
RI-MAC: A Receiver-Initiated Asynchronous
Duty Cycle MAC Protocol for Dynamic Traffic Loads

in Wireless Sensor Networks

Yanjun Sun
∗

Omer Gurewitz
†

David B. Johnson
∗

yanjun@cs.rice.edu gurewitz@cse.bgu.ac.il dbj@cs.rice.edu

∗

Department of Computer Science, Rice University, Houston, TX, USA
†
Department of Communication Systems Engineering, Ben Gurion University, Israel

ABSTRACT

The problem of idle listening is one of the most significant sources
of energy consumption in wireless sensor nodes, and many tech-
niques have been proposed based on duty cycling to reduce this
cost. In this paper, we present a new asynchronous duty cycle
MAC protocol, called Receiver-Initiated MAC (RI-MAC), that uses
receiver-initiated data transmission in order to efficiently and ef-
fectively operate over a wide range of traffic loads. RI-MAC at-
tempts to minimize the time a sender and its intended receiver oc-
cupy the wireless medium to find a rendezvous time for exchang-
ing data, while still decoupling the sender and receiver’s duty cycle
schedules. We show the performance of RI-MAC through detailed
ns-2 simulation and through measurements of an implementation
in TinyOS in a testbed of MICAz motes. Compared to the prior
asynchronous duty cycling approach of X-MAC, RI-MAC achieves
higher throughput, packet delivery ratio, and power efficiency un-
der a wide range of traffic loads. Especially when there are con-
tending flows, such as bursty traffic or transmissions from hidden
nodes, RI-MAC significantly improves throughput and packet de-
livery ratio. Even under light traffic load for which X-MAC is
optimized, RI-MAC achieves the same high performance in terms
of packet delivery ratio and latency while maintaining comparable
power efficiency.

Categories and Subject Descriptors

C.2.2 [Computer-Communication Networks]: Network
Protocols; C.2.5 [Computer-Communication Networks]: Local
and Wide-Area Networks—Access Schemes

General Terms

Algorithms, Design, Performance

Keywords

Sensor networks, medium access control, asynchronous duty
cycling, energy, ns-2, TinyOS

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SenSys’08, November 5–7, 2008, Raleigh, North Carolina, USA.
Copyright 2008 ACM 978-1-59593-990-6/08/11 ...$5.00.

1. INTRODUCTION

Nodes in a wireless sensor network (WSN) must typically operate
unattended for long periods of time on limited battery capacity, and
idle listening is one of the most significant sources of energy con-
sumption in sensor nodes. In idle listening, a node waits with its
radio turned on, listening for a possible packet to be received even
though none has been sent.

Many solutions to the problem of idle listening have been pro-
posed utilizing the technique of duty cycling [19, 23]. In this tech-
nique, each sensor node turns its radio on only periodically, alter-
nating between active and sleeping states. For example, with a 10%
duty cycle, a node has its radio on only 10% of the time, resulting
in substantial energy savings. In the active state, a node is able to
transmit or receive data, but in the sleeping state, the node com-
pletely turns off its radio to save energy.

Contention-based duty cycle MAC protocols in the literature can
be roughly categorized into two categories: synchronous and asyn-

chronous. Synchronous approaches such as S-MAC [23], T-MAC
[7], RMAC [8], and DW-MAC [20] synchronize neighboring nodes
in order to align their active or sleeping periods. Neighbor nodes
start exchanging packets only within the common active time, en-
abling a node to sleep for most of the time within an operational
cycle without missing any incoming packet. This approach greatly
reduces idle listening time, but the required synchronization intro-
duces extra overhead and complexity, and a node may need to wake
up multiple times if its neighbors are on different schedules.

Existing asynchronous approaches such as B-MAC [19],
X-MAC [3], and WiseMAC [9], on the other hand, allow nodes
to operate independently, with each node on its own duty cycle
schedule. Such protocols typically employing low power listen-
ing (LPL), in which, prior to data transmission, a sender transmits
a preamble lasting at least as long as the sleep period of the re-
ceiver. When the receiver wakes up and detects the preamble, it
stays awake to receive the data. These protocols achieve high en-
ergy efficiency and remove the synchronization overhead required
in synchronous duty cycle approaches. However, they are mainly
optimized for light traffic loads, and we found that they become
less efficient in latency, power efficiency, and packet delivery ratio
as traffic load increases, due to their long preamble transmissions.
WiseMAC attempts to improve efficiency by reducing the duration
of preamble transmission, but this improvement requires nodes to
maintain a fixed wakeup schedule and depends on frequent, regular
communication to the same neighbors.

In asynchronous protocols, preamble transmission in LPL-based
protocols may occupy the medium for much longer than actual
data transmission. Such long preamble transmission from a sender

1

could prevent all neighboring nodes with pending data from trans-
mitting their data. As these nodes have to wait until the medium
is not occupied, some of them could experience significant delay.
This is often the case under bursty or high traffic load such as due to
convergecast [25] and correlated-event workload traffic [13], where
multiple sensors that have detected the same event send their re-
ports to the sink node or to a node that does data aggregation [11].
As traffic in a WSN can be quite dynamic, depending on the events
being sensed and the sensing application and protocols being used,
an ideal WSN MAC protocol should perform well under a wide
range of traffic loads, including high loads and bursty traffic.

In this paper, we present a new asynchronous duty cycle MAC
protocol, called Receiver-Initiated MAC (RI-MAC). RI-MAC at-
tempts to minimize the time a sender and its intended receiver oc-
cupy the medium for them to find a rendezvous time for exchang-
ing data, while still decoupling the sender and receiver’s duty cycle
schedules as B-MAC and X-MAC do.

RI-MAC differs from prior work in asynchronous duty cycle
MAC protocols in how the sender and receiver reach a rendezvous
time. In RI-MAC, the sender remains active and waits silently un-
til the receiver explicitly signifies when to start data transmission
by sending a short beacon frame. As only beacon and data trans-
missions occupy the medium in RI-MAC, with no preamble trans-
missions as in LPL-based protocols, occupancy of the medium is
significantly decreased, making room for other nodes to exchange
data.

We believe this is the first attempt to apply the idea of receiver-
initiated transmission to duty cycle MAC protocols for ad hoc wire-
less sensor networks. By coordinating neighboring nodes using
beacons in RI-MAC, a receiver adaptively increases channel uti-
lization as traffic load increases, allowing RI-MAC to achieve high
throughput, packet delivery ratio, and power efficiency under a
wide range of traffic loads.

The contributions of this work are as follows:

• We present a new asynchronous duty cycle MAC protocol,
called RI-MAC, employing receiver-initiated transmissions,
in order to efficiently and effectively operate over a wide
range of traffic loads.

• Due to the receiver-initiated design, RI-MAC not only sub-
stantially reduces overhearing, but also achieves lower col-
lision probability and recovery cost than do B-MAC and
X-MAC.

• We have implemented RI-MAC in TinyOS and evaluate it
in a small testbed network of sensor nodes. We also imple-
mented RI-MAC in the ns-2 network simulator for evalua-
tions in larger networks.

• RI-MAC significantly improves throughput and packet deliv-
ery ratio, especially when there are contending flows such as
bursty traffic or transmissions from hidden nodes.

• Even under light traffic loads for which X-MAC is optimized,
RI-MAC achieves the same high performance in terms of
packet delivery ratio and latency while maintaining compa-
rable power efficiency.

The rest of this paper is organized as follows. In Section 2,
we discuss related work in duty cycle MAC protocols for sensor
networks. Section 3 presents the detailed design of RI-MAC, in-
cluding our implementation of it in TinyOS, and Section 4, presents
an evaluation of RI-MAC using both ns-2 simulation and our im-
plementation in TinyOS in a testbed of MICAz motes. Finally, in
Section 5, we present conclusions.

2. RELATED WORK

The idea of receiver-initiated transmission in a MAC protocol is not
new, but we make the first attempt to combine this idea together
with duty cycling in the context of MAC protocols for ad hoc wire-
less sensor networks, where power efficiency is a major concern.
Garcia-Luna-Aceves et al. proposed a receiver-initiated collision-
avoidance scheme [12] for general wireless networks, where colli-
sion is a major concern but power efficiency is of lesser importance.

Receiver-initiation has previously been applied to sensor
networks in the PTIP (Periodic Terminal Initiated Polling) mech-
anism [10], but only for infrastructure WSNs, where each sensor
node is in range of an access point, and access points are assumed
to be energy unconstrained. With PTIP, a sensor node periodically
wakes up and sends a poll packet to an access point with which
the node is associated. If the access point has buffered any packets
when the node was sleeping, the access point starts sending those
packets to the node upon receiving the poll. The type of WSN
assumed for PTIP is very different from a typical ad hoc WSN,
where multihop packet delivery can be common and most sensor
nodes have limited battery capacity. In addition, the PTIP mecha-
nism was designed only for packets being sent from an access point
to a sensor node.

Another receiver-initiated mechanism, known as Low Power
Probing (LPP), was recently introduced in the Koala system [18].
Koala is designed for reliably downloading bulk data from all sen-
sor nodes, for applications with no real-time requirements. All
downloads in Koala are initiated by the gateway or gateways, al-
lowing the nodes to sleep most of the time until the gateway’s
download initiation. With LPP, each node periodically broadcasts a
short probe packet requesting an acknowledgment. If an acknowl-
edgment is received, the node remains active and starts waking up
other nodes by acknowledging their probes; otherwise the node
goes back to sleep. The LPP mechanism in Koala differs from
RI-MAC in both objective and design. In particular, LPP is used
in Koala only for waking up all sensor nodes for a download and
is not involved in the actual data transfer during a download. As
such, features of RI-MAC such as back-to-back data transmission
and collision detection and recovery were not discussed in LPP.

In sensor network MAC protocols not using receiver-initiation,
B-MAC [19] and X-MAC [3] are representative asynchronous duty
cycle-based protocols. In B-MAC, each node periodically wakes
up to check if there is any activity currently on the wireless chan-
nel. If so, the node remains active to receive a possible incoming
packet. Prior to DATA frame transmission, a sender transmits a
long “wakeup signal,” called a preamble, which lasts longer than
the receiver’s sleep interval. This policy ensures that the receiver
will wake up at least once during the preamble, allowing each node
to wake up or sleep based on its own schedule. B-MAC is very en-
ergy efficient under light traffic because a node spends only a very
short period of time in checking channel activity at each scheduled
wakeup time. However, a node with B-MAC may wake up and re-
main awake due to channel activity, only to, in the end, receive one
or more DATA frames actually destined for other nodes.

X-MAC solves this overhearing problem in B-MAC by using
a strobed preamble that consists of sequence of short preambles

prior to DATA transmission, as illustrated in Figure 1. In this
and similar figures in this paper, the period of time during which
a node is active is indicated by a solid gray background, frame
reception by a node is indicated by black text on the gray back-
ground, and frame transmission by a node is indicated by white
text on a dark background. The target address is embedded in
each short preamble, which not only helps irrelevant nodes to go to
sleep immediately but also allows the intended receiver to send an

2

DATA

DATA

A

P A

P P P P P

R

S
Periodic CCA checkEarly ACK

Short preambles

Node activeTransmit Receive

Dwell time for queued packets

Figure 1: Operation of X-MAC, including the strobed preamble

and early acknowledgment. During a scheduled wakeup time,

a node does a CCA (clear channel assessment) check that is

longer than the gap between two short preambles.

ADATA DATADATADATA

DATA A
R

S
Periodic CCA check

Figure 2: The variation of X-MAC implemented in the UPMA

package in TinyOS. The strobed preamble is replaced by a

chain of DATA frame transmissions.

early ACK to the sender so that the sender stops preamble transmis-
sion and starts transmitting the DATA frame immediately. In this
way, X-MAC saves energy by avoiding overhearing while reducing
latency almost by half on average. After receiving a DATA frame,
a receiver in X-MAC stays awake for a duration equal to the maxi-
mum backoff window size to allow queued packets to be transmit-
ted immediately. We refer to this duration as the dwell time in the
rest of this paper.

The UPMA (Unified Power Management Architecture for Wire-
less Sensor Networks) package [15] implemented a variation of
X-MAC in TinyOS, in which the DATA frame itself is used as the
short preamble, as illustrated in Figure 2. This strategy simpli-
fies implementation and helps a sender to determine whether the
DATA is successfully delivered from the ACK from the receiver.
In the rest of this paper, we refer to this variation of X-MAC as
X-MAC-UPMA.

B-MAC and X-MAC achieve high power efficiency under light
traffic load, but their preamble transmissions occupies the wireless
medium for a long time until DATA is delivered, making them less
efficient in case of contending traffic flows. In contrast, a sender
in our RI-MAC protocol does not occupy the medium until the in-
tended receiver is ready for receiving, by using receiver-initiated
transmission. This property allows RI-MAC not only to achieve
comparable performance to X-MAC under light traffic load, but to
handle a wide range of traffic loads more efficiently. In addition,
the receiver-initiated transmission makes RI-MAC more efficient
in detecting collisions and recovering lost DATA frames.

WiseMAC [9] is similar to B-MAC, but a sender in WiseMAC
efficiently reduces the length of the wakeup preamble by exploit-
ing the sampling of the schedules of its direct neighbors. In effect,
although individual nodes are not synchronized in waking up at the
same time as each other, a node does synchronize with its neigh-
bors in learning the wakeup schedules of those neighbors to which
it is sending data. To efficiently enable this learning, a node re-
ceiving a DATA frame includes in the following ACK frame the
remaining time until its next sampling time. With this informa-
tion, and taking possible clock drifts into account, the sender for its
next DATA frame to this receiver estimates when the receiver will
wake up next, and starts transmitting its preamble just before then.

The resulting shortened preamble greatly helps to save energy and
improve channel utilization. However, WiseMAC, as with B-MAC,
suffers from the possibility of simultaneous transmissions from hid-
den nodes, due to the similar preamble sampling techniques they
use. In addition, each node with WiseMAC must maintain the
same regular wakeup schedule over time, allowing problems such
as starvation due to repeated collisions between competing nodes
that wake up at the same time over and over again.

Synchronized duty cycle MAC protocols, such as S-MAC [23],
T-MAC [7], RMAC [8], and DW-MAC [20], also achieve great
energy efficiency in WSNs; so too, hybrid approaches such as
SCP [24]. The major difference between RI-MAC and these MAC
protocols is that RI-MAC does not require any synchronization,
thus saving the overhead and complexity of clock synchroniza-
tion. Even though no node occupies the medium for a long time
in these synchronized duty cycle MAC protocols, it is still difficult
for contending flows to finish their transmissions within a single
cycle. Specifically, the time window during which transmission
is allowed is usually very short in these protocols, as neighboring
nodes’ wakeup times are synchronized. Once one flow acquires the
medium, other flows usually have to wait until next cycle, as their
receivers might have gone to sleep when the medium becomes idle.
Therefore, RI-MAC has the potential to handle contending flows,
and thus bursty traffic, more efficiently and effectively.

3. RI-MAC DESIGN

In this section, we describe the design of the RI-MAC protocol.
After an overview of the protocol, we discuss different details
RI-MAC’s design and conclude with a discussion of how we im-
plemented RI-MAC in TinyOS.

3.1. Overview

Figure 3 gives an overview of the operation of RI-MAC, in which a
DATA frame transmission is always initiated by the intended re-
ceiver node of the DATA. In RI-MAC, each node periodically
wakes up based on its own schedule to check if there are any incom-
ing DATA frames intended for this node. After turning on its radio,
a node immediately broadcasts a beacon if the medium is idle, an-
nouncing that it is awake and ready to receive a DATA frame. A
node with pending DATA to send, node S in this figure, stays active
silently while waiting for the beacon from the intended receiver R.
Upon receiving the beacon from R, node S starts its DATA trans-
mission immediately, which will be acknowledged by R with an-
other beacon. Note that this ACK beacon’s role is twofold: first,
it acknowledges the correct receipt of the sent DATA frame, and
second, it invites a new DATA frame transmission to the same re-
ceiver. If there is no incoming DATA after broadcasting a beacon,
the node goes to sleep, as S does later in the figure.

RI-MAC significantly reduces the amount of time a pair of nodes
occupy the medium before they reach a rendezvous time for data
exchange, compared to the preamble transmission in B-MAC and
X-MAC. This short medium occupation time enables more con-
tending nodes to exchange DATA frames with their intended re-
ceivers, which helps to increases capacity of the network and thus
potential throughput. More importantly, this increase is adaptive,
by letting a beacon serve both as an acknowledgment to previously
received DATA and as a request for the initiation of the next DATA
transmission, as discussed in detail in Section 3.2.

In RI-MAC, medium access control among senders that want to
transmit DATA frames to the same receiver is mainly controlled by
the receiver. This design choice makes RI-MAC more efficient in
detecting collisions and recovering lost DATA frames than B-MAC

3

BDATA

DATA

B

B B

B

R

S

Node sends a beacon when it wakes up

Wake up to send and
wait for beacon

Start data transmission upon receving R’s beacon

Node sends a beacon but goes
to sleep since no incoming DATA

Figure 3: Overview of RI-MAC. Each node periodically wakes

up and broadcasts a beacon. When node S wants to send a

DATA frame to node R, it stays active silently and starts DATA

transmission upon receiving a beacon from R. Node S later

wakes up but goes to sleep after transmitting a beacon frame

since there is no incoming DATA frame.

Hardware Preamble

Frame Length

FCF FCSSrc DstBW

RI-MAC-Specific

Figure 4: The format of an RI-MAC beacon frame for an IEEE

802.15.4 radio. Dashed rectangles indicate optional fields. The

Frame Length, Frame Control Field (FCF), and Frame Check

Sequence (FCS) are fields from IEEE 802.15.4 standard.

and X-MAC when the senders are hidden to each other, which can
be common in ad hoc sensor networks. As discussed in Section 3.4,
after transmitting a beacon, a receiver detects collisions within the
duration of the backoff window specified in the beacon, which is
much shorter than the delay of a sleep interval needed in B-MAC
and X-MAC.

RI-MAC also reduces overhearing, as a receiver expects incom-
ing data only within a small window after beacon transmission. To-
gether with the lower cost for detecting collisions and recovering
lost DATA frames, RI-MAC achieves higher power efficiency, es-
pecially when the network load increases. Even under light traffic
load, which is the worst case for RI-MAC for power efficiency,
RI-MAC still shows comparable performance to X-MAC in our
simulation and experimental evaluation on MICAz motes. RI-MAC
still decouples the sender’s and receiver’s duty cycle schedules as
do B-MAC and X-MAC, which removes the overhead of synchro-
nization compared to synchronous duty cycle MAC protocols.

3.2. Beacon Frames

A beacon frame in RI-MAC always contains a Src field, which is
the address of the source transmitting node of the beacon. We call
a beacon with only a Src field a base beacon. A beacon can also in-
clude two optional fields, depending on the roles the beacon serves:
Dst, for destination address, and BW, for backoff window size. The
RI-MAC beacon frame format for an IEEE 802.15.4 radio is illus-
trated in Figure 4 as an example.

A node that receives a beacon can determine which fields are
present in the beacon by looking at the size of the beacon; with an
IEEE 802.15.4 radio, size of a beacon is saved in the Frame Length
field. A beacon in RI-MAC can play two simultaneous roles: as an
acknowledgment to previously received DATA, and as a request for
the initiation of the next DATA transmission, as illustrated in Fig-
ure 5. After node R wakes up and senses clear medium, R transmits
a base beacon. If the medium is busy, R does a backoff and attempts
to transmit the beacon later. After receipt of the first DATA frame
from S in the figure, in the following beacon transmission by R, the
Dst field is set to S to indicate that this beacon also serves as the
acknowledgment for the DATA received from S. Similar to ACK

BDATA

DATA

DATA

DATA

B B

B B B
R

S

Transmit upon receiving the acknowledgment beacon

Send an acknowledgment beacon

Dwell time

Figure 5: The dual roles of a beacon in RI-MAC. A beacon

serves both as an acknowledgment to previously received DATA

and as a request for the initiation of the next DATA transmis-

sion to this node.

transmission in IEEE 802.11, transmission of this acknowledgment
beacon starts after SIFS delay, regardless of medium status. Nodes
other than S ignore the Dst field in the beacon and treat it as a re-
quest for the initiation of a new data transmission. The use of the
BW field in a beacon is discussed in detail in Section 3.4.

The duty cycle in RI-MAC is controlled by a parameter called
the sleep interval, which determines how often a node wakes up
and generates a beacon to poll for pending DATA frames. Suppose
a sleep interval of L is used in some WSN. After a node generates
a beacon, the interval before the next beacon generation is set to
a random value between 0.5×L and 1.5×L. In this way, we at-
tempt to minimize the possibility that beacon transmissions from
two nodes become coincidentally synchronized.

3.3. Dwell Time for Queued Packets

After successfully receiving a DATA frame, a node remains active
for some extra time in order to allow queued packets to be sent
to it immediately, as shown in Figure 5. We refer to this time as
the dwell time. Unlike in X-MAC, where the dwell time is set to
a fixed value of the maximum backoff window, the dwell time in
RI-MAC adapts to the number of contending senders. The duration
of the dwell time is defined as the BW value from the last beacon
plus SIFS and the maximum propagation delay. Since the BW in
a beacon is automatically adjusted based on channel collisions ob-
served by a node as discussed in detail next, so is the dwell time.
The fewer contending senders and thus the fewer collisions, the
shorter the dwell time. This self-adaptation helps RI-MAC using
the shortest waiting time possible under light channel contention
while avoiding collisions under heavy channel contention.

3.4. DATA Frame Transmissions from
Contending Senders

The challenges in handling transmissions from an unpredictable
number of contending senders are twofold:

• minimize the active time of a receiver for power efficiency;
and

• minimize the cost for collision detection and recovery of lost
data, whether or not senders are hidden to each other.

To meet these goals in RI-MAC, a receiver employs beacon
frames to coordinate DATA frame transmissions from contending
senders, as shown in Figure 6. The BW field in a beacon speci-
fies the backoff window size senders should use when they contend
for the medium. If a received beacon does not contain a BW field
(i.e., a base beacon), senders for this receiver should start transmit-
ting DATA without backing off. If a beacon contains a BW field,
each sender does a random backoff using the BW as the backoff

4

DATA DATA

DATA

DATA

DATA

DATA DATA

B B B

B BB B

B B B B
R

S1

S2

Beacon containing a larger backoff window

Collision Backoff

Figure 6: DATA frame transmission from contending senders

in RI-MAC. For the first beacon, the receiver R requests

senders (here, S1 and S2) to start transmitting DATA imme-

diately upon receiving the beacon. If a collision is detected, R

sends another beacon with increased BW value to request that

senders do a backoff before their next transmission attempt.

window size over which to choose the actual backoff. The receiver
increases the value of the BW field upon detecting collisions.

If a node cannot start data transmission as soon as it receives a
beacon, prior to actual DATA transmission, a sender should make
sure that the medium has been idle for at least Tp time using CCA
(clear channel assessment) checks. The CCA checks prevent a
sender from starting DATA transmission while the intended receiver
is generating an acknowledgment beacon to a DATA frame just re-
ceived from another sender. The time Tp here is set to SIFS plus the
maximum propagation delay. If a node needs more time to generate
and send an acknowledgment beacon, such as a software ACK used
in TinyOS, Tp should be increased correspondingly, as described in
Section 3.8.

After waking up, a node always broadcasts a base beacon with
no BW field. We made this design choice to optimize RI-MAC for
the most common cases of a typical WSN where there is light or
no traffic most of the time. By enforcing all senders with pend-
ing DATA frames to transmit immediately, we attempt to minimize
time for the node to determine whether or not there is incoming
DATA. The shorter this duration, the less energy is used at each
wakeup. In this way, we attempt to minimize energy consump-
tion if the network is idle most of the time. The duration can be
very short, as it is the the maximum round trip propagation delay
plus radio switch delay (SIFS in IEEE 802.15.4). If the receiver
detects no channel activity within this duration, the receiver goes
to sleep immediately. Although a base beacon could lead to con-
current DATA transmissions to a same receiver, we found that they
do not necessarily lead to collisions in our experimental implemen-
tation on MICAz motes [6], due to the presence of capture effect
in the CC2420 radio [4]. This feature makes it possible for one
sender to successfully transmit a packet to the receiver even if the
transmission overlaps with others, especially when senders have
different distances to the receiver (and thus different received sig-
nal strengths) [16, 17].

3.5. Collision Detection and Retransmissions

By coordinating DATA frame transmissions at receivers, RI-MAC
greatly reduces the cost for detecting collisions and recovering lost
DATA frames compared to B-MAC and X-MAC. As a sender
can transmit DATA frame only upon receiving a beacon, and since
the backoff window size is explicitly controlled by the intended
receiver, the receiver knows the maximum delay before a DATA
frame’s arrival. This delay can be calculated from the BW value
in the previous beacon. The receiver need only detect the Start
of Frame Delimiter (SFD) to learn of an incoming frame. If
no SFD is detected in time, while some channel activity is de-
tected by the CCA (clear channel assessment) check, the receiver

BDATA

DATAB

BB

B B
R

S

Initial beacon

Beacon sent on request from S’s beacon

Figure 7: RI-MAC beacon-on-request. When node S wakes up

for transmitting a pending DATA frame, it sends a beacon with

the Dst field set to the destination of the pending DATA. If the

destination node R is already active, R in response transmits a

beacon to enable S to begin DATA transmission immediately.

will decide that there was a collision and will generate another
beacon with a larger BW value. In RI-MAC, this new beacon
is transmitted after the longest possible DATA transmission has
finished so that all senders’ radios are already in receive mode.
Prior to transmitting the beacon, a node does a random backoff
to avoid possible repeated collisions with beacons from another
node.

After detecting a collision, a receiver calculates the new BW
value that will be used in the next beacon, by employing some
backoff strategy such as binary exponential backoff (BEB) in IEEE
802.11 or Sift [14,21], depending on the density of a network. BEB
is used in our implementation in TinyOS, as we found it adapts to
networks of different densities and resolves collisions efficiently in
RI-MAC in our evaluations.

As RI-MAC initiates transmissions at the receiver, retransmis-
sion in RI-MAC is significantly different from that in sender-
initiated approaches such as IEEE 802.11. In RI-MAC, a receiver
plays the major role in retransmission control by managing the tim-
ing and number of beacon transmissions. If the BW value has
reached the maximum backoff window size, or if the receiver keeps
detecting collisions after a number of consecutive beacon transmis-
sions, the receive goes to sleep without further attempts. The cor-
responding senders also become involved in retransmission con-
trol, because a sender could miss receiving a beacon either be-
cause of collisions or poor channel conditions. Thus, a sender
maintains a retry count for each DATA frame. If no beacon has
been received from the intended receiver within a time span 3
times as long as the sleep interval, the sender increases the cur-
rent retry count by 1. In addition, the sender increases this retry
count if no acknowledgment beacon is received within the maxi-
mum backoff window after the sender transmitted a DATA frame
following receipt of a beacon. When the retry count reaches a pre-
defined retry limit, the sender cancels the transmission of the DATA
frame.

3.6. Beacon-on-Request

It is possible that the intended receiver node for some sender is al-
ready active when the sender wakes up to transmit a DATA frame
to it. An optimization, called beacon-on-request, is for this sender,
after waking up for DATA transmission, to broadcast a beacon fol-
lowing a CCA check, as illustrated in Figure 7. In this beacon, the
sender S sets the Dst field to the receiver’s address, R. If the receiver
R happens to be active, it generates a beacon in response after some
random delay longer than the BW announced in the received bea-
con from S. This beacon generated by the receiver on request of
the sender allows the sender to transmit the pending DATA frame
immediately, rather than waiting until the next scheduled beacon
transmission by R.

5

SenderC ListenerC

Beacon

Manager

AsyncReceive
RadioPower

Control

LowPowerListening

AsyncSend

MacControlC

LowPowerListening

AsyncReceiveAsyncSend

MacC

Async

Send

Async

Receive

Radio Core

RI-MAC Adaptation Code

Figure 8: Composition of RI-MAC within the UPMA frame-

work in TinyOS.

3.7. Broadcast Support

RI-MAC can easily support broadcast DATA frame transmission
in one of two ways, either by transmitting the DATA as a unicast
transmission to each neighbor of the sender node; or by repeatedly
transmitting the DATA frame back-to-back for a time equal to the
sleep interval, as is done in X-MAC-UPMA. Both approaches have
advantages and disadvantages, and a hybrid algorithm that adap-
tively chooses one of them would likely outperform either single
approach. In this paper, we focus on optimizing unicast traffic, and
due to space limitations, we leave further investigation and experi-
mental work on broadcast traffic as future work.

3.8. RI-MAC Implementation in TinyOS

We implemented our RI-MAC protocol under the UPMA frame-
work [15] in TinyOS on a network of MICAz sensor motes. The
composition of RI-MAC under the UPMA framework in our imple-
mentation is shown in Figure 8. We implemented RI-MAC for the
CC2420 radio, which is a packetizing radio used in popular MICAz
and TelosB motes, although the code can be ported to motes with
streaming radios such as the CC1000 [5] as well.

The BeaconManager module in Figure 8 performs most of the
functionality of RI-MAC, including beacon generation, radio power
control, wakeup/sleep scheduling, and retransmission control.

We also added some code to the radio core module of TinyOS,
indicated by RI-MAC Adaptation Code in the figure. This adapta-
tion code is introduced mainly for two purposes.

First, this adaptation code preloads a DATA frame into the
CC2420 TX buffer. In this way, the DATA transmission can start
immediately when a desired beacon arrives. This preloading helps
to reduce the time a receiver node needs for detecting if there is
incoming DATA after a beacon transmission. In our implementa-
tion on MICAz motes, after a node sends a beacon, the node needs
to wait only 3.75 ms, listening to the medium, in order to detect
whether or not there is an incoming packet. A beacon in our im-
plementation is processed entirely in software, as the beacon frame
is not supported directly by the CC2420 hardware. With hardware
support, this waiting time of 3.75 ms could be further reduced.

Second, the RI-MAC adaptation code starts contiguous CCA
(clear channel assessment) checks immediately after a beacon trans-
mission and counts the number of consecutive CCA checks that
show busy medium. Suppose that after transmitting a beacon, a
packet has not arrived within the expected arrival time that is pro-
portional to the BW field in the beacon transmitted. The node will

generate another beacon if the CCA checks indicate busy medium,
or will go to sleep otherwise. In particular, on our MICAz motes, if
at least 20 consecutive CCA checks indicate busy medium during
this time, the RI-MAC adaptation code notifies the BeaconManager
of a collision; the BeaconManager then generates another beacon
with a larger BW value, if necessary.

As the beacon frame is not part of the IEEE 802.15.4 standard
and thus is not directly supported by the CC2420 radio, we turn
off hardware address recognition in the CC2420 and use a reserved
frame type for beacon frames. To minimize our footprint to ex-
isting TinyOS code, we use a frame with only the CC2420 header
(cc2420_header_t in TinyOS) as a beacon. Thus, a beacon is
12 bytes without the preceding hardware preamble, although the
size of a base beacon could be implemented to be only 6 bytes, as
discussed in Section 3.2.

To account for software processing delays on the MICAz motes,
we also adjusted some parameters of RI-MAC in our implementa-
tion. A mote may experience some delays before transmitting con-
secutive packets in the queue, such as post-processing of a transmit-
ted packet, moving a queued packet to the MAC layer, and loading
the packet to the hardware buffer. Therefore, in our implementa-
tion, we added an extra 10 ms to the dwell time defined in RI-MAC
to account for these delays. As an acknowledgment beacon is gen-
erated entirely by software in our implementation, Tp, defined in
Section 3.4, is set to 2.5 ms, based on our measurements. If a bea-
con were processed in hardware, this time could be much shorter.

4. EVALUATION

We evaluated RI-MAC both in the ns-2 network simulator and in
an implementation in TinyOS on MICAz motes. We use sim-
ulations to explore RI-MAC’s performance in a wide variety of
networks, especially large network topologies which are hard to
deploy and experiment with. As a protocol may not perform in
the real world exactly as it does in simulation, for example due to
the simplified physical layer models used in ns-2 [1], we also eval-
uated RI-MAC in a small testbed network of MICAz motes run-
ning TinyOS; our experimental results match our results obtained
in simulation and further verify RI-MAC’s performance advantages
over existing protocols. Since Klues et al. [15] have implemented
X-MAC-UPMA on real motes and shown that X-MAC-UPMA out-
performs B-MAC and SCP, in this paper, we compared RI-MAC
only against X-MAC and X-MAC-UPMA.

4.1. Simulation Evaluation

In our simulation evaluation of RI-MAC, we used version 2.29 of
the ns-2 network simulator, using the standard combined free space
and two-ray ground reflection radio propagation model commonly
used with ns-2. Each sensor node is simulated with a single omni-
directional antenna.

Table 1 summarizes the key parameters we used to simulate the
radio of each sensor node. Most of these parameters are from the
data sheet of CC2420 radio [4], which is used in popular motes such
as MICAz and TelosB. The RSSI sampling delay for CC2420 was
reported by Ye et al. [24]; we use this delay as the time for a single
CCA (clear channel assessment) check, i.e., the delay before actual
transmission starts after a STXONCCA command is strobed [4].
The transmission range and carrier sensing range depend on many
factors such as transmission power, antenna, and environment. In
ns-2, the transmission range and the carrier sensing range are mod-
eled after the 914MHz Lucent WaveLAN radio, which is not typical
for a sensor node, but we used these ns-2 default parameters since
measurements have shown that similar proportions of the carrier

6

Table 1: Simulation Radio Parameters

Bandwidth 250 Kbps Size of Hardware Preamble 6 B

SIFS 192 µs Size of ACK 5 B

Slot time 320 µs CCA Check Delay 128 µs

Tx Range 250 m Carrier Sensing Range 550 m

Table 2: Simulation MAC Protocol Parameters

X-MAC X-MAC-UPMA RI-MAC

Backoff Window 32 32 0 – 255
Retry Limit 0 or 5 0 or 5 5

Special Frame Short Preamble — Beacon

Special Frame Size 6 B — 6 – 9 B

Dwell Time 10.5 ms 100 ms Variable

sensing range to the transmission range are also observed in some
state-of-art sensor nodes [2].

Table 2 summarizes the MAC protocol parameters we used in
our simulations. Backoff strategy and retransmission have not been
explicitly discussed in prior work [3, 15], as X-MAC is optimized
for light traffic load. We use 32 as the initial backoff window and
8 as the congestion backoff window, which are the default values
used in the UPMA package distributed with TinyOS [22]. In our
RI-MAC implementation, a receiver adjusts the BW value in each
beacon using a binary exponential backoff (BEB) that takes values
of 0, 31, 63, 127, and 255 in our evaluation. The backoff window
size for beacon transmission is fixed at 32 slots in RI-MAC.

Although retransmission was not included in X-MAC’s origi-
nal design (none was specified in X-MAC’s published design [3,
15, 22]), for fair comparison with RI-MAC in which retransmis-
sion is included, we evaluated X-MAC and X-MAC-UPMA both
with and without retransmission in our simulations. When retrans-
mission was enabled, we used 5 as the retry limit. The way in
which an undecodable signal that is higher than the CCA threshold
should be handled was also not explicitly discussed for X-MAC [3],
but this occurrence could be common in a large network. There-
fore, in our simulated X-MAC, a node turns off its radio if the
medium has been idle for a time that is longer than the gap be-
tween short preambles. We achieved this by starting a timer that
does CCA checks every 20 ms, and each CCA check lasts longer
than the gap between short preambles. The time 20 ms was used
because that is the wake time used in X-MAC’s evaluation [3]. In
X-MAC-UPMA, a node that has detected busy medium turns off
its radio if no packet is received within 100 ms, according to the
code in the UPMA distribution. In our simulated X-MAC-UPMA,
similar to the original X-MAC design, only the first preamble in a
sequence of short preambles is subject to backoff before transmis-
sion (i.e., when the RESEND_WITHOUT_CCA option is used in the
UPMA package).

In our simulations, a short preamble in X-MAC consists of a
Frame Control Field (FCF), destination address, and Frame Check
Sequence (FCS). Each of these fields is 2 bytes, resulting in a short
preamble of 6 bytes plus the leading 6-byte hardware preamble. A
base beacon has the same length and format, except that the address
of the transmitting node is in the beacon instead of the destination
address. If a beacon also serves as an acknowledgment, or if the
BW field is included, a beacon can be 7, 8, or 9 bytes. Dwell time
is defined as the maximum backoff window size in X-MAC; we
use 10.5 ms, a slightly longer duration, to account for SIFS and
propagation delays. The distributed UPMA code uses 100 ms as
its default dwell time. Dwell time in RI-MAC is variable, as it
is defined as the backoff window for senders (the BW field in a
beacon) plus SIFS and propagation delays.

To simplify our evaluation, we do not include routing traffic in
the simulations and assume that there is a routing protocol deployed
to provide the shortest path between any two nodes. We also ensure
that no network used in our simulations is partitioned.

As energy consumption of different radios varies significantly,
even in the same radio state [24], we report effective duty cycle
in evaluating power efficiency, as done in prior work [3, 15]. The
sleep interval for all three MAC protocols is 1 second, and the ini-
tial wakeup time of each node was randomized in our evaluation.
Note that the sleep interval is an expected value in RI-MAC, as RI-
MAC randomizes intervals of sleep time to avoid synchronized bea-
con transmissions from neighboring nodes. In our evaluation, data
payload size was always 28 bytes, the default value in the UPMA
package.

We compared X-MAC, X-MAC-UPMA, and RI-MAC in three
types of networks: clique networks, a 49-node (7×7) grid network,
and random networks. We did not use beacon-on-request in the
clique networks, as no multihop communication takes place in these
networks; in all other networks, beacon-on-request is used.

4.1.1. Results in Clique Networks

We discuss first the evaluation of X-MAC, X-MAC-UPMA, and
RI-MAC in clique networks, such that all nodes in the network are
within transmission range of each other. We varied the traffic load
by varying the number of independent flows in the network, with
no flow sharing source or destination node with any other flow. In
each clique network, the total number of nodes in the network is
twice the number of flows. For each flow, the source node starts
to generate packets 10 seconds after the beginning of the simula-
tion and generates new packets with an interval between two suc-
cessive packet generations uniformly distributed between 0.5 and
1.5 seconds. At the beginning of the simulation, each node ran-
domly chooses a time between 0 and 10 seconds as its next wakeup
time. In this way, we randomize the wakeup/sleep schedule of each
node. The recipient nodes count the number of packets received
successfully over the course of 50 seconds. If a packet still re-
sides in any queue or is still being transmitted at the end of the
50-second measurement, the packet is not counted as a delivered
packet.

The results for our clique network simulations are shown in Fig-
ure 9, where each average value is calculated from the results of 10
random runs. Error bars show the 95% confidence interval. In Fig-
ure 9, a value of 0 for number of flows indicates the case in which
there is no traffic and just a single node in a network, and thus all
energy consumption is due to periodic wakeups of this single node.

Figure 9(a) shows the packet delivery ratios achieved by
X-MAC, X-MAC-UPMA, and RI-MAC with increasing number
of contending flows in the clique networks. Delivery ratios with
RI-MAC are always close to 100%, indicating that total through-
put achieved with RI-MAC increases linearly with the increasing
traffic load. X-MAC and X-MAC-UPMA deliver most of the given
load when there are no more than 2 flows, but their delivery ra-
tios drop quickly beyond 2 flows. This sharp decline is not due to
collisions, as all nodes can hear each other. Rather, it is because
preamble transmissions in X-MAC and X-MAC-UPMA saturate
the network, resulting in a large number of queued packets. When
there are 4 flows in a clique network, RI-MAC improves delivery
ratio and thus throughput by about 100% compared to X-MAC and
X-MAC-UPMA.

The average duty cycles of senders and receivers corresponding
to Figure 9(a) are shown in Figure 9(b) and Figure 9(c), respec-
tively. In addition to the improved delivery ratios, RI-MAC saves
more energy when there are multiple flows in a clique network,

7

0 1 2 3 4
0

20

40

60

80

100

Number of Flows

D
e

liv
e
ry

 R
a
ti
o
 (

%
)

X-MAC
X-MAC-UPMA
RI-MAC

(a) Average Packet Delivery Ratio

0 1 2 3 4
0

20

40

60

80

100

Number of Flows

A
v
e

ra
g

e
 D

u
ty

 C
y
c
le

 (
%

)

X-MAC
X-MAC-UPMA
RI-MAC

(b) Average Duty Cycle of Senders

0 1 2 3 4
0

5

10

15

20

Number of Flows

A
v
e

ra
g

e
 D

u
ty

 C
y
c
le

 (
%

)

X-MAC
X-MAC-UPMA
RI-MAC

(c) Average Duty Cycle of Receivers

0 1 2 3 4
0

5

10

15

20

Number of Flows

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

s
)

X-MAC
X-MAC-UPMA
RI-MAC

(d) Average Latency

Figure 9: Performance comparison in clique networks with contending flows in simulation. The total number of nodes is 1 for 0

flows, and is twice the number of flows otherwise.

compared to X-MAC and X-MAC-UPMA. With 1 flow, senders
(Figure 9(b)) show around 50% duty cycle with all protocols, as it
takes a sender half a sleep interval to reach its intended receiver,
on average. The duty cycles with RI-MAC remain at around 50%
with increasing flows, but those with X-MAC and X-MAC-UPMA
increase quickly to almost 100% when there are 4 flows. This in-
crease in X-MAC and X-MAC-UPMA is because a sender with
pending DATA must do congestion backoff when the medium is
occupied by a preamble transmission from another flow. If the cor-
responding receiver wakes up before the medium becomes idle, the
sender must wait until the receiver’s next wakeup. If the medium
is sensed busy, the sender could go to sleep and to attempt trans-
mission later, but in this approach, latency could be significantly
increased without necessarily saving energy.

X-MAC and X-MAC-UPMA each result in a much higher duty
cycle than does RI-MAC when there is 1 flow, as shown in Fig-
ure 9(c). This higher duty cycle is because of the longer dwell
time used in X-MAC and X-MAC-UPMA. In X-MAC, this dwell
time is 10.5 ms, roughly a backoff windows of 32 slots, and in
X-MAC-UPMA, this dwell time is 100 ms by default. The dwell
time in RI-MAC is much smaller with 1 flow. As there is no colli-
sion and thus backoff window for senders is always 0, dwell time
in RI-MAC is just SIFS plus propagation delay. The duty cycles of
receiving nodes decrease with more contending flows in X-MAC
and X-MAC-UPMA, as a receiver goes to sleep immediately after
receiving packets from other flows.

Despite the high duty cycle at sending nodes, X-MAC and
X-MAC-UPMA experience longer latency than does RI-MAC, as
shown in Figure 9(d). This latency is mainly because transmis-

sion of preambles saturates the medium when there are more than
2 flows. The queuing delay in X-MAC and X-MAC-UPMA results
in an average latency that is more than 10 times longer than that
with RI-MAC when there are 4 flows.

When the number of flows is 0 in Figure 9, all three protocols
show very similar performance, although this is the worst case
for RI-MAC compared to X-MAC and X-MAC-UPMA. In this
case, a node with RI-MAC has to stay awake each time slightly
longer than it does with X-MAC and X-MAC-UPMA. In X-MAC
and X-MAC-UPMA, a node needs to listen to the medium for at
least SIFS plus the delay for ACK transmission at each wakeup.
RI-MAC incurs some extra cost only for the CCA check before
a beacon transmission and for detecting incoming signal after the
beacon transmission. The difference caused by such extra cost,
however, is too small to show clearly in the figure, as all three proto-
cols already show very low duty cycles under very light traffic. As
RI-MAC substantially improves throughput and energy efficiency
and reduces latency under higher traffic loads, RI-MAC is suitable
for a wide range of traffic loads.

4.1.2. Results in a 49-Node Grid Network

In our comparison of X-MAC, X-MAC-UPMA, and RI-MAC in
a 49-node (7×7) grid network, each node is 200 meters from its
neighbors, and the sink node is at the center.

In our simulations, we used a Random Correlated-Event (RCE)
traffic model [20]. This model, based on a correlated-event work-
load [13], simulates the impulse traffic triggered by spatially-
correlated events commonly observed in detection and tracking ap-
plications. RCE picks a random (x,y) location for each event. If

8

Table 3: Average Number of Packets Generated for Each Event

under Different Sensing Ranges in the 49-Node Grid Network

Range (m) 100 200 300 400 500

Packets 0.8 3.1 6.4 10.6 15.2

every node has a sensing range R, only nodes that are within the
circle centered at (x,y) with radius R generate packets to report this
event. We adjusted the sensing rage R to simulate different de-
grees of workload in the network. We generated a new event once
every 60 seconds, and each node having sensed the event sends one
packet to the sink node. We varied R from 100 meters to 500 me-
ters; Table 3 shows the average number of packets generated per
event. Note that an event triggers at most one packet when R is
100 meters. The lengths of paths traversed by these packets to the
sink node range from 1 to 6 hops, with an average of 3.05 hops. In
this way, we explore how efficiently X-MAC, X-MAC-UPMA, and
RI-MAC handle different degrees of traffic load.

Each simulation run contains unicast packets sent toward a sink
node that are triggered by a series of 100 events, and each average
value is calculated from the results of 30 random runs. Confidence
intervals of the average values are not shown because even 99%
confidence intervals are so close to average values that they over-
lap with the data point markers. The curves labeled X-MAC w/

Retrans and X-MAC-UPMA w/ Retrans show the results when the
original X-MAC and X-MAC-UPMA protocols, respectively, are
augmented with retransmission.

The performance comparison in these grid network scenarios is
shown in Figure 10. Figure 10(a) shows the average and maxi-
mum end-to-end latency of packets in the RCE model as the sens-
ing range (and thus traffic load) increases. RI-MAC has a much
smaller rate of increase than do X-MAC and X-MAC-UPMA, re-
gardless of whether or not retransmission is used. When there are
about 15 packets generated for each event (a 500-meter sensing
range), RI-MAC reduces average end-to-end delay by 85% com-
pared to X-MAC-UPMA with retransmission, and by around 50%
compared to the other protocols.

RI-MAC outperforms X-MAC and X-MAC-UPMA because it
greatly increases idle medium time, allowing more competing
flows to transmit in single a cycle. End-to-end latency increases
when X-MAC and X-MAC-UPMA are augmented with retransmis-
sion, due to the added effort to recover packets that would otherwise
be lost in collisions. Under the very light traffic load when sensing
range is 100 m, X-MAC shows lower latency due to how it handles
undecodable signals. For example, consider a chain consisting of
nodes A, B and C, where node A can reach B, and B can reach C.
Nodes A and C cannot reach each other but can sense each other’s
transmission. When A sends short preambles followed by a DATA
frame to B, node C will remain active after sensing the medium
busy, even though no incoming packet can be decoded. If C still has
its radio on when B immediately starts forwarding the just-received
packet to C, the forwarding will experience less delay. Because C

turns off its radio if no packet is successfully received for 100 ms in
X-MAC-UPMA, even though the medium is still busy, node C can
be either active or sleep when B starts forwarding, depending on
when C starts the 100 ms timer. This is why X-MAC-UPMA shows
lower latency than does RI-MAC but higher latency than X-MAC
under very light traffic load. However, as traffic load increases
when sensing range is greater than 100 m, RI-MAC achieves the
lowest latency on average due to increased idle medium time.

The packet delivery ratios corresponding to Figure 10(a) are
shown in Figure 10(b). RI-MAC maintains 100% packet delivery
ratio and outperforms X-MAC and X-MAC-UPMA across all sens-
ing ranges. RI-MAC achieves these high delivery ratios mainly by

100 200 300 400 500
0

5

10

15

20

25

30

35

Sensing Range (m)

E
n

d
−

to
−

E
n

d
 D

e
la

y
 (

s
)

X-MAC
X-MAC-UPMA
X-MAC w/ Retrans
X-MAC-UPMA w/ Retrans
RI-MAC

(a) Average and maximum end-to-end delay versus sens-
ing range.

100 200 300 400 500
0

20

40

60

80

100

Sensing Range (m)

D
e

liv
e
ry

 R
a
ti
o
 (

%
)

X-MAC
X-MAC-UPMA
X-MAC w/ Retrans
X-MAC-UPMA w/ Retrans
RI-MAC

(b) Delivery ratio versus sensing range.

100 200 300 400 500
0

1

2

3

4

5

Sensing Range (m)

A
v
e

ra
g

e
 D

u
ty

 C
y
c
le

 (
%

)

X-MAC
X-MAC-UPMA
X-MAC w/ Retrans
X-MAC-UPMA w/ Retrans
RI-MAC

(c) Average duty cycle of sensors versus sensing range.

Figure 10: Performance for unicast traffic in 49-node (7×7)

grid network scenarios in simulation.

efficient collision detection and retransmission control. The deliv-
ery ratios with X-MAC and X-MAC-UPMA drop quickly, since
the larger the sensing range, the more collisions caused by trans-
missions from hidden nodes. When X-MAC and X-MAC-UPMA
are augmented with retransmission, packet delivery ratio increases.
X-MAC with retransmission shows lower delivery ratios than does
X-MAC-UPMA due to the lack of an ACK after DATA transmis-
sion. If a DATA frame is lost due to collision at a receiver, the
corresponding sender has no way to detect the collision and thus
the DATA will not be retransmitted.

RI-MAC, in addition to achieving 100% packet delivery ratios,
at the same time achieves lower duty cycles. The improved packet

9

delivery ratios by retransmission in X-MAC and X-MAC-UPMA,
however, come at the cost of higher energy consumption, as shown
in Figure 10(c). All protocols show larger duty cycles as sensing
range, and thus traffic load, increases. However, RI-MAC has a
much smaller rate of increase than do the other protocols. For ex-
ample, when sensing range is 500 m, RI-MAC’s duty cycle is only
15% that of X-MAC-UPMA with retransmission and 27% that of
X-MAC with retransmission. At the same time, RI-MAC achieves
much lower latency and higher packet delivery ratio, as discussed
above. With retransmission, X-MAC shows lower duty cycle than
does X-MAC-UPMA, mainly due to less retransmission effort be-
cause of undetectable DATA collisions.

4.1.3. Results in Random Networks

In this set of simulations, we compared RI-MAC, X-MAC, and
X-MAC-UPMA in 100 random networks, each with 50 nodes ran-
domly located in a 1000 m×1000 m area. For each network, one
of these nodes is randomly selected as the sink, and the RCE model
with 250-meter sensing range is used to generate 100 events, one
every 60 seconds. We conducted one simulation run for each of
these 100 networks, with 763 packets on average generated in each
run.

The results for these simulations are shown in Figure 11. Fig-
ure 11(a) shows the CDF of end-to-end latency for all packets in
all 100 runs, Figure 11(b) shows the CDF of packet delivery ratios
in these 100 runs, and Figure 11(c) shows the average duty cycles
of the sensors. To improve clarity in these graphs, the protocols
are listed in each graph’s legend, from top to bottom, in the same
order as the curves appear in the graph, from left to right. The
X-MAC and X-MAC-UPMA curves in Figure 11(a) are almost in-
distinguishable from each other in the graph, and the curves for
these two protocols with retransmissions are likewise almost indis-
tinguishable from each other in this same graph.

For the same reasons as discusses above, RI-MAC outper-
forms the other protocols in each of these metrics. For end-
to-end latency (Figure 11(a)), the average values for RI-MAC,
X-MAC, X-MAC-UPMA, X-MAC with retransmission, and
X-MAC-UPMA with retransmission, are 2.21, 2.88, 3.02, 4.19,
and 4.40 seconds, respectively. Although the addition of retrans-
missions in X-MAC and X-MAC-UPMA improves packet delivery
ratios by helping to recover packets that would otherwise be lost
due to collisions (Figure 11(b)), these retransmitted packets have
higher delivery latency than other packets, producing higher aver-
age end-to-end latency for these protocol versions. The average
packet delivery ratios for X-MAC, X-MAC-UPMA, X-MAC with
retransmission, X-MAC-UPMA with retransmission, and RI-MAC
are 70.5%, 72.6%, 97.7%, 99.4%, and 100%, respectively. The
addition of retransmissions in X-MAC and X-MAC-UPMA also
come at the cost of increased energy consumption (Figure 11(c)).
The average values for the duty cycles of all sensors for RI-MAC,
X-MAC-UPMA, X-MAC, X-MAC-UPMA with retransmission,
and X-MAC with retransmission are 0.37%, 0.89%, 0.95%, 1.21%,
and 1.23%, respectively. The trends observed in these random
networks for each of these three metrics are consistent with those
observed in the 49-node (7×7) grid network, discussed above in
Section 4.1.2.

4.2. Experimental TinyOS Evaluation

To validate our simulation-based evaluation reported above, and to
explore hardware platform-dependent trends and problems, we also
compared RI-MAC with X-MAC and X-MAC-UPMA in an imple-
mentation in TinyOS on MICAz motes. We implemented RI-MAC
under the UPMA framework in TinyOS as described in Section 3.8.

0 10 20 30 40
0

0.2

0.4

0.6

0.8

1

End−to−End Delay (s)

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

RI-MAC
X-MAC
X-MAC-UPMA
X-MAC w/ Retrans
X-MAC-UPMA w/ Retrans

(a) CDF of end-to-end delays

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Delivery Ratio (%)
C

u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

X-MAC
X-MAC-UPMA
X-MAC w/ Retrans
X-MAC-UPMA w/ Retrans
RI-MAC

(b) CDF of delivery ratios

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Average Duty Cycle (%)

C
u
m

u
la

ti
v
e
 F

ra
c
ti
o
n

RI-MAC
X-MAC-UPMA
X-MAC
X-MAC-UPMA w/ Retrans
X-MAC w/ Retrans

(c) CDF of average duty cycles

Figure 11: Performance for random correlated-event traffic in

50-node networks with sensing range of 250 m in simulation.

Although both X-MAC and X-MAC-UPMA use short preambles
to achieve LPL, we also implemented X-MAC under the UPMA
framework, as X-MAC-UPMA differs from the original X-MAC
design in several aspects, as discussed in Sections 2 and 4.1. The
configuration of X-MAC is the same as that used in our simula-
tions, except for the continuous CCA check interval, the duration
to wait for an ACK after each short preamble transmission, and the
dwell time. As the duration of the continuous CCA check interval
prior to preamble transmission should be longer than the gap be-
tween adjacent short preamble transmissions, the interval is set to
the sum of the ACK transmission time, SIFS, and maximum prop-
agation delay in our simulation. As discussed by Klues et al. [15],
however, a longer interval is used in the TinyOS implementation
in order to account for processing delays and to minimize false

10

0 1 2 3 4
0

20

40

60

80

100

Number of Flows

D
e

liv
e
ry

 R
a
ti
o
 (

%
)

X-MAC
X-MAC-UPMA
RI-MAC

(a) Average Packet Delivery Ratio

0 1 2 3 4
0

20

40

60

80

100

Number of Flows

A
v
e

ra
g

e
 D

u
ty

 C
y
c
le

 (
%

)

X-MAC
X-MAC-UPMA
RI-MAC

(b) Average Duty Cycle of Senders

0 1 2 3 4
0

5

10

15

20

Number of Flows

A
v
e

ra
g

e
 D

u
ty

 C
y
c
le

 (
%

)

X-MAC
X-MAC-UPMA
RI-MAC

(c) Average Duty Cycle of Receivers

0 1 2 3 4
0

5

10

15

20

Number of Flows

A
v
e

ra
g

e
 L

a
te

n
c
y
 (

s
)

X-MAC
X-MAC-UPMA
RI-MAC

(d) Average Latency

Figure 12: Performance comparison in clique networks of MICAz motes with contending flows in TinyOS implementation.

negatives. Therefore, we use the default value of 5.25 ms in the
X-MAC-UPMA code for X-MAC. For the same reason, the dura-
tion to wait for an ACK after each short preamble transmission is
set to 4 ms, which is also the default value in the X-MAC-UPMA
code. Lastly, the dwell time should also be longer than the backoff
window size in X-MAC, in order to account for possible processing
delays such as post-processing of a just-transmitted packet, moving
a queued packet to the MAC layer, and loading the packet to the
hardware buffer. Therefore, we need to extend the dwell time de-
fined in X-MAC to account for these delays. For fair comparison,
the extra dwell time for X-MAC is also 10 ms, the same with that
in our implementation of RI-MAC. In order to minimize change
to underlying radio core of TinyOS, we use a packet that contains
only the CC2420 header as a short preamble. Both a short pream-
ble of X-MAC and a beacon of RI-MAC are 12 bytes, although
their minimum sizes could be 6 bytes, as discussed in Section 4.1.
We use the default configuration of X-MAC-UPMA in our experi-
ments. We did not include beacon-on-request in our RI-MAC im-
plementation, since nodes do not use multihop communication in
these experiments.

4.2.1. Results in Clique Networks

In order to verify our simulation models, we present first our ex-
periments on MICAz motes in clique networks; these TinyOS ex-
periments are intended to replicate the simulation experiments we
performed for clique networks, discussed in Section 4.1.1. The
network configurations and traffic model are the same as we used
in simulations. The results are shown in Figure 12 and match
closely the trends and results shown earlier in Figure 9 for our
clique network simulations.

The duty cycles at sending nodes and at receiving nodes (Fig-
ures 12(b) and 12(c), respectively) are slightly higher than those
in our simulations (Figure 9(b) and Figure 9(c)). This increase is
mainly because the MICAz-specific processing delays in software
are not simulated. For example, in our TinyOS implementation of
RI-MAC, it takes around 3.75 ms for a DATA frame to arrive af-
ter a beacon transmission, mainly due to the processing delay of
the beacon at a sender in software before it starts transmitting the
DATA. In simulation, however, we assume the beacon is handled in
hardware, so a DATA frame arrives just SIFS plus some propaga-
tion delay after the beacon transmission. In addition, in the TinyOS
implementation of X-MAC and RI-MAC, we also add 10 ms to the
dwell time from their original design to account for processing de-
lays to handle the transmitted packet and to start transmitting new
packets as discussed above. Although our simulation model does
not account for these platform-specific delays, our simulation re-
sults still agree well with these TinyOS experimental results.

4.2.2. Results in a Network with Hidden Nodes

We evaluate here RI-MAC, X-MAC, and X-MAC-UPMA on net-
works of MICAz motes to determine how efficiently each of them
detects collisions and performs retransmission to recover packets
lost due to collisions; we chose to evaluate this on our TinyOS im-
plementation rather than in simulation due to the simplified radio
model used by ns-2.

In this set of experiments, each average value is calculated from
the results of 10 experimental runs, in the same way as we did for
clique networks. Error bars show the 95% confidence intervals.

In this evaluation, we experimented with two separate network
topologies: one in which hidden nodes were present, and one with

11

Hidden Not Hidden
0

5

10

15

20

25

30

A
v
e

ra
g

e
 R

a
ti
o

 o
f

U
n

d
e

liv
e
d
 P

a
c
k
e
ts

 (
%

)

X-MAC
X-MAC-UPMA
RI-MAC
RI-MAC w/o Retrans

Packets still in queue

(a) Average Ratio of Undelivered Packets

Hidden Not Hidden
0

20

40

60

80

100

A
v
e

ra
g

e
 D

u
ty

 C
y
c
le

 (
%

)

X-MAC
X-MAC-UPMA
RI-MAC
RI-MAC w/o Retrans

(b) Average Duty Cycle of The Receiver

Hidden Not Hidden
0

20

40

60

80

100

A
v
e

ra
g

e
 D

u
ty

 C
y
c
le

 (
%

)

X-MAC
X-MAC-UPMA
RI-MAC
RI-MAC w/o Retrans

(c) Average Duty Cycle of Senders

Figure 13: Performance comparison when two senders are hid-

den to each other and when they are not in a 3-node network in

TinyOS implementation.

no hidden nodes. Specifically, for each topology, we set up a net-
work of 3 motes in which two senders transmit packets to a sin-
gle receiver node. The distance from each sender to the receiver
is the same and is within the transmission range of each sender.
In the case with no hidden nodes, the two senders are also within
range of each other, whereas in the case in which hidden nodes
were present, the two senders are hidden to each other (i.e., the
CCA check at each sender almost always indicates a clear chan-
nel, even while the other sender is transmitting packets). The two
network topologies were otherwise identical. We use the same traf-
fic model as we used for clique networks in Section 4.2.1. To also
evaluate how efficiently RI-MAC detects collisions, we included in
these experiments a variation of RI-MAC in which a sender does
no retransmissions or retries as defined in Section 3.5. We refer to
this variation of RI-MAC as RI-MAC w/o Retrans.

Results for this set of experiments on MICAz motes are shown
in Figure 13. We compare the ratio of undelivered packets for
X-MAC, X-MAC-UPMA, and RI-MAC in Figure 13(a). A packet
may be undelivered because of collisions; it is also possible that
the packet is still in the transmission queue or is being transmitted
at the end of experimental measurement period. Therefore, we in-
dicate separately in Figure 13(a) the ratio of undelivered packets
for each protocol that are still in the queue (including those being
transmitted). In this way, we can evaluate separately how many
packets are not delivered due to collisions. The labeling along the
x-axis in Figure 13(a) indicates whether or not the two senders are
hidden to each other.

In both network topologies (with hidden nodes present and with-
out), all protocols had a small fraction of undelivered packets still
in the queue or still in transmission at the end of the experimen-
tal measurement period (Figure 13(a)). With hidden nodes present,
X-MAC and X-MAC-UPMA both experienced a much larger num-
ber of additional undelivered packets due to other causes, though:
about 20% of the generated packets are lost with X-MAC and 15%
with X-MAC-UPMA. RI-MAC, on the other hand, experienced al-
most no such losses with hidden nodes. In order to confirm that
these losses with X-MAC and X-MAC-UPMA are likely due to
the collisions caused by the hidden node senders, we compared
these results to those for the topology with no hidden nodes. In
this case, almost all of these additional losses with X-MAC and
X-MAC-UPMA were eliminated. With RI-MAC, however, with
hidden nodes and without, no packets were lost other than those
still in queue, indicating that no packets are lost due to collisions

with RI-MAC.

In addition to a much higher packet delivery ratio, RI-MAC
achieves lower duty cycles both at the receiver and at the senders.
The shorter dwell time in RI-MAC is the major reason for the lower
duty cycles at the receiver with RI-MAC, as discussed above. Fast
collision detection and retransmission with RI-MAC also helps to
achieve lower duty cycles at the senders. With X-MAC, if short
preambles from the two senders repeatedly collide with each other,
each sender can do nothing but retransmit its short preamble. In
RI-MAC, the receiver detects the collision quickly and uses a larger
sender backoff window to avoid further collisions.

4.2.3. Extra Ending Beacons for MICAz

In Figure 13, the results for RI-MAC w/o Retrans are close to those
for RI-MAC, except that around 2% of the packets are lost due to
collisions. After extensive experimentation, we discovered that this
packet loss was caused by a combination of the capture effect and
the processing delays on the MICAz motes.

For example, suppose two sender nodes, A and B, each have 2
packets in their queue to send to receiver C before they receive the
first beacon without backoff window from C. Then A and B each
start transmitting their DATA frames at the same time. Assume C

receives the DATA from A but loses the DATA from B due to the
capture effect in C’s radio. As C believes that no collision occurred
since it received a DATA frame following its beacon, it sends an
acknowledgment beacon without backoff window to A. Now A and
B both are allowed to transmit DATA immediately. B has a DATA
frame already loaded in its hardware buffer that is waiting for an
acknowledgment beacon, but A has to get a DATA from its up-
per layer protocol or application and load it to its hardware buffer.
Thus, B starts transmission immediately, but A can only start af-
ter this processing delay. If the later DATA transmission from A

happens to overlap with the acknowledgment beacon transmission
from C to B, C will not know that there is a sender with pending

12

Hidden Not Hidden
0

5

10

15

20

25

30

A
v
e

ra
g

e
 R

a
ti
o

 o
f

U
n

d
e

liv
e
d
 P

a
c
k
e
ts

 (
%

)

RI-MAC+
RI-MAC+ w/o Retrans
RI-MAC
RI-MAC w/o Retrans

Packets still in queue

(a) Average Ratio of Undelivered Packets

Hidden Not Hidden
0

20

40

60

80

100

A
v
e

ra
g

e
 D

u
ty

 C
y
c
le

 (
%

)

RI-MAC+
RI-MAC+ w/o Retrans
RI-MAC
RI-MAC w/o Retrans

(b) Average Duty Cycle of The Receiver

Hidden Not Hidden
0

20

40

60

80

100

A
v
e

ra
g

e
 D

u
ty

 C
y
c
le

 (
%

)

RI-MAC+
RI-MAC+ w/o Retrans
RI-MAC
RI-MAC w/o Retrans

(c) Average Duty Cycle of Senders

Figure 14: Effectiveness of using an extra ending beacon in

RI-MAC in TinyOS implementation.

DATA for it and thus will not generate another beacon. As a result,
A discards the DATA due to timeout.

This problem happens on the MICAz motes because the CC2420
hardware transmission buffer can hold only one DATA frame. Thus,
there is some delay before the queued DATA can be transmitted. If
a radio could hold multiple queued packets in its hardware buffer
and thus supported back-to-back DATA transmission, this problem
would be much less likely to occur.

Although even on the MICAz hardware, this problem occurs
only infrequently, to better handle this case, we experimented with
adding an extra ending beacon to our original RI-MAC design.
Suppose a node detects no incoming packet or collisions after the
previous beacon transmission. In our original RI-MAC design, this
node goes to sleep immediately. With this modification, instead,
we let the node send another beacon without backoff window if the
node has received at least one DATA frame after waking up in the

current cycle. The node treats the beacon in the same way as the
first beacon after waking up.

We compared this solution with our original RI-MAC design
and show the results in Figure 14. RI-MAC with the extra ending

beacon modification is referred to as RI-MAC+, and the modified
RI-MAC without retransmissions is referred to as RI-MAC+ w/o

Retrans. Figure 14(a) shows the average ratio of undelivered pack-
ets, Figure 14(b) shows the average duty cycle of the receiver, and
Figure 14(c) shows the average duty cycle of senders. RI-MAC
with this modification now does not lose any packets due to colli-
sions, even with retransmission at the senders disabled (RI-MAC+

w/o Retrans). RI-MAC is thus very effective in detecting and recov-
ering from collisions, even with the limitations of the real hardware
in the MICAz motes.

The receiver with RI-MAC+ or RI-MAC+ w/o Retrans consumes
more energy, as shown in Figure 14(b), due to the extra ending bea-
cons, but these beacons help to reduce energy consumption at the
senders, as shown in Figure 14(c), as some DATA frames are deliv-
ered immediately following the ending beacons rather than waiting
until the next cycle.

5. CONCLUSION

In this paper, we have presented Receiver-Initiated MAC (RI-MAC),
a receiver-initiated asynchronous duty cycle MAC protocol for wire-
less sensor networks. RI-MAC uses receiver-initiated data trans-
mission in order to efficiently and effectively operate over a wide
range of traffic loads. To achieve this, RI-MAC attempts to mini-
mize the time a sender and its intended receiver occupy the wireless
medium to find a rendezvous time for exchanging data, while still
decoupling the sender and receiver’s duty cycle schedules.

We evaluated RI-MAC through detailed ns-2 simulation and
through measurements of an RI-MAC implementation in TinyOS
in a testbed of MICAz motes. Compared to X-MAC, RI-MAC
achieves higher throughput, higher packet delivery ratio, and
greater power efficiency under a wide range of traffic loads. Espe-
cially when there are contending flows, such as with bursty traffic or
transmissions from hidden nodes, RI-MAC significantly improves
throughput and packet delivery ratio over X-MAC. In our exper-
imental evaluation in our TinyOS testbed, when there are 4 con-
tending flows in clique networks, RI-MAC improves throughput by
100%, reduces delivery latency by 90%, and reduces duty cycle by
50% at sending nodes compared to X-MAC. In the 3-node TinyOS
network with hidden senders, RI-MAC achieves 0 packet loss com-
pared to the more than 15% packet loss in X-MAC. Similar trends
were also observed in our ns-2 simulations for large networks.
Even under light traffic loads, for which the X-MAC design was
optimized, RI-MAC achieves the same high performance in terms
of packet delivery ratio and latency while maintaining comparable
power efficiency.

Acknowledgements

We thank Ryan Stinnett for his help during our testbed setup. We
also thank the anonymous reviewers and Koen Langendoen, our
shepherd, for their valuable feedback that helped to improve this
paper. This work was supported in part by the U.S. National
Science Foundation under grants CNS-0520280, CNS-0435425,
CNS-0338856, and CNS-0325971; and by a gift from Schlum-
berger. The views and conclusions contained here are those of the
authors and should not be interpreted as necessarily representing
the official policies or endorsements, either express or implied, of
NSF, Schlumberger, Rice University, Ben Gurion University, or the
U.S. Government or any of its agencies.

13

REFERENCES

[1] Muneeb Ali, Umar Saif, Adam Dunkels, Thiemo Voigt, Kay
Römer, Koen Langendoen, Joseph Polastre, and
Zartash Afzal Uzmi. Medium Access Control Issues in
Sensor Networks. Computer Communications Review,
36(2):33–36, April 2006.

[2] G. Anastasi, A. Falchi, A. Passarella, M. Conti, and
E. Gregori. Performance Measurements of Motes Sensor
Networks. In Proceedings of the 7th ACM International

Symposium on Modeling, Analysis and Simulation of

Wireless and Mobile Systems (MSWiM 2004), pages
174–181, October 2004.

[3] Michael Buettner, Gary V. Yee, Eric Anderson, and Richard
Han. X-MAC: A Short Preamble MAC Protocol for
Duty-Cycled Wireless Sensor Networks. In Proceedings of

the 4th International Conference on Embedded Networked

Sensor Systems, pages 307–320, 2006.

[4] CC2420 Datasheet. http://www.ti.com.

[5] Chipcon. Single Chip Very Low Power RF Transceiver
(CC1000 Datasheet), April 2002.

[6] Crossbow MICAz motes. http://www.xbow.com.

[7] Tijs van Dam and Koen Langendoen. An Adaptive
Energy-Efficient MAC Protocol for Wireless Sensor
Networks. In Proceedings of the First International

Conference On Embedded Networked Sensor Systems

(SenSys 2003), pages 171–180, November 2003.

[8] Shu Du, Amit Kumar Saha, and David B. Johnson. RMAC:
A Routing-Enhanced Duty-Cycle MAC Protocol for
Wireless Sensor Networks. In Proceedings of the 26th

Annual IEEE Conference on Computer Communications

(INFOCOM 2007), pages 1478–1486, May 2007.

[9] Amre El-Hoiydi and Jean-Dominique Decotignie.
WiseMAC: An Ultra Low Power MAC Protocol for
Multi-hop Wireless Sensor Networks. In Proceedings of the

First International Workshop on Algorithmic Aspects of

Wireless Sensor Networks (ALGOSENSORS 2004), Lecture

Notes in Computer Science, LNCS 3121, pages 18–31, July
2004.

[10] Amre El-Hoiydi and Jean-Dominique Decotignie. Low
Power Downlink MAC Protocols for Infrastructure Wireless
Sensor Networks. Mobile Networks and Applications,
10(5):675–690, 2005.

[11] Deborah Estrin, Ramesh Govindan, John Heidemann, and
Satish Kumar. Next Century Challenges: Scalable
Coordination in Sensor Networks. In Proceedings of the Fifth

Annual International Conference on Mobile Computing and

Networking (MobiCom 1999), pages 263–270, August 1999.

[12] J. J. Garcia-Luna-Aceves and Asimakis Tzamaloukas.
Reversing the Collision-Avoidance Handshake in Wireless
Networks. In Proceedings of the 5th Annual ACM/IEEE

International Conference on Mobile Computing and

Networking, pages 120–131, 1999.

[13] Bret Hull, Kyle Jamieson, and Hari Balakrishnan. Mitigating
Congestion in Wireless Sensor Networks. In Proceedings of

the Second International Conference On Embedded

Networked Sensor Systems (SenSys 2004), pages 134–147,
November 2004.

[14] Kyle Jamieson, Hari Balakrishnan, and Y.C. Tay. Sift: A
MAC Protocol for Event-Driven Wireless Sensor Networks.

In Proceedings of the Third European Workshop on Wireless

Sensor Networks (EWSN 2006), pages 260–275, February
2006.

[15] Kevin Klues, Gregory Hackmann, Octav Chipara, and
Chenyang Lu. A Component-Based Architecture for
Power-Efficient Media Access Control in Wireless Sensor
Networks. In Proceedings of the 5th International

Conference on Embedded Networked Sensor Systems, pages
59–72, 2007.

[16] Andrzej Kochut, Arunchandar Vasan, A. Udaya Shankar, and
Ashok Agrawala. Sniffing Out the Correct Physical Layer
Capture Model in 802.11b. In Proceedings of the 12th IEEE

International Conference on Network Protocols (ICNP

2004), pages 252–261, October 2004.

[17] Jeongkeun Lee, Wonho Kim, Sung-Ju Lee, Daehyung Jo,
Jiho Ryu, Taekyoung Kwon, and Yanghee Choi. An
Experimental Study on the Capture Effect in 802.11a
Networks. In Proceedings of the the Second ACM

International Workshop on Wireless Network Testbeds,

Experimental Evaluation and Characterization (WiNTECH

2007), pages 19–26, September 2007.

[18] Razvan Musaloiu-E., Chieh-Jan Mike Liang, and Andreas
Terzis. Koala: Ultra-Low Power Data Retrieval in Wireless
Sensor Networks. In Proceedings of the 2008 International

Conference on Information Processing in Sensor Networks

(IPSN 2008), pages 421–432, April 2008.

[19] Joseph Polastre, Jason Hill, and David Culler. Versatile Low
Power Media Access for Wireless Sensor Networks. In
Proceedings of the Second International Conference On

Embedded Networked Sensor Systems (SenSys 2004), pages
95–107, November 2004.

[20] Yanjun Sun, Shu Du, Omer Gurewitz, and David B. Johnson.
DW-MAC: A Low Latency, Energy Efficient
Demand-Wakeup MAC Protocol for Wireless Sensor
Networks. In Proceedings of the Ninth ACM International

Symposium on Mobile Ad Hoc Networking and Computing

(MobiHoc 2008), pages 53–62, May 2008.

[21] Y.C. Tay, Kyle Jamieson, and Hari Balakrishnan.
Collision-Minimizing CSMA and its Applications to
Wireless Sensor Networks. IEEE Journal on Selected Areas

in Communications, 22(6), 2004.

[22] UPMA Package: Unified Power Management Architecture
for Wireless Sensor Networks.
http://tinyos.cvs.sourceforge.net/
tinyos/tinyos-2.x-contrib/wustl/upma/.

[23] Wei Ye, John S. Heidemann, and Deborah Estrin. An
Energy-Efficient MAC Protocol for Wireless Sensor
Networks. In Proceedings of the 21st Annual Joint

Conference of the IEEE Computer and Communications

Societies (INFOCOM 2002), pages 1567–1576, June 2002.

[24] Wei Ye, Fabio Silva, and John Heidemann. Ultra-Low Duty
Cycle MAC with Scheduled Channel Polling. In Proceedings

of the Fourth International Conference On Embedded

Networked Sensor Systems (SenSys 2006), pages 321–334,
October 2006.

[25] Hongwei Zhang, Anish Arora, Young-ri Choi, and
Mohamed G. Gouda. Reliable Bursty Convergecast in
Wireless Sensor Networks. In Proceedings of the Sixth ACM

International Symposium on Mobile Ad Hoc Networking and

Computing (MobiHoc 2005), pages 266–276, May 2005.

14

