

{
−1 for i 6= i
1 for i = i.

The local field profile is given by

λ̃i(0) =

{
2β + λi(T

−
1 ) for i = i± 1

λi(T
−
1 ) otherwise. (3.13)
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where, by (2.11),

λi(T
−
1 ) = − lnN + ln lnN + lnα+XN,β + o(i,N, β). (3.14)

Note that the spins at i±1 are likely to flip first, as, by (2.12), 2β � −λi(T−1 ) with
very high probability. Suppose that the first spin flip occurs at time τ1 for the spin
i+ 1. We have:

λ̃i(τ1) =


[
2β + λi(T

−
1 )
]
e−ατ1 for i = i± 1

λi(T
−
1 )e−ατ1 + 2β for i = i, i+ 2

λi(T
−
1 )e−ατ1 otherwise.

(3.15)

In terms of the spin-flip rates r̃i(t) = exp[−σ̃i(t)λ̃i(t)], note that r̃i(τ1) ≤ 1 with
high probability for i 6= i− 1, i+ 2, while

r̃i−1(τ1) = exp
[(

2β + λi−1(T−1 )
)
e−ατ1

]
and

r̃i+2(t) = exp
[
λi+2(T−1 )e−ατ1 + 2β

]
are much larger than 1. It follows that the spins at i− 1 and i+ 2 are likely to flip
before the others. To have a better understanding, assume the spin at i − 1 flips
first, at time τ2. The local field profile at time τ2 is then

λ̃i(τ2) =



[
λi(T

−
1 )e−ατ1 + 2β

]
e−α(τ2−τ1) + 2β for i = i[

2β + λi(T
−
1 )
]
e−ατ2 for i = i− 1

λi(T
−
1 )e−ατ2 + 2β for i = i− 2[

2β + λi(T
−
1 )
]
e−ατ2 for i = i+ 1[

λi(T
−
1 )e−ατ1 + 2β

]
e−α(τ2−τ1) for i = i+ 2

λi(T
−
1 )e−ατ2 otherwise.

(3.16)

Again, we see that the spins at i ± 2 are likely to flip first. Thus, with high
probability, as we will see in details next, a droplet of consecutive +1 spins forms.
Denote by τn the time at which a droplet of length n+ 1 is formed, with 1 ≤ n ≤
N − 3. At time τn the local field in the interior of the droplet is bounded from
below by 4βe−ατn+λi(T

−
1 ). In the internal boundary of the droplet the local field is

bounded from below by 2βe−ατn +λi(T
−
1 ). In the external boundary of the droplet

the local field satisfies

λ̃i(τn) ∈
[
2β + λi(T

−
1 ), 2β + λi(T

−
1 )e−ατn

]
(3.17)

if i is the site neighbor of the last spin flipped, and

λ̃i(τn) ∈
[
2βe−ατn + λi(T

−
1 ), 2β + λi(T

−
1 )e−ατn

]
(3.18)

for the other site. Note that the extremities of these intervals may be reversed in
the case λi(T−1 ) > 0, which is unlikely (see (3.14)). For all other sites the local field
equals λi(T−1 )e−ατn . For n = N − 2 the situation is slightly different, since there is
only one site in the external boundary of the droplet. Denoting this site by i∗, we
have

λ̃i∗(τN−2) ∈
[
4βe−ατN−2 + λi∗(T−1 ), 4β + λi∗(T−1 )e−ατN−2

]
.

This gives the intuition on how the local fields change according to the growth of
the droplet of +1 spins. Notice that, with very large probability, the covering is
performed (excluding the last flip) with a sequence of steps occurring with a rate
of order

2e2β−lnN+ln lnN+lnα+XN+o(1) =
2α lnN

N
e2β+XN+o(1)
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and this is the intuitive reason to choose the time scaling

N(2e2β−lnN+ln lnN+lnα+XN )−1 =
N2

2α lnN
e−2β−XN (3.19)

appearing in (2.13).

The strategy of the proof is to show that, in the limit, during the covering pro-
cess only spins adjacent to the droplet will flip, and then to show that (3.19) gives
the correct time-scaling for the process where all undesired flips are suppressed.

Step 1: Probability of observing an undesired flip
Let τ̄ be the time at which an “undesired" flip occurs, i.e. the time at which we
observe a flip of one of the spins that are not adjacent to the droplet. Our aim
is to show that P (τ̄ ≤ τN−1) converges to zero as β,N ↑ +∞. We estimate this
probability conditioned to the event

AN := {− lnN ≤ λi(T−1 ) ≤ − lnN + 2 ln lnN : i = 1, . . . , N},

whose probability tends to one.
Notice that, under AN , for t ∈ [0, τ1[, we have one positive spin with flipping rate
at most

elnN ,

N − 3 negative spins whose rates are at most

e[− lnN+2 ln lnN ]e−αt ,

and two negative spins, adjacent to the droplet of +1 spins, whose rates are at least

e[2β−lnN ]e−αt .

Then, P (τ̄ ≤ τ1|T1)1AN is bounded by the probability that the first point of a
Poisson process of time-dependent intensity

I1(t) := elnN + (N − 3)e[− lnN+2 ln lnN ]e−αt

occurs before the first point of a point process with time-dependent intensity

J(t) := e[2β−lnN ]e−αt ,

where the two processes are independent.
Then, under AN ∩ (τ̄ > τ1), for t ∈ [τ1, τ2[, we have a droplet consisting of two
positive spins whose rates are at most

e[−2β+lnN ]e−αt ,

N − 4 negative spins whose rates are at most

e[− lnN+2 ln lnN ]e−αt ,

and two negative spins, adjacent to the droplet of +1 spins, whose rates are at least

e[2β−lnN ]e−αt .

So, P (τ̄ ∈]τ1, τ2]|T1, (τ̄ > τ1))1AN is bounded by the probability that the first point
of a Poisson process of time-dependent intensity

I2(t) := 2e[−2β+lnN ]e−αt + (N − 4)e[− lnN+2 ln lnN ]e−αt
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occurs before the first point of a point process with time-dependent intensity J(t),
where the two processes are independent.
Moreover, for any k = 3, . . . , N − 2, under AN ∩ (τ̄ > τk−1), for t ∈ [τk−1, τk[, we
have a droplet consisting of k positive spins: two of them with rates at most

e[−2β+lnN ]e−αt ,

and k − 2 of them with rates at most

e[−4β+lnN ]e−αt .

The system will also present N − k − 2 negative spins whose rates are at most

e[− lnN+2 ln lnN ]e−αt ,

and two negative spins, adjacent to the droplet of +1 spins, whose rates are at least

e[2β−lnN ]e−αt .

Then, for any k = 3, . . . , N − 2, P (τ̄ ∈]τk−1, τk]|T1, (τ̄ > τk−1))1AN is bounded by
the probability that the first point of a Poisson process of time-dependent intensity

Ik(t) := 2e[−2β+lnN ]e−αt + (k − 2)e[−4β+lnN ]e−αt + (N − k − 2)e[− lnN+2 ln lnN ]e−αt

occurs before the first point of a point process with time-dependent intensity J(t),
where the two processes are independent.
Finally, under AN ∩ (τ̄ > τN−2), for t ∈ [τN−2, τN−1[, we have a droplet comprised
by N − 1 positive spins: two of them with rates at most

e[−2β+lnN ]e−αt ,

and N − 3 of them with rates at most

e[−4β+lnN ]e−αt .

The system also presents one negative spin, with rate at least

e[4β−lnN ]e−αt .

Then, P (τ̄ ∈]τN−2, τN−1]|T1, (τ̄ > τN−2))1AN is bounded by the probability that
the first point of a Poisson process of time-dependent intensity

IN−1(t) := 2e[−2β+lnN ]e−αt + (N − 3)e[−4β+lnN ]e−αt

occurs before the first point of a point process with time-dependent intensity J(t),
where the two processes are independent.
By the analysis above, we can consider a family of Poisson processes {ζk}N−1

k=1 with
time-dependent intensities {Ik(t)}N−1

k=1 and a Poisson process η with time-dependent
intensity J(t). We also assume that, for any k = 1, . . . , N − 1, the process ζk and
the process η are independent. Let us denote with Xk the first point of the process
ζk for any k = 1, . . . , N − 1, and with Y the first point of the process η. In this
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way, we deduce that

P (τ̄ ≤ τN−1|T1)1AN = P (τ̄ ≤ τ1|T1)1AN +

N−1∑
k=2

P (τ̄ ∈]τk−1, τk]|T1)1AN

≤ P (τ̄ ≤ τ1|T1)1AN +

N−1∑
k=2

P (τ̄ ≤ τk|T1, τ̄ > τk−1)1AN

≤
N−1∑
k=1

P (Xk < Y ).

Let us fix Tm = e−dβ with d a positive constant such that 2c + d < 2. We have
that, for any k = 1, . . . , N − 1,

P (Xk < Y ) ≤ P (Xk < Y ≤ Tm) + P (Y > Tm)

≤ P (Xk < Y ≤ Tm)

P (Xk ≤ Tm, Y ≤ Tm)
+ P (Y > Tm)

= P (Xk < Y ≤ Tm)|Xk ≤ Tm, Y ≤ Tm) + P (Y > Tm)

≤ P (Xk < Y |Xk ≤ Tm, Y ≤ Tm) + P (Y > Tm)

where we used the independence of Xk and Y , hence

P (τ̄ ≤ τN−1|T1)1AN ≤
N−1∑
k=1

P (Xk < Y |Y ≤ Tm, Xk ≤ Tm) + (N − 1)P (Y > Tm).

Notice that, conditioned to (Xk ≤ Tm, Y ≤ Tm) the distribution of Xk is stochas-
tically bigger than the one of an exponential random variable of parameter Ik(Tm)
and the distribution of Y is stochastically smaller than the one of an exponential
r.v. of parameter J(Tm). This means that, for any k = 1, . . . , N − 1,

P (Xk < Y |Y ≤ Tm, Xk ≤ Tm) ≤ Ik(Tm)

Ik(Tm) + J(Tm)
,

so we get

P (τ̄ ≤ τN−1|T1)1AN ≤
N−1∑
k=1

Ik(Tm)

Ik(Tm) + J(Tm)
+ (N − 1)P (Y > Tm). (3.20)

Let us consider the second term on the right-hand side of (3.20):

(N − 1)P (Y > e−dβ) ≤ (N − 1) exp

[
−
∫ e−dβ

0

e[2β−lnN ]e−αtdt

]

≤ exp

[
lnN − e−dβe[2β−lnN ]e−αe

−dβ
]

≈ exp
[
lnN − e(2−d)β−lnN−αe−dβ [2β−lnN ]+o(βe−dβ)

]
−→

β,N↑+∞
0,

thanks to (2.12) and the fact that c+ d < 2.
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Consider now the first term in the right-hand side of (3.20). The following limits
hold:

I1(Tm)

I1(Tm) + J(Tm)
=

elnN + (N − 3)e[− lnN+2 ln lnN ]e−αTm

elnN + (N − 3)e[− lnN+2 ln lnN ]e−αTm + e[2β−lnN ]e−αTm
−→

β,N↑+∞
0,

I2(Tm)

I2(Tm) + J(Tm)
=

2e[−2β+lnN ]e−αTm + (N − 4)e[− lnN+2 ln lnN ]e−αTm

2e[−2β+lnN ]e−αTm + (N − 4)e[− lnN+2 ln lnN ]e−αTm + e[2β−lnN ]e−αTm
−→

β,N↑+∞
0,

IN−1(Tm)

IN−1(Tm) + J(Tm)
=

2e[−2β+lnN ]e−αTm + (N − 3)e[−4β+lnN ]e−αTm

2e[−2β+lnN ]e−αTm + (N − 3)e[−4β+lnN ]e−αTm + e[2β−lnN ]e−αTm
−→

β,N↑+∞
0.

Moreover, it holds that

N−2∑
k=3

Ik(Tm)

Ik(Tm) + J(Tm)

=

N−2∑
k=3

2e[−2β+lnN ]e−αTm+(k−2)e[−4β+lnN ]e−αTm+(N−k−2)e[− lnN+2 ln lnN ]e−αTm

Ik(Tm) + J(Tm)

≤ N2e[−2β+lnN ]e−αTm

J(Tm)
+
N2e[−4β+lnN ]e−αTm

J(Tm)

+

N−2∑
k=3

(N−k − 2)e[− lnN+2 ln lnN ]e−αTm

Ik(Tm) + J(Tm)
,

where

N2e[−2β+lnN ]e−αTm

J(Tm)
=

2e[−2β+lnN ]e−αTm+lnN

e[2β−lnN ]e−αTm
−→

β,N↑+∞
0,

N2e[−4β+lnN ]e−αTm

J(Tm)
=
e[−4β+lnN ]e−αTm+2 lnN

e[2β−lnN ]e−αTm
−→

β,N↑+∞
0,
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while
N−2∑
k=3

(N − k − 2)e[− lnN+2 ln lnN ]e−αTm

Ik(Tm) + J(Tm)

≤
N−5∑
k=1

ke[− lnN+2 ln lnN ]e−αTm

ke[− lnN+2 ln lnN ]e−αTm + J(Tm)

=

N−5∑
k=1

k

k + e[2β−2 ln lnN ]e−αTm

≤
∫ N

0

x

x+ e[2β−2 ln lnN ]e−αTm
dx

= N + e[2β−2 ln lnN ]e−αTm ln

[
e[2β−2 ln lnN ]e−αTm

N + e[2β−2 ln lnN ]e−αTm

]
.

Notice that

lim
β,N↑+∞

(
N + e[2β−2 ln lnN ]e−αTm ln

[
e[2β−2 ln lnN ]e−αTm

N + e[2β−2 ln lnN ]e−αTm

])

= lim
β,N↑+∞

(
N + e[2β−2 ln lnN ]e−αTm ln

[
1− N

N + e[2β−2 ln lnN ]e−αTm

])
= lim
β,N↑+∞

(
N+e[2β−2 ln lnN ]e−αTm

(
− 1

2

(
N

N + e[2β−2 ln lnN ]e−αTm

)2

− N

N + e[2β−2 ln lnN ]e−αTm

))
= lim
β,N↑+∞

(
N2

e[2β−2 ln lnN ]e−αTm
− N2e[2β−2 ln lnN ]e−αTm

2e[4β−4 ln lnN ]e−αTm

)

= lim
β,N↑+∞

1

2
exp

[
2 lnN − [2β − 2 ln lnN ]e−αTm

]
= lim
β,N↑+∞

1

2
exp

[
2 lnN − 2β + 2 ln lnN + αe−dβ(2β − 2 ln lnN)

]
= 0,

thanks to (2.12).
All these considerations imply that the probability that an undesired spin flip

occurs before the droplet of +1 spins invades the whole space converges to zero:

P (τ̄ ≤ τN−1)

= E(P (τ̄ ≤ τN−1|T1)1AN ) + P (AcN )

≤ E

(
P (τ̄ ≤ τ1|T1)1AN +

N−1∑
k=2

P (τ̄ ≤ τk|T1, (τ̄ > τk−1))1AN

)
+ P (AcN )

≤
N−1∑
k=1

P (Xk < Y ) + P (AcN )

≤
N−1∑
k=1

Ik(Tm)

Ik(Tm) + J(Tm)
+ (N − 1)P (Y > Tm) + P (AcN ) −→

β,N↑+∞
0.
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Step 2: Time-scaling for the covering process
Using the graphical construction we can couple the process (σ̃, λ̃) with the process
(σ̂, λ̂) obtained by suppressing all undesired spin flip; in other words σ̃(0) = σ̂(0),
and

λ̂i(t) =

{
λ̃i(t) if σ̂i(t) = −1, and σ̂j(t) = 1 for at least one j ∈ {i− 1, i+ 1}
0 otherwise

By the estimates above, we have

lim
β,N↑+∞

P (σ̃(t) = σ̂(t) for t ∈ [0, Tc]) = 1. (3.21)

Thus, to compute the distribution of Tc, we can use the process σ̂ in place of σ̃.
Note that the times τn introduced above are well defined for the process (σ̂, λ̂).
Moreover, Tc = τN−1 on the event {σ̃(t) = σ̂(t) for t ∈ [0, Tc]}. Using the same
estimate as in Step 1, for n = 1, . . . , N − 1, on AN we have

P

(
τn − τn−1 >

e−dβ

N

∣∣T1

)
≤ exp

[
−e
−dβ

N
e[2β−lnN ]e−α

e−dβ
N

]
which implies, defining

BN :=

{
τn − τn−1 ≤

e−dβ

N
: n = 1, . . . , N − 1

}
, (3.22)

the estimate

P (BcN |T1)1AN ≤ N exp

[
−e
−dβ

N
e[2β−lnN ]e−α

e−dβ
N

]
= exp

[
lnN − e−dβ−lnN+[2β−lnN ]e−α

e−dβ
N

]
= exp

[
lnN − e(2−d)β−2 lnN+α e

−dβ
N [2β−lnN ]+o

(
β e

−dβ
N

)]
→ 0 (3.23)

as β,N ↑ +∞ since 2c+ d < 2. This estimate, together with (3.21), gives also

lim
β,N↑+∞

P (Tc > e−dβ |T1)1AN = lim
β,N↑+∞

P (τN−1 > e−dβ |T1)1AN → 0 . (3.24)

Having all these preliminary estimates, we now aim at giving sharp estimates on
the distribution of τN−1. The key idea is to write

τN−1 = τ1 +

N−1∑
k=2

(τk − τk−1) ,

and show that the random variables in the sum above are nearly independent and
identically distributed. We define

LN := − lnN + ln lnN + lnα+XN ,

so that λi(T−1 ) = LN + oi(1), where for each ε > 0

P

(
max

i=1,...,N
|oi(1)| > ε

)
→ 0

as β,N ↑ +∞, see (2.11) . By (3.13),

P (τ1 > t|T1) = P (min(X+, X−) > t|T1),
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where X+, X− are random variables which are independent conditionally to T1, and

P (X± > t|T1) = exp

[
−
∫ t

0

(
e(2β+λi±1(T−

1 ))e−αs
)
ds

]
.

Therefore

P (τ1 > t|T1) = exp

[
−
∫ t

0

(
e(2β+λi+1(T−

1 ))e−αs
)
ds−

∫ t

0

(
e(2β+λi−1(T−

1 ))e−αs
)
ds

]
= exp

[
−2

∫ t

0

(
e(2β+LN+o(1))e−αs

)
ds

]
(3.25)

where o(1) denotes a T1-measurable random variable which goes to zero in proba-
bility. More generally, using (3.17) and (3.18), for 2 ≤ n ≤ N − 3,

P (τn+1 − τn > t|τn, τn−1, . . . , τ1, T1) ≥ exp

[
−2

∫ t

0

e(2β+(LN+o(1))e−ατn)e−αsds

]
(3.26)

and

P (τn+1 − τn > t|τn, τn−1, . . . , τ1, T1) ≤ exp

[
−2

∫ t

0

e(2βe−ατn+LN+o(1))e−αsds

]
.

(3.27)
The case n = N − 2 is similar, the 2 multiplying the

∫ t
0
must be removed and 2β

replaced by 4β. By (3.26), on BN ∩ AN we have, for n = 1, . . . , N − 3 and the
above correction for n = N − 2,

P (τn+1 − τn > t|τn, τn−1, . . . , τ1, T1) ≥ exp
[
−2te2β+LN+o(1)

]
= P (Yn > t|T1)

(3.28)
where (Y1, . . . , YN−2), conditioned to T1 are independent and have exponential
distribution with mean

E(Yn|T1) =
1

2
e−[2β+LN+o(1)]

for n ≤ N − 3, while
E(YN−2|T1) = e−[4β+LN+o(1)].

Thus, by Lemma 3.1, which is stated and proved below, the following inequality
holds on AN , for every t > 0:

P (τN−1 > t|T1) ≥ P (Y0 + · · ·+ YN−2 > t|T1)−NP (BcN |T1). (3.29)

Since, for j ≤ N − 3

E(Yj |T1) =
N

2α lnN
e−2β−XN (1 + o(1)). (3.30)

the Law of Large Numbers for (Yn) gives

lim
β,N↑+∞

P

(
Y0 + · · ·+ YN−2

N2

α lnN e
−2β−XN

> 1− ε

)
= 1

for every ε > 0. Inserting this in (3.29), using the fact that by (3.23)

NP (BcN |T1)1AN → 0,
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P (AcN )→ 0 and Tc = τN−1 on AN , we obtain

∀ε > 0 lim
β,N↑+∞

P

(
Tc

N2

α lnN e
−2β−XN

> 1− ε

)
= 1. (3.31)

To obtain a corresponding upper bound, define ξn := [τn+1 − τn]1BN . By (3.27)
and observing that, by definition of BN , ξn ≤ e−dβ

N almost surely ,

P (ξn > t|τn, τn−1, . . . , τ1, T1) ≤ exp

[
−2te

(
2βe−αe

−dβ
+LN+o(1)

)
e−α

e−dβ
N

]
= P (Zn > t|T1),

where Z1, . . . , ZN−2 are, conditionally to T1, independent, exponentially distributed
with mean

1

2
e
−
(

2βe−αe
−dβ

+LN+o(1)
)
e−α

e−dβ
N

=
N

2α lnN
e−2β−XN (1 + o(1)).

Using Lemma 3.1 as above and observing that ξ1 + · · · + ξN−1 = τN−1 = Tc on
BN ∩AN , we obtain

∀ε > 0 lim
β,N↑+∞

P

(
Tc

N2

α lnN e
−2β−XN

< 1 + ε

)
= 1 . (3.32)

Together with (3.31), this completes the proof.
In the proof of Theorem 2.3, we showed that the sequence of times taken to

perform each step in the covering can be stochastically dominated, both from above
and from below, by two different families of i.i.d. random variables obeying the
same Law of Large Numbers. This was sufficient to conclude the proof thanks to
the following technical lemma.

Lemma 3.1. Let X = (Xn)Nn=1 and Y = (Yn)Nn=1 be two random vectors, such that
X is adapted to a filtration (Fn)Nn=1, and Y has independent components. Define
SXn := X1 + · · ·+Xn, and similarly SYn . Assume there is an event B such that for
every t ∈ R and n ∈ {1, . . . , N} and ω ∈ B

P (Xn > t|Fn−1)(ω) ≤ P (Yn > t). (3.33)

Then for every t ∈ R and n ∈ {1, . . . , N}
P (SXn > t) ≤ P (SYn > t) + nP (Bc) . (3.34)

Similarly, if (3.33) is replaced by

P (Xn > t|Fn−1)(ω) ≥ P (Yn > t), (3.35)

then we have
P (SXn > t) ≥ P (SYn > t)− nP (Bc) . (3.36)

Proof : We prove the desired statement by induction on n. For n = 1 there is
nothing to prove. Note that, without loss of generality, we can assume Y to be
independent of X. By assumption, for every s, t ∈ R and ω ∈ B

P (Xn+1 > t− s|Fn)(ω) ≤ P (Yn+1 > t− s|Fn)(ω).

This inequality still holds if we replace s by the Fn-measurable random variable
SXn . Thus we have, on B,

P (SXn+1 > t|Fn) ≤ P (Yn+1 + SXn > t|Fn),
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so that
P (SXn+1 > t) ≤ P (Yn+1 + SXn > t) + P (Bc).

On the other hand, denoting by LYn+1
the law of Yn+1, using the inductive as-

sumption we obtain

P (Yn+1 + SXn > t) =

∫
P (SXn > t− y)LYn+1

(dy)

≤
∫
P (SYn > t− y)LYn+1(dy) + nP (Bc)

= P (SYn+1 > t) + nP (Bc).

The proof with the reversed inequalities is identical.
�

3.3. Oscillating behavior: proof of Theorem 2.6. Let us start with some preliminary
considerations: define the stopping times

τm̃ = inf{t > 0 | m̃N (t) = +1}, τx̃ = inf{t > 0 | x̃(t) = +1}.
For simplicity of notations and readability of the proof we only prove that the
process (m̃N (t∧ τm̃))t∈[0,T ] converges to (x̃(t∧ τx̃))t∈[0,T ] as β,N ↑ +∞: the result
can be extended for any finite number of iterations (the same idea as Theorem 2.5).
Moreover, consider the process (σ̂(t), λ̂(t))t≥0 defined at the beginning of Step 2 in
the proof of Theorem 2.3, for which all “undesired" flips are suppressed: coupling
this process with the original one (σ(t), λ(t))t≥0 via the graphical construction
implies that

lim
β,N↑+∞

P (σ̂i(t) = σi(t) for i ∈ ΛN , t ∈ [0, T1 + Tc]) = 1,

hence we can prove the result using the total magnetization corresponding to the
process σ̂ instead of σ. Now we are ready for the proof.
Since the amplitude of the jumps of the process (m̃N (t))t∈[0,T ] converges to zero,
then, provided its weak limit (m̃(t))t∈[0,T ] exists, it holds P (m̃ ∈ C([0, T ],R) = 1
(see Billingsley, 1999, Theorem 13.4). This implies that the convergence can be
studied on the spaceD([0, T ],R) endowed with the uniform metric and topology (see
for example Lemma 1.6.4 in Silvestrov, 2004). With this choice, onM1(D([0, T ],R)
the Wasserstein distance W1 reads

W1(µ, ν) = inf
γ∈Γ(x,y)

∫
D×D

||x− y||∞dγ(x, y) (3.37)

where Γ(µ, ν) is the set of all possible couplings of µ and ν.
Consider the events

AN = {− lnN ≤ λi(T−1 ) ≤ − lnN + 2 ln lnN : i = 1, . . . , N},

BN =

{
τn − τn−1 >

e−dβ

N
: n = 1, . . . , N − 1

}
introduced while proving Theorem 2.3. The strategy of the proof is to use the
graphical construction to couple (m̃N (t))t∈[0,T ] with two processes (m̃+

N (t))t∈[0,T ]

and (m̃−N (t))t∈[0,T ], both converging to (x̃(t))t∈[0,T ], in such a way that under AN ∩
BN it holds

m̃−N (t) ≤ m̃N (t) ≤ m̃+
N (t) for any t ∈ [0, T ∧ τm̃].
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Roughly speaking, m̃+
N (respectively m̃−N ) represents the time-scaled magnetization

of a spin system η+
N

(resp. η−
N
) in which all undesired spins are suppressed and,

after time T1, each flip is performed with a higher (resp. lower) rate with respect
to σ̂. Moreover, the rates for η+

N
and η−

N
have to be chosen in such a way that both

m̃+
N and m̃−N converge to x̃.

On the probability space already defined for the graphical construction, define the
spin processes η+ and η− in the following way:

η+
i (t) = η−i (t) = σi(t), t ∈ [0, T1],

while, after T1, the local fields for η+ and η− are defined as:

λ+
i (t) =

 2β + LNe
−αe−dβ if η+i (t) = −1, and η

+
j (t) = 1

for at least one j ∈ {i− 1, i+ 1}
0 otherwise

λ−
i (t) =

 2βe−αe
−dβ

+ LN if η−i (t) = −1, and η
−
j (t) = 1

for at least one j ∈ {i− 1, i+ 1}
0 otherwise

where, as in the proof of Theorem 2.3,

LN = λi(T
−
1 ) = − lnN + ln lnN + lnα+XN + o(1).

Of course, by construction, after time T1 a random point τ is accepted for η+

(respectively η−) if and only if

exp[−η+
i (τ)λ+

i (τ)]

e4β
> Uτ ,

(
respectively

exp[−η−i (τ)λ−i (τ)]

e4β
> Uτ

)
where Uτ is a uniform random variable associated with τ .
Notice that, under the event AN ∩ BN (see again the proof of Theorem 2.3), it
holds that

exp[−η−i (t)λ−i (t)] ≤ exp[−σi(t)λi(t)] ≤ exp[−η+
i (t)λ+

i (t)] (3.38)

for any t up to T1 + Tc, which means that any point which is accepted for a spin
flip for η− is also accepted for σ̂, and any point which is accepted for a spin flip for
σ̂ is also accepted for η+, therefore, since we constructed a monotone coupling (see
Liggett, 1999), it holds

η−i (t) ≤ σ̂i(t) ≤ η+
i (t), i ∈ ΛN , (3.39)

for any t up to T1 + Tc. Actually, (3.38) and (3.39) are true only up to the second
to last flip of σ̂, since its last flip occurs with rate of order e4β+LN : anyway this
is not so important. In fact, if we denote by m+

N (respectively m−N ) the total
magnetization associated with η+ (respectively η−), our goal is to give bounds on
mN by means of m+

N and m−N : it is true that, up to the second to last flip of σ̂, by
(3.39) it holds that

m−N (t) ≤ mN (t) ≤ m+
N (t).

To extend the bounds on the whole interval [0, T1 +Tc] it is sufficient to add a term
+ 2
N to the upper bound. These bounds are true also passing to the time-scaled

processes m̃±N (t) = m±N (θN (t)): to sum up, with this construction, under the event
AN ∩BN , it holds

m̃−N (t) ≤ m̃N (t) ≤ m̃+
N (t) +

2

N
for any t ∈ [0, τm̃]
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which implies, again under AN ∩BN ,

max{||m̃N − m̃−N ||∞, ||m̃N − (m̃+
N +

2

N
)||∞} ≤ ||m̃+

N − m̃
−
N ||∞ +

2

N
, (3.40)

where || · ||∞ denotes the uniform norm on D([0, T ∧ τm̃],R). Notice that by the
graphical construction and the definition of m̃+

N and m̃−N , one gets that

||m̃+
N − m̃

−
N ||∞ → 0 in probability as β,N ↑ +∞.

Hence, since P (AN ∩BN )→ 1, thanks to (3.40) we also obtain that

||m̃N − m̃−N ||∞ → 0 in L1 as β,N ↑ +∞, (3.41)

where the convergence in L1 follows by convergence in probability and uniform
integrability, the latter due to the fact that ||m̃N − m̃−N ||∞ ≤ 2 for any N .
Observe that {m̃−N}N (but also {m̃+

N}N ), stopped as soon as it reaches +1, converges
to the process x̃(t∧τx̃). Indeed from the definition of time scaling (2.17), after time
T1, m̃±N essentially become Poisson processes rescaled by 2

N with random intensity
Ne−XN . So the deterministic limit follows from standard scaling arguments.
Now denote with µN the law of m̃N on D([0, T ],R). Let also µx be the law of
the limiting process x̃. To show the weak convergence of m̃N to x̃ it is enough to
show that W1(µN , µx) converges to 0 (see Villani, 2009). Let µ−N be the law of the
process m̃−N . Since µN and µ−N can be coupled via the graphical construction of
m̃N and m̃−N , by (3.41) and the definition of the Wasserstein distance, it holds

W1(µN , µ
−
N ) ≤ E

[
||m̃N − m̃−N ||∞

]
→ 0 as β,N ↑ +∞.

Therefore, by the fact that m̃−N weakly converges to x̃,

W1(µN , µx) ≤ W1(µN , µ
−
N ) +W1(µ−N , µx)→ 0 as β,N ↑ +∞,

which proves the weak convergence of m̃N to x̃.

3.4. Smoothly varying initial condition: Proof of Theorem 2.7. Proof of part (i).
The proof begins as that of Theorem 2.2. Formulas (3.1)-(3.7) hold unchanged, as
constance in the initial condition is not used. Formula (3.8) is now replaced by
(where we write T1 for T1,1)

P (T1 > t) = exp

(
− SN,β(t)

(
1 + o(1) +O

(
eαt

β

))
+O

(Ne−β
βα

))
, (3.42)

where

SN,β(t) =
∑

1≤i≤N

exp
(
λN,βΦ

( i
N

)
e−αt

)
(
− Φ

( i
N

))
αλN,βe

−αt
. (3.43)

To alleviate the notation, we set

γ = −λN,βe−αt ,

so that SN,β(t) can be rewritten as

SN,γ(t) =
∑

1≤i≤N

exp
(
− γΦ

( i
N

))
γαΦ

( i
N

) .
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The technique is standard, indeed this expression looks like a Riemann sum, and if
it were a genuine integral, we would apply directly Laplace’s method of expansion.
So we adapt here the technique to the discrete sum.

Proposition 3.2. In the regime where N, γ tend to +∞, we have

SN,γ(t) ∼ Ne−γΦ(x∗)

γ3/2αΦ(x∗)

√
2π

Φ′′(x∗)
.

Proof : We employ the classical strategy devised by Laplace. We expand the func-
tion Φ around its minimum and we approximate it from above by a quadratic form.
Let ε > 0. There exists δ > 0 such that

∀x ∈ ]x∗ − δ, x∗ + δ[

Φ(x∗) +
1− ε

2
Φ′′(x∗)(x− x∗)2 ≤ Φ(x) ≤ Φ(x∗) +

1 + ε

2
Φ′′(x∗)(x− x∗)2 . (3.44)

Since x∗ is the unique global minimum of Φ, there exists η > 0 such that

∀x ∈ [0, 1]\]x∗ − δ, x∗ + δ[ Φ(x) ≥ Φ(x∗) + η . (3.45)

With the help of the inequalities (3.44) and (3.45), we split the sum and we get

SN,γ(t) =
∑

i:| iN−x∗|<δ

exp
(
− γΦ

( i
N

))
γαΦ

( i
N

) +
∑

i:| iN−x∗|≥δ

exp
(
− γΦ

( i
N

))
γαΦ

( i
N

)
≤

∑
i:| iN−x∗|<δ

exp
(
− γΦ(x∗)− γ

1− ε
2

Φ′′(x∗)
( i
N
− x∗

)2)
γαΦ(x∗)

+
∑

i:| iN−x∗|≥δ

e−γ(Φ(x∗)+η)

γαΦ(x∗)
. (3.46)

Let us focus on the first sum. Setting

∆ = γ
1− ε

2
Φ′′(x∗) ,

we estimate the sum as follows:∑
i:| iN−x∗|<δ

e−∆( iN−x∗)2 =
∑

i:x∗−δ< i
N<x∗− 1

N

e−∆( iN−x∗)2+ 2 +
∑

i:x∗+ 1
N≤

i
N<x∗+δ

e−∆( iN−x∗)2

≤
∑

i:x∗−δ< i
N<x∗− 1

N

N

∫ i+1
N

i
N

e−∆(x−x∗)2 dx+ 2 +
∑

i:x∗+ 1
N≤

i
N<x∗+δ

N

∫ i
N

i−1
N

e−∆(x−x∗)2 dx

≤ N

∫ x∗+δ

x∗−δ
e−∆(x−x∗)2 dx+ 2 ≤ N

∫ +∞

−∞
e−∆(x−x∗)2 dx+ 2 = N

√
π

∆
+ 2 .

Reporting this inequality in (3.46), we obtain

SN,γ(t) ≤ Ne−γΦ(x∗)

γαΦ(x∗)

(√ 2π

γ(1− ε)Φ′′(x∗)
+

2

N
+ e−γη

)
.
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The last two terms in the parenthesis are negligible compared to the first, so that,
for N, γ large enough, we have

SN,γ(t) ≤ Ne−γΦ(x∗)

γ3/2αΦ(x∗)

√
2π

Φ′′(x∗)

1 + ε

1− ε
. (3.47)

We seek next a similar inequality in the opposite direction. By inequality (3.44),
we have

SN,γ(t) ≥
∑

i:| iN−x∗|<δ

exp
(
− γΦ

( i
N

))
γαΦ

( i
N

)
≥

∑
i:| iN−x∗|<δ

exp
(
− γΦ(x∗)− γ

1 + ε

2
Φ′′(x∗)

( i
N
− x∗

)2)
γα
(

Φ(x∗) +
1 + ε

2
Φ′′(x∗)δ

2
) . (3.48)

Setting

∆ = γ
1 + ε

2
Φ′′(x∗) ,

we estimate the sum as follows:∑
i:| iN−x∗|<δ

e−∆( iN−x∗)2 ≥
∑

i:x∗−δ< i
N<x∗− 1

N

e−∆( iN−x∗)2 +
∑

i:x∗+ 1
N≤

i
N<x∗+δ

e−∆( iN−x∗)2

≥
∑

i:x∗−δ< i
N<x∗− 1

N

N

∫ i
N

i−1
N

e−∆(x−x∗)2 dx+
∑

i:x∗+ 1
N≤

i
N<x∗+δ

N

∫ i+1
N

i
N

e−∆(x−x∗)2 dx

≥ N

∫ x∗+δ

x∗−δ
e−∆(x−x∗)2 dx−N

∫ x∗+2/N

x∗−2/N

e−∆(x−x∗)2 dx

≥
√
N

∆

∫ √∆δ

−
√

∆δ

e−x
2

dx− 4 ≥ N

√
π

∆
(1− ε) ,

where the last inequality holds for N, γ large enough. Plugging this inequality
into (3.48), we get

SN,γ(t) ≥ −NeγΦ(x∗)

γ3/2α
(

Φ(x∗) +
1 + ε

2
Φ′′(x∗)δ

2
)√ 2π

Φ′′(x∗)

1− ε
1 + ε

. (3.49)

Inequalities (3.47) and (3.49) yield the asymptotic expansion stated in the propo-
sition. �

Inserting the estimate obtained for SN,γ in (3.42) we obtain

P (T1 > t)

= exp

(
− NeλN,βe

−αtΦ(x∗)(
−λN,βe−αt

)3/2
αΦ(x∗)

√
2π

Φ′′(x∗)

(
1+o(1)+O

(
eαt

β

))
+O

(Ne−β
βα

))
.

(3.50)



Rhythmic behavior of an Ising Model with dissipation at low temperature 465

At this point we proceed as in the proof of Theorem 2.2. Set

t :=
1

α
ln

(
−λN,β

lnN

)
+

3

2α

ln lnN

lnN
+

1

α lnN
ln

(
α

√
Φ′′(x∗)

2π

)
+

v

α lnN
.

Inserting in (3.50) and recalling that Φ(x∗) = 1 we get

P (T1 > t) = exp
(
− 1

α
exp

(
v + o(1)

))
,

which completes the proof of part (i).

Proof of part (ii). This is identical to the proof of Theorem 2.3. Some care is
only needed when proving that undesired flips occur with small probability. For
the proof given in Section 3.2 (Step 1) to go through with no changes one uses the
assumption Φ(x) ∈ [1, 2] for every x.

Proof of part (iii). Given the results in part (i), up to a global change of sign we
need to find the asymptotic distribution of the first spin flip time T1 starting with
σi(0) = −1 and

λi(0) = −4β + λN,βΦ

(
i

N

)
+ o(i,N, β) (3.51)

with
λN,β = lnN − 3

2
ln lnN +O(1).

The identity (3.42) becomes

P (T1 > t) = exp

(
− SN,β(t) e−4βe−αt

(
1 + o(1) +O

(
eαt

β

))
+O

(Ne−β
βα

))
,

(3.52)
and now

SN,β(t) =
∑

1≤i≤N

exp
(
λN,βΦ

( i
N

)
e−αt

)
(4

c
− Φ

( i
N

))
αλN,βe

−αt
, (3.53)

where we have used the fact that

4β − λN,βΦ

(
i

N

)
∼ λN,β

[
4

c
− Φ

( i
N

)]
.

The asymptotics of SN,β are obtained as in the proof of part (i), and we obtain

SN,β =
NeλN,βe

−αtΦ(x∗)

(λN,βe
−αt)3/2α

(
4/c− Φ(x∗)

)√ 2π

−Φ′′(x∗)

(
1 + o(1)

)
giving

P (T1 > t)

= exp

(
− NeλN,βe

−αtΦ(x∗)

(λN,βe
−αt)3/2α

(
4/c− Φ(x∗)

)√ 2π

−Φ′′(x∗)
e−4βe−αt

(
1 + oP (1)

))
.

Choosing

t :=
1

α
ln
(4

c
− Φ(x∗)

)
+

3

2α

ln lnN

lnN
+

1

α lnN
ln

(
α

√
−Φ′′(x∗)

2π

)
+

v

α lnN
.
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we obtain
P (T1 > t) = exp

(
− 1

α
exp

(
v + o(1)

))
.

It follows that

T1 =
1

α
ln
(4

c
− Φ(x∗)

)
+

3

2α

ln lnN

lnN
+

1

α lnN
ln

(
α

√
−Φ′′(x∗)

2π

)
+
XN

lnN

where XN converges in distribution to a random variable X whose distribution is
given by

P (X > x) = exp (−ex) .

Therefore

λi(T
−
1 ) = λi(0) e−αT1 =

=

(
− 4β + λN,βΦ

(
i
N

)
+ o(1)

)
4

c
− Φ(x∗)

(
1− 3

2α

ln lnN

lnN
+

1

α lnN
ln

(
α

√
−Φ′′(x∗)

2π

)

+
XN

lnN
+ o

(
1

lnN

))

=
−4

c
+ Φ

( i
N

)
4

c
− Φ(x∗)

(
lnN − 3

2
ln lnN +XN

)
+ o(1) . (3.54)

After the droplet expansion

λi(T1 + Tc) = λi(T
−
1 ) + 4β = 4β −

4

c
− Φ

( i
N

)
4

c
− Φ(x∗)

(
lnN − 3

2
ln lnN +XN

)
+ o(1)

which is of the same form as (3.51) with Φ replaced by RΦ. The proof of part (iii)
thus follows by iterating this argument.
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