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Rhythmic synchronization and 
hybrid collective states of globally 
coupled oscillators
Tian Qiu1,2, Ivan Bonamassa3, Stefano Boccaletti4,5, Zonghua Liu1 & Shuguang Guan1

Macroscopic rhythms are often signatures of healthy functioning in living organisms, but they are still 
poorly understood on their microscopic bases. Globally interacting oscillators with heterogeneous 

couplings are here considered. Thorough theoretical and numerical analyses indicate the presence 

of multiple phase transitions between different collective states, with regions of bi-stability. Novel 
coherent phases are unveiled, and evidence is given of the spontaneous emergence of macroscopic 
rhythms where oscillators’ phases are always found to be self-organized as in Bellerophon states, i.e. in 
multiple clusters with quantized values of their average frequencies. Due to their rather unconditional 

appearance, the circumstance is paved that the Bellerophon states grasp the microscopic essentials 
behind collective rhythms in more general systems of interacting oscillators.

Rhythmic behaviours are ubiquitous in nature, where we witness events of a rare beauty as, for instance, the 
acoustic synchrony in cricket’s choruses in the summer or the choreographic dancing of starling �ocks in the 
fall1,2. Far from being just a pleasure to our aesthetics, these events re�ect actually the correct functioning of living 
organisms. Brain is a striking example: deterioration or enhancing of neurons’ synchronization may indicate the 
presence of serious cognitive dysfunctions, like insomnia, epilepsy, or Parkinson’s disease3–5.

Synchronization represents a natural sca�old for capturing the microscopic features of these emergent behav-
iours, and large attention was paid in analyzing the routes towards synchrony in ensembles of dynamical sys-
tems6–8. In this direction, the Kuramoto model9 (and its various generalizations) allowed a wealth of discoveries 
thanks to its simplicity for a rigorous treatment9–15.

Generalized Kuramoto models, in particular, have been the focus of recent research16. �ere, the presence of 
correlations between the natural frequencies of the oscillators and the coupling strength may lead to �rst-order 
like (a.k.a. explosive15) phase transitions (PT’s)17,18, where the backward (desynchronization from a coherent 
state) threshold stays �xed, while the forward one (synchronization from incoherence) can be adequately tuned 
by choosing the system’s parameters (Typically the median of the natural frequency distribution). As soon as the 
forward transition precedes the backward one, non-stationary rhythmic states called Bellerophon states (B’s) 
spontaneously emerge19–23. Oscillators in B’s are neither phase- nor frequency-locked, but form clusters with 
quantized averaged frequencies, each one locked to an integer multiple of a principal frequency23,24, which can be 
either odd or even depending on the type of bifurcation (In particular odd B’s appear whenever the incoherent 
state bifurcates towards a π-state, whilst even B’s (also known as oscillating-π states) were found at the transition 
between a traveling wave (TW) and π-states (see ref.24)).

So far, frequency-coupling correlations in generalized Kuramoto models were designed by following either a 
dependence of the coupling on the frequencies16–22, or an implicit correlation due to a joint distributions in the 
presence of conformist and contrarian oscillators23,24. �ese arrangements are actually special instances of adding 
heterogeneity in Kuramoto oscillators’ coupling to the mean �eld25–28, and capture two natural and pervasive 
features of multi-agent systems, namely modulated strengths of individual responses to the same external stimuli 
(occurring e.g. in power-grids29), and competing interactions30–32. In ref.33, a detailed analysis of a general cou-
pling form in Kuramoto models was presented, and a number of exotic behavior (such as glassy states and super 
relaxation) were revealed.
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In ref.23, a correlation between the oscillator’s natural frequency and the coupling strength was considered, 
and a frequency term was introduced in the coupling. In ref.24, the collective behaviors of a system made of 
conformist (positively coupled to the mean �eld) and contrarian (negatively coupled to the mean �eld) oscil-
lators was studied. Motivated by the fact that real systems in biology34 and neuroscience35 may actually involve 
the interplay of such two mechanisms, we here describe the case of a Kuramoto model with an higher order of 
coupling-heterogeneity, which combines frequency-weighted couplings with positive and negative interactions. 
By linear stability analysis and mean-�eld theory, we give analytical predictions of the model’s main thermody-
namic properties, which are then validated against extensive numerical simulations. As compared with the results 
reported in refs23,24, we here unveil a novel stationary coherent phase (called strange π-state), and give evidence of 
how generic is the emergence of B’s and of previously unreported rhythmic states (here called hybrid-B’s in light 
of their microscopic traits). Furthermore, the system undergoes multiple (typically two- or three- stage) PT’s, and 
features di�erent regimes of bi-stability.

Results
We start by considering a frequency-weighted Kuramoto model of N globally coupled oscillators:
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θ θ= +
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where θi, ωi, and κi are respectively the instantaneous phase of the ith oscillator, its natural frequency, and the 
strength of its coupling to the other oscillators. Here ωi and κi are randomly chosen variables from a joint prob-
ability density of the form G(ω, κ) = g(ω)Γ(κ|ω), where g(ω) is the natural frequency distribution – herea�er 
assumed symmetric and unimodal – and Γ(κ|ω) is an additional density describing the type of the intrinsic 
frequency-coupling correlations36.

Suppose now that the couplings κi take binary (for simplicity, integer) values of opposite signs, i.e. κ1 < 0 and 
κ2 > 0. Oscillators are then grouped into two populations37,38: contrarians (opposing the system’s beat) and con-
formists (attempting to follow the global rhythm). In this scenario, we further specialize on the following three 
cases:
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where p ∈ [0, 1] denotes the proportion of conformist in the model (�e fraction p ∈ [0, 1] acts as a control param-
eter of the model; in particular, for Case II and Case III it is de�ned respectively as ∫ ω ω− =

ω

ω
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0 , where the subscripts relate to speci�c cases), Θ ⋅( ) is a Heaviside step function, δ ⋅( ) is the 

Kronecker delta. �e three densities (2)–(4) re�ect three di�erent realistic strategies where contrarians are grad-
ually �ipped into conformists (Initially all oscillators are contrarians): in Case I randomly chosen contrarians are 
progressively �ipped into conformists, in Case II contrarians are ranked according to the magnitude of their 
natural frequencies |ωi| and then �ipped from the largest |ωi| to a given threshold ω0, and Case III is the opposite 
of Case II. As the control parameter p is adiabatically tuned, the system (1) typically undergoes a series of PT’s to 
di�erent coherent states.

�e rigorous treatment of model (1) for all the Cases I–III consists of i) performing a linear stability analysis 
for detecting the thresholds (the forward critical fraction 

σ
pc, σ = 1, 2, 3) at which the incoherent state loses stabil-

ity in the three Cases I–III, and ii) adopting the Kuramotos self-consistent method9 for identifying all possible 
coherent stationary states of the three models, as well as the backward critical thresholds 

σ
pb at which such coher-

ent states lose their stability. �e predicted behaviors are then compared with the numerical solutions obtained 
integrating directly Eq. (1) (Unless otherwise speci�ed, the following stipulations are chosen: (i) the strength of 
couplings for conformist oscillators is kept �xed to κ2 = 5; (ii) a Lorentzian frequency distribution g(ω) = γ/π/
[(ω − ω0)2 + γ2] with γ = 0.05 is adopted; (iii) numerical integrations are performed with a fourth-order 
Runge-Kutta method with integration time step ∆t = 0.01; (iv) the initial conditions for the phase variables are 
randomly taken; (v) the typical number of oscillators in the ensemble is N = 5 × 104; (vi) a su�ciently long time 
interval (much larger than the oscillation period Tf = 2π/Ωf) is used for the average of the order parameter). In the 
following, we report the details and results of the linear stability analysis and mean-�eld theory.

Linear stability analysis. In the mean-�eld form, Eq. (1) can be rewritten as:

θ ω κ ω θ= + | | Ψ − = … r i Nsin( ), 1, , , (5)i i i i i

where r(t) and Ψ(t) are amplitude and phase of the Kuramoto order parameter = = ∑ θΨ
=Z t r t e e( ) ( ) :i t

N j
N i( ) 1

1
j. 

Here, Z(t) can be interpreted as the collective rhythm produced by the whole population of oscillators. �e ampli-
tude 0 ≤ r ≤ 1 measures the phase coherence in the system and Ψ gives the average phase.

In the thermodynamic limit (N → ∞), a density function ρ(θ, t|ω, κ) can be de�ned, where ρ dθ denotes the 
fraction of oscillators with natural frequency ω and coupling strength κ, whose phases have values between θ and 



www.nature.com/scientificreports/

3SCIENTIFIC REPORTS |  (2018) 8:12950  | DOI:10.1038/s41598-018-31278-9

θ + dθ at time t. ρ satis�es ∫ ρ θ ω κ θ| =
π

t d( , , ) 1
[0,2 )

 for each ω, each κ, and all t. �e evolution of ρ is governed by 

the continuity equation ∂tρ + ∂θ(ρυ) = 0, where the velocity υ is given as υ = ω + κ|ω|r sin(Ψ − θ). Accordingly, 
the order parameter reads
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where Γ(κ|ω) could be any of the functions described by Eqs (2–4). �e continuity equation can then be rewritten 
as
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For the incoherent state, ρ0(θ, t|ω, κ) = 1/(2π). A perturbation
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can be considered, where  1 , and cn represents the nth Fourier coe�cient of ρ(θ, t|ω, κ). Inserting the Fourier 
expansion (8) into the continuity equation (7), we eventually get the linearized characteristic equations
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�e right-hand side of Eq. (9) de�nes a linear operator A as
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From Eq. (10), it is obvious that the higher Fourier harmonics are neutrally stable to the perturbation, and the 
stability of the incoherent state depends on the spectrum of Eq. (9).

�e spectrum of A has both continuous and discrete sets. Following refs10,11, the continuous part of the spec-
trum is the set {−iω : ω ∈ Support(g)}, which is the whole imaginary axis for a Lorentzian frequency distribution 
(FD). �erefore, the incoherent state is either unstable or neutrally stable. As for the discrete part of the spectrum, 
one has to seek solutions of the form c1(ω, κ, t) = b(ω, κ)eλt, so that the characteristic equation ∂tc1 = A(ω, κ)c1 
given in Eq. (11) takes now the form
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We can then evaluate the latter integral equation self-consistently by de�ning the auxiliary function
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so that Eq. (12) can be solved for b(ω, κ), yielding 
=
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 which is well-de�ned for every λ ω∈ −i\{ }. 

Inserting now the expression for b into Eq. (13), we are led to the characteristic equation
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where λ is the complex eigenvalue of A except for the points in the set {−iω}. Notice that Eq. (14) relates implicitly 
p (or ω0), which serves as the control parameter, with the eigenvalue λ. Since the real part of λ determines the 
stability of the incoherent state, we write Eq. (14) into two equations by letting λ = x + iy, i.e.,
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Based on Eq. (15), one can determine the stability of the incoherent state, and obtain the critical proportion of 
conformists (pc) for the forward phase transition.

 1. Case I. Substituting Γ1(κ) into Eq. (15) yields
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where the subscript 1 stands for Case I (and similar notations have been used for Case II and Case III). 
In contrast with the classical Kuramoto model10,11, x1 has not necessarily to be positive, as κ1 < 0. As p1 
increases, if x1 changes from negative to positive, the incoherent state will lose its stability. Imposing the 
critical condition x1 → 0, one obtains the critical proportion of conformists for the forward PT as

κ π
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c j j j
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where yj are determined by Eq. (15) in the limit x1 → 0, and yj cannot be zero. Eq. (15) may have more than 
one root as x1 → 0. supj means that we choose the jth root yj which makes the product |yj|g(yj) maximal, so that 
p c

1
 corresponds to the foremost critical point for the onset of synchronization. Speci�cally, for a Lorentzian FD 

(Unless otherwise speci�ed, the following stipulations are chosen: (i) the strength of couplings for conformist 
oscillators is kept �xed to κ2 = 5; (ii) a Lorentzian frequency distribution g(ω) = γ/π/[(ω − ω0)

2 + γ2] with 
γ = 0.05 is adopted; (iii) numerical integrations are performed with a fourth-order Runge-Kutta method with 
integration time step ∆t = 0.01; (iv) the initial conditions for the phase variables are randomly taken; (v) the 
typical number of oscillators in the ensemble is N = 5 × 104; (vi) a su�ciently long time interval (much larger 
than the oscillation period Tf = 2π/Ωf) is used for the average of the order parameter), one gets yj = {0, ±γ}. 
Substituting yj = ±γ into Eq. (17) yields κ κ κ= − −p (4 )/( )c

1 1 2 1 , which implies that the critical point for the 
forward PT is uniquely determined by the coupling strengths. In panel (a) of Fig. 1, one sees that these 
predictions are veri�ed by numerical simulations (at all values of γ).

 2. Case II. Substituting Γ2(κ|ω) into Eq. (15) yields

∫ ∫ ∫
κ ω ω

ω
ω

κ ω ω

ω
ω=

| |
+ −

+





−



 + −

.
ω

ω

ω

ω

−

∞

−∞

−x g

x y
d

x g

x y
d1

2

( )

( ) 2

( )

( ) (18)

1 2

2
2

2
2

2 2

2
2

2
2

0

0

0

0

Also in this case, x2 is not constrained to be positive. Setting x2 → 0, one obtains κ π= | |y g y1 ( )/2c c
2 2 2

 and 
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 being determined by Eq. (15), i.e.,
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Here, the symbol P.V. means the Cauchy principal-value integration within the real line. Considering 
g(ω) = g(−ω) and Γ2(κ|ω) = Γ2(κ| − ω), a pair of yc

2
 with opposite sign might emerge together. For a Lorent-

zian FD, one eventually obtains γ κ κ= ± + −y ( 16 )/4c
2 2 2

2 , with ∪ω ω∈ −∞ − +∞y ( , ) ( , )c c c
2 0 0 , and

Figure 1. Critical point for the forward phase transition. (a) p c
1

 vs. |κ1|, (b) p c
2

 vs. |κ1|, (c) p c
3

 vs. |κ1|, 
corresponding to Cases I–III, respectively. κ2 = 5.0 in all cases. �e numerical results perfectly support the 
theoretical predictions, at various values of γ (reported in the legend).
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Notice that γ=z y( / )c
2 2

2. First, one sees that yc
2

 does not exist if κ2 < 4, suggesting that x2 → 0 is self-contra-
dictory. �erefore, the real part of λ2 is either positive or negative when κ2 < 4. Obviously, x2 > 0 is 
physically unreasonable. �erefore, x2 is supposed to be negative in this case, which implies that the 
coherent state will not emerge no matter how large the proportion of conformist is. �en, when κ2 > 4, one 
can obtain the critical proportion of conformists for forward PT, which is reported in panel (b) of Fig. 1.

 3. Case III. Substituting Γ3(κ|ω) into Eq. (15), and setting x3 → 0, yields κ π= | |y g y1 ( )/2c c
2 3 3

, and 
ω ω∈ −y ( , )c c c

3 0 0 . Taking again a Lorentzian FD, when κ2 < 4 PT is impossible because x3 is always negative. 
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forward PT, i.e., =p pc c
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. �e 

theoretical and numerical results are shown in panel (c) of Fig. 1.

Mean-field theory. In order to unveil all possible coherent states in the system (as the proportion of con-
formists p increases), one has to rely on self-consistence analysis. For stationary coherent state, the mean-�eld 
phase Ψ rotates uniformly with frequency Ω, i.e., Ψ(t) = Ωt + Ψ(0). Without loss of generality, one can set Ψ = 0 
a�er an appropriate time shi�. In the rotating frame with frequency Ω, the phase di�erence φi = θi − Ψ is intro-
duced, and the model can be written as

φ ω κ ω φ= − Ω − | | = … r i Nsin , 1, , (21)i i i i i

in the rotating frame. In the Kuramoto model, the mean �eld may �uctuate at a rhythm di�erent from the ensem-
ble average (or the mode average) of the natural frequencies of the oscillators, especially when asymmetry in the 
coupling strengths is present39. Notice that there is no guarantee that Ω vanishes in Eq. (21) because of the asym-
metry in the e�cient coupling parameters κi|ωi|. Eq. (21) should be discussed for the two distinct populations: the 
phase-locked and the dri�ing oscillators. On the one hand, when |ωi − Ω| ≤ |κiωir|, Eq. (21) has a �xed point 
(φ = 0i ) solution, given by sin φi = (ωi − Ω)/(κi|ωi|r), corresponding to the phase-locked oscillators entrained by 
the mean-�eld. On the other hand, for the dri�ing oscillators, |ωi − Ω| > |κiωir|. �e order parameter in Eq. (6) 
can be rewritten as
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When replacing summation by integration, the contribution of the phase-locked oscillators to r reads





ω

κω
κ ω ω

ω

κω
κ ω

ω

κ ω
κ ω ω

ω

κω
κ ω

± −



− Ω

 Γ |





−

− Ω 




+
− Ω
| |

Γ |




−

− Ω 




∬

∬

r
g H

r
d d

i
r

g H
r

d d

1 ( ) ( ) 1

( ) ( ) 1 ,
(23)

2

2

2

where conformists take the positive sign and contrarians take the negative sign in the first integral. This is 
because, in a stationary coherent state, conformists attempt to follow the global rhythm of the system (and there-
fore cos φi > 0 is always the case), whereas contrarians try to oppose the system’s mean-�eld featuring cos φi < 0.

In contrast to phase-locked oscillators, the drifting oscillators cannot be entrained by the mean-field. 
Self-consistently, they form a stationary distribution on the circle11, i.e., ∂ρ/∂t = 0, and the constant value of the 
order parameter must be consistent with that implied by Eq. (22). �en, the distribution of the dri�ing oscillators 
in the rotating frame is given by

ρ φ ω κ
ω κω

π ω κ ω φ
| =

− Ω −
− Ω −

.
r

r
( , )

( ) ( )

2 sin

2 2
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It is then easy to obtain that, for dri�ing oscillators, ∫φ ρ φ ω κ φ φ〈 〉 = | =
π

dcos ( , )cos 0
0

2
, and

∫φ ρ φ ω κ φ φ
ω

κ ω

κω

ω
〈 〉 = =

− Ω
| |








− −



 − Ω












.

π

d
r

r
sin ( , , ) sin 1 1

0

2 2

�e dri�ing oscillators have no contributions to the real part of r. However, their contributions to the imagi-
nary part of r should not be neglected. �e closed form of self-consistence equations for the real and imaginary 
parts of r are

∫ ∫
ω

κω
κ ω ω

ω

κω
κ ω= ± −




− Ω

 Γ |





−

− Ω 


−∞

∞

−∞

∞
r

r
g H

r
d d1 ( ) ( ) 1 ,

(24)

2

and

∫ ∫

∫ ∫

ω

κ ω
κ ω ω

ω

κω
κ ω

ω

κ ω

κω

ω
κ ω ω

ω

κω
κ ω

=
− Ω
| |

Γ |




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− Ω 




+
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| |






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
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

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
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







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Γ |





− Ω

−



 .
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∞

−∞

∞

−∞

∞

−∞

∞

r
g H

r
d d

r

r
g H

r
d d

0 ( ) ( ) 1

1 1 ( ) ( ) 1

(25)

2

Taken together, Eqs (24) and (25) provide a closed equation for the dependence of the magnitude r and the 
frequency of the mean-�eld Ω on p. We notice that Ω = 0 is always a trivial solution of Eq. (25), corresponding to 
the π-state reported in refs37,38. In this state, the conformist and contrarian oscillators converge to a partially syn-
chronized state where they both satisfy a stationary distribution of phases, and the phase di�erence between these 
two clusters is always δ = π. Since Ω = 0 may not be the only solution, there could be more than one value for Ω 
that satis�es the phase balance equation. Ω ≠ 0 corresponds to the travelling wave (TW) state, in which the two 
clusters always maintain a constant separation δ π≠ , and rotate with the same frequency along the unit circle, 
i.e., they are relatively static with each other.

 1. Case I.
Substituting Γ1(κ) into Eqs (24) and (25) yields

∫

∫

ω

κ ω
ω

ω

κ ω
ω

ω

κ ω
ω

ω

κ ω
ω
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
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

+ −

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
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
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r p
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(26)
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∫

∫

∫

∫
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κ ω
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ω Ω
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(27)
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where subscript 1 in κ1 and Ω1 denotes Case I (and similar notations have been used for Case II and Case III).
De�ning α1 = κ1r, α2 = κ2r and x = (ω − Ω1)/ω, Ω ≠ 01 , Eq. (26) can be expressed as

∫

∫

α
α

α
α

= − − −









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
|Ω |
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− − | |
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r p
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H x dx

(1 ) 1
1 (1 )

( )

1
1 (1 )

( )
(28)

1
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2
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1
2
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1 1
2 2

For partially synchronous state, α1,2 > 1. To avoid divergency of Eq. (28), the only choice is Ω1 = 0, and Eq. 
(26) is reduced as
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κ

κ κ
=

+ −

− + −
.p

r r

r r

(1/ )

(1/ ) (1/ ) (29)
1

2 2
1

2

2
1

2 2
2

2

From Eq. (29), one can extract the critical proportion of conformists for backward PT as well as the 
π-state37,38 theoretically. Interestingly, this solution is independent of the speci�c form of g(ω) as long as 
g(ω) is symmetric and centered at 0, which is like the case of two-cluster synchronous state in ref.17. �e 
critical proportion of conformists for backward PT (pb

1
) is the minimum p1 which satis�es Eq. (29), thus pb

1
 

can be determined by setting dp1/dr = 0 in Eq. (29). When |κ1| = κ2 = κ, κ κ= +p (2 )/2b
1

 and κ=r 2 /b
1 . 

When |κ1| < κ2, κ=p 2/b
1 2 and κ=r 2 /b

1 2. When |κ1| > κ2, the equation for pb
1

 turns out to be tedious so 
we do not show the exact results here.
In Fig. 2(a–c), we have plotted the phase diagram for typical parameters in Case I, as well as the solutions of 
Eq. (29), which perfectly coincide with the numerical results. In Case I, the typical coherent state is the π-
state. In this state, there are four coherent clusters in the system, including a pair of conformist clusters and 
a pair of contrarian clusters. �ey are all static and their phases are locked with zero average speed, thus the 
order parameter is a �xed point on the complex plane. Moreover, the average phase of all conformists and 
that of all contrarians maintain a constant di�erence of π. During the backward transition, as p1 decreases, 
contrarian clusters �rst begin to desynchronize, while conformist clusters still keep synchronized. Only 
when p1 becomes small enough, the conformist clusters begin to desynchronize and the system �nally 
returns back to the incoherent state.
For the case of α1,2 < 1, Ω1 is not supposed to be 0, the solution of Eqs (26) and (27) can be solved numeri-
cally, corresponding to the TW state. Particularly, in the limit case r → 0+, one can obtain p c

1
 again, which is 

exactly the same as Eq. (17):

Figure 2. Typical synchronization scenarios in Eq. (1) as the proportion of conformists p increases. Lorentzian 
FD with γ = 0.05. From top to bottom, the three rows correspond to Cases I–III, respectively, while from le� 
to right, the three columns correspond to Q < 1, Q = 1, and Q > 1, respectively (Q = |κ1|/κ2). Both the forward 
(red circles) and the backward (blue squares) transitions are studied in an adiabatic way, and the black (dashed 
pinkish red) curves correspond to theoretical predictions of the stable (unstable) stationary coherent states, 
including the π-state and the TW states. Other typical non-stationary coherent states, such as the strange  
π-state, the B-state, and the hybrid-B state, can also be observed in broad parameter ranges.
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κ π

κ κ π
=

− |Ω | Ω
− |Ω | Ω

p
g

g

2 ( )

( ) ( )
,

(30)

c
c c

c c1
1 1 1

2 1 1 1

where Ωc
1 is the critical mean-�eld frequency. By Taylor expansion of Eq. (27), we �nd that Ωc

1 satis�es the 
following balance equation,

∫
ω ω

ω
ω= . .

| |
− Ω

.
−∞

∞
P V

g
d0

( )

(31)
c
1

From Eq. (30), we know that Ω ≠ 0c
1  when the incoherent state loses its stability, i.e., a stationary TW state 

will emerge when the system get synchronized. Although a linear stability analysis to this TW state is hard 
to be performed, its stability can still be studied through numerical simulations. It is found that the TW 
state predicted by the mean-�eld theory turns out to be unstable. Taking a Lorentzian FD, Eqs (26) and 
(27) can be simpli�ed to

∫

∫

γ

π κ γ

γ

π κ γ
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Numerical simulations suggest that this bifurcation is supercritical and unstable. �erefore, above p c
1

 the 
incoherent state (α1,2 < 0) loses its stability and the system jumps to π-state (α1,2 > 0) predicted by Eq. (29) 
because the TW state is unstable, i.e., a �rst-order synchronization transition takes place.
In our numerical studies, it is found that in the backward PT, however, the π-state does not always return to 
incoherence directly as shown in Fig. 2(a–c), and rather bifurcates continuously (for small enough κ1) 
towards a novel stationary state, here called the strange π-state. For example, in Fig. 3(a), we plot the phase 
diagram for κ1 = −2 and κ2 = 5. As p1 decreases, when the π-state loses stability, instead of returning back 
to incoherence state directly, the system bifurcates to the strange π-state. In Fig. 3(b), we show the 

Figure 3. Case I - Strange π-state. (a) r vs. p: forward (red circles) and backward (blue squares) transitions are 
compared with the predicted stable (full black) and unstable (dashed pinkish red) states. (b) Snapshot of θi vs. 
ωi, for the strange π-state at p = 0.5: dri�ing contrarians (red “clouds”) repel conformists’ clusters (blue lines), 
keeping to π the di�erence between the average phases of contrarians (dashed green) and conformists (dashed 
purple).
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microscopic characterization of this state. It is found that in this state, the contrarian clusters have 
desynchronized, while the conformist clusters still maintain complete coherence. �e contrarians 
maximize their distance from the conformists’ clusters, resulting in an averaged phase di�erence of π. 
Physically, this can be understood as follows. When |κ1| is signi�cantly smaller than κ2, contrarians are less 
a�ected by the mean �eld, and thus are easier to desynchronize as p decreases. Furthermore, as Ω1 = 0, we 
can predict this kind of state through mean-�eld method. Now, one should remove the contribution of 

contrarian clusters in Eq. (26), and get κ= −p r r/ (1/ )
1

2 2
2

2 . As shown in Fig. 3(a), the theoretical 
predictions agree perfectly with the numerical results.
With Lorentzian FD, the forward threshold p c

1
 (for the transition from incoherence) always exceeds the 

backward one pb
1

 where π or strange-π states lose their stability. With uniform distributions, instead, one 
can trigger (by appropriately choosing κ1) the forward transition so that <p pc b

1 1
. For example, we focus 

on the case of uniform distribution g(ω) = 1/2, ω ∈ (−1, 1), and |κ1| = κ2 = 5. From Eqs (30) and (31), the 
exact expression for critical proportion of conformists is π π= + < = .p p(4 2 5 )/(10 ) 0 7c b

1 1
. In this 

case, non-stationary states emerge within the interval < <p p pc b
1 1 1

 with a double hysteresis loop, one near 
p c

1
 and a second one near pb

1
 [Fig. 4(a)]. In this regime, oscillators split into four coherent clusters, two for 

each population. Like π-states, di�erent clusters maintains a phase di�erence of π between each other, but 
oscillators within each clusters are neither phase- nor frequency-locked [Fig. 4(b)]. In fact, they evolve with 
di�erent periodic patterns [Fig. 4(c)], and correlate with each other so that their average frequencies lock 
to binary constants ±Ωf, forming a staircase structure [Fig. 4(b3)]. Henceforth, both populations self-or-
ganize their phases as B’s23,24, resulting in a macroscopic rhythmic behaviour [Fig. 4(d)]. Numerically, we 
�nd that as p1 increases in the regime from p c

1
 to pb

1
, the fundamental frequency becomes smaller and 

smaller, i.e., the period becomes larger and larger. �e π-state can be consequently be regarded as the limit 
of a Bellerophon state with in�nite period.

Figure 4. Case I - Bellerophon state. (a) r vs. p for uniform frequency distribution g(ω) = 1/2, ω ∈ (−1, 1), and 
|κ1| = κ2 = 5. Rhythmic states emerge from incoherence (forward) and from the π-state (backward) through 
hysteresis loops, near p c

1
 and near pb

1
 (see inset). (b) Snapshots of the oscillators’ instantaneous phases θi (b1), 

instantaneous frequencies θi (b2), and average frequencies θ〈 〉i  (b3) vs. ωi (in the B-state at p = 0.7) for conformists 
(blue) and contrarians (red). (c) Dynamics of θi for two oscillators of the conformists’ (c1) and the contrarians’ 
(c2) clusters; straight lines denote their average frequencies locked to the constant Ωf. (d) Le� insets (d1–d3): 
order parameters for oscillators with positive (blue) and negative (red) frequencies, and their average (pinkish 
red) in the complex plane. Right insets (d4 and d5): corresponding rhythmic evolutions of r(t) and Ψ(t).
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 2. Case II.
In this case, we substitute Γ2(κ|ω) into Eqs (24) and (25) and obtain
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∫ ∫
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For partially synchronous state, i.e., |κ1r| > 1 and κ2r > 1, to avoid divergency of Eq. (34), the only choice is 
Ω2 = 0, and Eq. (34) is reduced as
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=
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Using the same methods developed in Case I, one can identify the entire π-state. Interestingly, the result is 
exactly the same as Eq. (29).
For the case of |κ1r| < 1 and κ2r < 1, Ω2 is not supposed to be 0, the solution of Eqs (34) and (35) can be 
solved numerically, corresponding to the TW state. Particularly, in the limit case r → 0+, one can obtain p c

2
 

again:
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where Ωc
2 is the critical mean-�eld frequency. By Taylor expansion of Eq. (35), one �nds that Ωc

2 satis�es the 
following balance equation,
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Evidently, Ωc
2 is the imaginary part of the eigenvalues of operator A at the boundary of stability, and 

Ω ≠ 0c
2 . For a Lorentzian FD, one ultimately obtains
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As for the TW state, Eqs (34) and (35) can be simpli�ed to
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Numerical results highlight that the bifurcation is supercritical and the TW state is unstable, like the TW 
state in Case I. In Fig. 2(d–f), we have plotted the phase diagram in Case II, as well as the solutions of Eq. 
(36). However, the predictions of π-state made by the mean-�eld theory do not coincide with the numeri-
cal results, suggesting that the stationary π-state is unstable, which has been further veri�ed by numerical 
method. In Case II, forward thresholds p c

2
 smaller than pb

2
 commonly appears, leading generically to the 

emergence of non-stationary coherent states. Typically, the system undergoes two PT’s: one at p c
2

, where 
the incoherent state loses stability and a B-state discontinuously emerges with hysteresis, and another at 
>′p pc c

2 2
, where the Bellerophon state becomes unstable and bifurcates to a novel rhythmic state with a PT 

whose type changes from discontinuous to continuous as the coupling ratio Q ≡ |κ1|/κ2 crosses one 
[Fig. 2(d–f)]. Physically, Q denotes the ratio of entrainment received by the contrarians and conformists 
from the mean-�eld.
In Fig. 5, one such novel rhythmic state is illustrated. In this state, there are six (two pairs of contrarians’ 
and one pair of conformists’) coherent clusters [Fig. 5(a)]. �e pair of contrarian clusters around ω = 0 be-
have like odd B’s [re�ected by the plateaus in panel (a3)] and rotate over all the unit circle [panel (b1)]; the 
other two pairs of clusters (with larger |ω|) behave instead as even B’s (a.k.a. oscillating π-states24) oscillat-
ing like shuttle-run in limited arches [panel (b2)]. Note that their average frequencies are zero [panel (a3)]. 
Being a superposition of odd and even B’s, we refer to such a macroscopic rhythmic state as hybrid-Bellero-
phon state.
To conclude, there are two synchronization PT’s in Case II. Further numerical simulations show that 
when κ2 is a constant, with the increasing of |κ1|, the width of hysteresis of the �rst PT almost remains the 
same, but the width of hysteresis of the second PT becomes smaller and smaller. When Q = |κ1|/κ2 < 1, 
the two staircases of Bellerophon state are one in the forward PT and the other in the backward PT. When 
Q = |κ1|/κ2 = 1, the two staircases start joining with each other. Until Q = |κ1|/κ2 > 1, the two staircases 
coincides with each other and the hysteresis disappears eventually. Although the second PT becomes a 

Figure 5. Case II - Hybrid-Bellerophon states. (a) Microscopic features of the hybrid-B’s at p = 0.76 in the 
forward PT reported in Fig. 2(d): distribution of θi (a1), θi (a2), and θ〈 〉i  (a3) vs. ωi. One can identify six (two 
conformist and four contrarian) coherent clusters of oscillators, whose phases are self-organized as in pure B’s 
and in oscillating π-states. (b) �e order parameters for all oscillators with positive (blue) and negative (red) 
frequencies, and their frequency average (pinkish red). �e insets plot the typical rhythmic behaviors of the 
order parameter restricted to the clusters of oscillators in B (b1) and in oscillating-π (b2) states. Panels (b3 and 
b4) report the rhythmic evolution in time of the global order parameters r(t) and Ψ(t), respectively.
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continuous one eventually, the hysteresis of the �rst PT is still observable. We can conclude that the bifur-
cation of the Bellerophon state is always subcritical, although the hybrid-Bellerophon state will emerge 
from subcritical bifurcation to supercritical bifurcation with the increasing of |κ1|.

 3. Case III.

Substituting Γ3(κ|ω) into Eqs (24) and (25), one obtains
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For the partially synchronous state, i.e., |κ1r| > 1 and κ2r > 1, to avoid divergency of Eq. (42), the only choice 
is Ω3 = 0, and Eq. (42) can be reduced as
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From Eq. (44), one can obtain the entire π-state, as well as extract the critical proportion of conformists 
where the π-state loses its stability in backward PT (pb

3
). Interestingly, it is exactly the same as Eq. (29) for 

Case I and Eq. (36) for Case II. �e solutions of Eq. (44) are plotted in Fig. 1(c). Remarkably, unlike the case 
of Γ2(κ|ω), the predictions of π-state made by the mean-�eld theory coincide perfectly with the numerical 
data. �is suggests that the mean-�eld theory still holds in this case, and the stationary π-state is a stable 
synchronous state. To sum up, the theoretical predictions of stationary π-state are identical in all cases, only 
in Case II it is unstable where a non-stationary strange π-state replaces it.
For the case of |κ1r| < 1 and κ2r < 1, Ω3 is not supposed to be 0, the solution of Eqs (42) and (43) can be 
solved numerically, corresponding to the TW state. Particularly, in the limit case r → 0+, one can obtain p c

3
:
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where Ωc
3 is the critical mean-�eld frequency. By Taylor expansion of Eq. (43), Ωc
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Ωc
3 is also the imaginary part of the eigenvalues of operator A at the boundary of stability, and Ω ≠ 0c

3 . For a 

Lorentzian FD,  one ult imately  obtains  γ κ κΩ = ± − −( 16 )/4c
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As for the TW state, Eqs (42) and (43) can be simpli�ed to
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�e solutions of Eqs (47) and (48) are reported in Fig. 2(g–i), and numerical results give evidence that this 
bifurcation can be stable only in the case of κ2 > |κ1|. �e theoretical predictions agree perfectly with the 
numerical results. Depending on κ, one finds three main processes of synchronization. When Q < 1, 
>p pc b

3 3
, and a stable π-state emerge discontinuously out of incoherence near p c

3
 [Fig. 2(g)]. When Q = 1, 

<p pc b
3 3

, the incoherent state bifurcates discontinuously towards a B-state with hysteresis near p c
3

, and then 
the B-state loses stability at pb

3
 towards a π-state with a continuous transition [Fig. 2(h)]. Finally, when Q > 1, 

again <p pc b
3 3

 and the results regarding the �rst transition are the same as Q = 1, with the main exception 
that here a stable traveling wave (TW) state emerges continuously from the Bellerophon state and it vanishes 
at >′p pc b

3 3
 with a �rst-order-like transition to the π-state, resulting overall in a three-stage PT to synchro-

nization [Fig. 2(i)]. Unlike the previous cases, here both populations in the Bellerophon state self-organize 
their phases by splitting into multiple coherent clusters separated by “seas” of dri�ing oscillators [Fig. 6(a)]. 
Within each coherent cluster, the oscillators’ average frequencies (the ensemble averaged frequency39) are 
locked to odd multiple integers of a fundamental (lowest) frequency Ωf

23,24, so that clusters form a staircase 
structure described by Ω±n = ±(2n − 1)Ωf with ∈n  [Fig. 6(b)]. Due to the correlation among oscillators 
in the clusters, the order parameter exhibits complicated orbits in the complex plane, as shown in the insets 
of Fig. 6(b).
To summarize, there are three di�erent processes of synchronization depending on the relative magnitude 
of |κ1| and κ2 in Case III. When Q < 1, >p pc b

3 3
. As the incoherent state loses its stability at p c

3
, the station-

ary TW solution predicted by Eqs (47) and (48) is unstable, thus the π-state predicted by Eq. (44) emerges 
with a hysteresis near p c

3
. As the proportion of conformists increases, the system remains π-state a�er-

wards. �erefore, in this synchronization process there is only one �rst-order PT from incoherent state to 
π-state. When Q = 1, <p pc b

3 3
. As the incoherent state loses its stability at p c

3
, a non-stationary Bellerophon 

state emerges. �e bifurcation of this Bellerophon state is subcritical, thus non-stationary r(t) emerges with 
a hysteresis near p c

3
. As p3 increases, it eventually vanishes at pb

3
 with a continuous transition to the π-state. 

�erefore, in this synchronization process there are two-stage synchronization PTs, one is a discontinuous 
PT from incoherent state to the Bellerophon state, and the other is a continuous PT from the Bellerophon 

Figure 6. Case III - B-state with quantized clusters. (a) Microscopic features of the B-state at p = 0.6 in the 
forward PT reported in Fig. 2(i): distribution of θi (a1), θi (a2), and θ〈 〉i  (a3) vs. ωi. Conformists and contrarians 
are represented in blue and red, respectively. (b) Distribution of the average frequencies in units of the 
fundamental frequency Ωf , unveiling the odd-multiplicity rule θ〈 〉 Ω = n/i f  with n = 1, 3, 5, … behind the 
staircase structure in (a3). �e insets plot the order parameters for the coherent clusters of conformist 
(Conf(±1)) and contrarians (Cont(±n), with n = 1, 3, 5) in the complex plane.
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state to π-state. When Q > 1, the results turn out to be the same as Q = 1, except that the TW state can be 
stable and it vanishes at >′p pc b

3 3
 with a discontinuous transition to the π-state as p3 increases. Further 

numerical simulations show that if |κ1| is large enough, the Bellerophon state will emerge from subcritical 
bifurcation to supercritical bifurcation, which causes the �rst PT change from a discontinuous one to a 
continuous one. In conclusion, with the increasing of |κ1|, the first PT changes from first-order to 
second-order, meanwhile the second PT emerges and changes from the second-order to the �rst-order.

Discussion
While in the classical Kuramoto model, phase oscillators are globally and homogeneously coupled to the mean 
�eld, in some practical situations such a coupling may instead be heterogeneous. In ref.23, a frequency-weighted 
Kuramoto model was studied, and a novel quantized, time-dependent, and clustered state (the Bellerophon state) 
was revealed. In ref.24, Bellerophon states were again observed in coupled conformist and contrarian oscillators.

Here, we combined frequency-weighted coupling strengths with positive and negative interactions. As com-
pared with refs23,24, such a higher order of heterogeneity gives rise to a much richer scenario, which includes 
di�erent regions of bi-stability. Furthermore, we identi�ed the multiple phase transition character of the root to 
synchronization, and gave evidence of the generic emergence of macroscopic rhythmic regimes where oscillators 
self-organize as in Bellerophon states. Together with the Bellerophon states of refs23,24, novel collective phases 
(namely, the strange π- and the hybrid B-states) were revealed. Unlike precedent studies, where periodic synchro-
nization behaviors were observed in the presence of an external periodic driving40–42, the collective rhythms here 
reported emerge spontaneously, as soon as the forward critical threshold precedes the backward one.

�e strange π- and hybrid B-states observed in the present model can be regarded as a transitional state 
between the incoherent state (full asynchrony) and the π-state (full synchrony). On the one hand, the control 
parameter is not strong enough to completely entrain the system into the π-state, on the other hand it is large 
enough to maintain certain correlations among the instantaneous frequencies of oscillators. As a compromise 
of this competition, the instantaneous frequencies of oscillators are not locked but their average frequencies are 
locked to certain constant.

�e current model of conformist and contrarian may describe neuron systems, political systems, or economi-
cal systems. �e rich synchronization phenomena and the nontrivial coherent states observed in this work could 
help us better understand the collective behaviors in such systems. For instance, diverse neuro-degenerative 
disorders, like Parkinson’s disease, have been proved to be correlated to the spontaneous emergence of global 
neuronal oscillations, which makes the present model appealing for a better understanding of their dynamical 
origins. Moreover, due to their ubiquitous appearance, our study paves the possibility that the microscopic, quan-
tized features of B’s are actually the fundamental building blocks behind spontaneous emergence of collective 
rhythms in more general systems of interacting oscillators, opening a theoretical challenge in the study of rhyth-
mic synchronization.
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