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Abstract. While the aggregation process of superparamagnetic colloids in strong magnetic field is well
known on short time since a few decades, recent theoretical works predicted an equilibrium state reached
after a long time. In the present paper, we present experimental observations of this equilibrium state
with a two-dimensional system and we compare our data with the predictions of a pre-existing model.
Above a critical aggregation size, a deviation between the model and the experimental data is observed.
This deviation is explained by the formation of ribbon-shaped aggregates. The ribbons are formed due
to lateral aggregation of chains. An estimation of the magnetic energy for chains and ribbons shows that
ribbons are stable structures when the number of magnetic grains is higher than N = 30.

1 Introduction

Superparamagnetic colloids are magnetic nanoparticles in-
serted in a matrix of non-magnetic material (polystyrene
or silica) to obtain particles with diameter d ranging from
100 nm to a few micrometers. These composite particles
are combining a quasi-zero remanent magnetization and a
high magnetic response [1–3]. In applications, the super-
paramagnetic colloids are functionalized to capture spe-
cific targets. After the capture, an inhomogeneous exter-
nal magnetic field is applied to separate the superpara-
magnetic particles by magnetophoresis [4]. Moreover, the
formation of chains along the magnetic field enhances the
separation process. This technique is used for protein iso-
lation, cell separation, waste capture, bacteria process-
ing, chromatography, etc. [1, 5–14]. More complex struc-
tures of superparamagnetic colloids can be obtained by
using rotating fields, even possibly leading to microswim-
mers or tracers of local dynamics [15–25]. Those com-
plex structures open ways to new kinds of applications
as they have unique optical properties and offer tunable
structures able to adapt to their environment and execute
fuctional tasks [17, 18, 21]. However, the previous studies
about those complex structures focus on the properties
of the structures obtained, without having a deep under-
standing of their formation process. The only system for
which some model of growth has been published in the
literature is the colloidal chains formed under constant
magnetic fields.

In colloidal science, it is well known that particles tend
to agglomerate due to van der Waals interactions [26,27].

a e-mail: alexis.darras@ulg.ac.be

In the present experiments, this agglomeration is pre-
vented by covering the particles with carboxyl charged
groups. These charged groups create a short range re-
pulsion between the particles, typically within a range of
10 nm between the particles [2, 28]. This ensures the sta-
bility of the dispersion. In the following, this electrostatic
interaction is considered to define an effective size of the
particles for the contact of particles which is 10 nm wider
than the natural size of the particles [1]. However, when
an external magnetic field B is applied on the suspen-
sion, the superparamagnetic particles acquire a magnetic
dipole µ = χV B, with the magnetic susceptibility χ of the
particles and their volume V = 4

3πR3, given their radius
R. The particles then interact with each other through
dipolar interactions. The potential energy of magnetic in-
teraction between two identical particles at distance r is
therefore given by

U(r, θ) =
χ24πR6B2

9µ0

(

1 − 3 cos2 θ

r3

)

, (1)

with θ being the angle between the magnetic field B and
the line joining the center of the particles. Two particles
then attract when they are aligned with the field B, while
they repel each other if they are side-by-side. This inter-
action implies that two particles tend to aggregate in a
chain aligned with the magnetic field B. Several studies,
both experimental and theoretical, have shown that su-
perparamagnetic colloids self-organize into chains under
those conditions [10,29–33]. Moreover, this aggregation is
reversible meaning that the chains break up if the mag-
netic field B is suppressed. Experimentally, chains of sev-
eral particles are typically observed [29, 30, 32] and the
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Fig. 1. Left: Sketch of the experimental set-up. A transparent chamber containing the colloidal suspension is placed between
two coils generating a constant and homogenous magnetic field B. The sample is enlightened from the top and observed from
the bottom thanks to an inverted microscope. Right: Evolution of the chains formation along time as observed from one of our
experiments. The pictures are part of images obtained with a magnetic field B = 6 G. One can observe the formation of chains
aligned with the external magnetic field.

growth is successfully described on short time (typically
up to 300 s) by a Smoluchowsky equation, predicting a
power law behavior of the mean size of the chains 〈s〉 ∝ tz

after a transient behavior [29–33].
Recently, Andreu et al. [9] have predicted that such

a system, in three dimensions, should reach a thermo-
dynamic equilibrium on long-time experiments. The in-
stallation of this equilibrium implies a saturation of the
mean size 〈s〉 of the chains, expressed as a number of par-
ticles. This saturation has been predicted by Andreu et

al. both by numerical simulations and a thermodynamic
analysis [1, 9]. The equilibrium results from a competi-
tion between the magnetic energy of the particles, which
is minimal when all the particles are aggregated, and the
entropy of mixing, which is maximized for a mixture of
different chains. For three dimensional systems, this com-
petition leads to the expression

〈s〉(3D) =
√

φ0 exp(Γ − 1), (2)

where Γ = χ2πR3B2

9µ0kBT
is a dimensionless parameter compar-

ing the magnetic energy with the thermal energy and φ0

being the total volume fraction of particles. The particles
are assumed to form only linear chains, without taking
into account the existence of other stable structures such
as ribbons or rings [2,34,35]. Moreover, a clear experimen-
tal observation of the equilibrium state is still lacking.

In the present paper, we provide both a two-dimen-
sional experimental observation of this equilibrium and
a suitable adaptation of the model obtained by Andreu
et al. [9]. We show that this model is in good agreement
with experimental data under a critical mean chains size
and we evidence the existence of this critical value. Above
this critical value, the formation of stable ribbon-shaped
aggregates is observed.

2 Experimental set-up

A sketch of the experimental set-up is presented in fig. 1.
The experiments were performed with superparamagnetic

microspheres dispersed in water (Estapor R© M1-070/60),
with a volumic fraction of φ = 2 · 10−3. We measured,

by image analysis, a radius of particles r = 0.6 ± 0.3µm
while the mean susceptibility, measured by magnetophore-
sis [2, 36–38], is χ = 0.09 ± 0.03. Those values are consis-
tent with previous characterization of that sample found
in the literature [22, 23]. The suspension is placed inside
a cylindrical chamber of diameter D = 5mm and thick-
ness h = 50µm. The chamber is formed by two parallel
glass plates. The first glass plate is covered with a 50 µm
layer of epoxy at the exemption of a circular region. A
suspension droplet of 1µl is placed inside this region. Af-
terward, the second glass plate is placed on the first one.
A small quantity of low viscosity silicon oil is placed on
the epoxy to asses the watertightness of the chamber. A
constant and homogeneous magnetic field B is applied by
sending a constant current in surrounding coils at the be-
ginning of each experiment. The magnetic field produced
by those coils has been characterized with a Hall probe and
is homogeneous within the precision range of the probe of
2% around the cell. The current is sent in the coils with
a constant intensity by a programmable DC power sup-
ply GenH-750W from TDK Lambda, with a precision of
0.01A. The suspension is observed from the bottom with a
10× magnification. The microscope used is a inverted mi-
croscope Olympus IX73, connected to a 4070M-CL Thor-
labs Camera with 2048 by 2048 pixels of 16 Bits depth.
The images are recorded with a frame rate of 1 fps.

3 Results

The time evolution of the system is shown in fig. 1. We
measured, as a function of time, the normalized mean size
〈s〉 of the chains formed by the colloidal particles when
the magnetic field is applied. This parameter is obtained
through image analysis, by averaging the major axis of
ellipses fitted on each chain in the image (at least 2000).
For short time experiments, after a transient behavior,
we obtained a power law growth, as observed in previous
studies [29,30,32] (see fig. 2).

For long-time experiments, a saturation of the mean
size 〈s〉 is observed as expected from the theoretical de-
velopment of Andreu et al. (see fig. 2). When the sat-
uration is reached, we observed some typical behaviors
from dynamical equilibria. For example, some parts of the
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Fig. 2. Log-log plot of the evolution of the mean size of the
chains 〈s〉 during experiments. The mean chains length is ex-
pressed in mean diameter of particles. On short time, before
the dashed line, a power law growth of the mean size of the
chains is obtained after a transient behavior, as observed pre-
viously [29,30,32]. The solid lines are the fit of a power law on
the data before the dashed line (the values of the correspond-
ing exponents are respectively 0.1, 0.57, 0.75 and 0.68 with a
statistical error of 0.01). However, a saturation of this length
is systematically observed on long time, for all the experimen-
tal conditions we used. The mean length of the chains at the
saturation depends on the magnetic field amplitude. The error
is given by the size of the points.

Fig. 3. Images from experiment performed with a magnetic
field B = 24G. A part of a chain exhibits a typical behavior
from dynamical equilibrium. The part of chain numbered 1,
and circled in every image, leaves the chains where it was first
before merging with another one. The time interval between
each image is 45 minutes.

longest chains spontaneously leave those chains to merge
with some other ones a few minutes later as illustrated
in fig. 3. The observation of such behavior confirms that
some thermodynamical equilibrium has been reached by
the system and indicates that it is not useful to wait a
longer time. Such phenomena also implies that the aggre-

Fig. 4. Mean size of the chains at the saturation 〈s〉sat for dif-
ferent values of the magnetic field. Those measurements have
been obtained by considering the lengths of the chains at the
plateau in fig. 2 for different experiments where the magnetic
field is constant. The measurements are represented by the
circles, the squares, the upward and downward triangles, ac-
cording to the range of the magnetic field. The measurements
represented in fig. 2 are then typical behaviors of curves whose
saturation lengths are given here with the same symbol. Error
bars are smaller than the points. The scaling has been chosen

such that the fit of the model 〈s〉 = C2

√

exp(C1B2) (line) (see
sect. 4), calculated with the data in the gray area, draws a
straight line. The model predicts higher values than observed
ones for strong magnetic fields. We can conclude that the grey
area is the range of magnetic field for which the behavior of
the chains is sufficient to explain the global mean length of the
aggregates, while the white area requires to take into account
the existence of the ribbons. The horizontal dashed line is the
line 〈s〉 = 23, which is an approximation of the limit above
which magnetic ribbons wider than one particle have signifi-
cant influence on the mean size of the aggregates as explained
in the text (see sect. 4).

gation of the particles is not completely irreversible, as
assumed to establish the Smoluchowsky equation [29–33].

The mean chains size at the saturation 〈s〉sat has been
measured for different values of the magnetic field by con-
sidering the lengths of the chains at the plateau in fig. 2
for different experiments where the magnetic field is con-
stant (see fig. 4). This maximum size 〈s〉sat first increases
with the magnetic field and can be adjusted with an adap-
tation of the model obtained by Andreu et al. only under
a critical value (see sect. 4). After that critical value, the
maximum size 〈s〉sat is very sensitive to external noise but
is systematically smaller that predicted by such a model.

4 Discussion

When the particles are restricted to a two-dimensional
plane (as considered for some previous experiments [30]),
the model proposed by Andreu et al. for the three di-
mensional cases should be adapted. Indeed, we have to
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consider the thermal average of the magnetic energy
U(R, θ) of two particles in contact in the range θ ∈ [0, θ0]
implying an attraction between those particles, with θ0 =

arccos 1√
3
. This average involves Jacobians which are dif-

ferent for two dimensional systems. In two dimensions, by
using the same approximation as Andreu et al. [9], we
obtained a thermal average of 〈sin2 θ〉 ≈ 1

3Γ
instead of

2
3Γ

for three-dimensional calculations. In case of a two-

dimensional situation, the surface fraction φS
0 also replace

the volume fraction φ0 and the mean size of the chains at
the equilibrium is therefore given by

〈s〉(2D) =

√

φS
0 exp

(

Γ −
1

2

)

. (3)

With our experimental setup, the situation is more
complex that the ideal case presented hereinbefore. First-
ly, we measured a dispersion of both radius and suscep-
tibility of the colloidal particles, as described in sect. 2.
Therefore, the estimation of the parameter Γ is not
straightforward and a fitting parameter C1 is used, with
Γ = C1B

2. This fitting parameter C1 is an effective value

of πR3χ2

µ09kBT
.

Secondly, our system is not perfectly two dimensional.
The particles are confined in a quasi-2D system due to sed-
imentation induced by gravity. By changing slightly the
focal plane height, we observed that the chains and the
single particles are not rigorously confined in a plane. The
typical height of the confinement region corresponds to
twice the particles diameter. This observation is consistent
with theoretical comparison of the thermal energy Uth =
kBT , where kB is the Boltzmann constant and T is the
temperature, with the gravitational energy of the particles
(taking the buoyancy into account) Ug = ∆ρg 4

3πR3H,

where H is the height of the particles from the bottom
of the cell, R ≈ 0.6µm their radius, g = 9.81m/s2 the
gravitational acceleration and ∆ρ ≈ 200 kg/m3 the differ-
ence of density between the beads (mainly in polystyrene)
and water. Both energy are equals when H ≈ 2.3µm,
which is then the typical height reached by the particles
at the equilibrium and is approximately two diameters of
the beads, as observed experimentally.

Then we should have a situation between ideal 2D and
3D cases: 〈sin2 θ〉 = d

3Γ
, with 1 ≤ d ≤ 2. It is therefore

more relevant to express the mean size of the chains as

〈s〉 = C2

√

exp(C1B2), (4)

where C2 is a second fitting parameter being the effective
value of

√

φ0 exp(−d). This expression is used to fit the
evolution of the mean chain size at the saturation as a
function of the magnetic field (see fig. 4). The experimen-
tal data can not be fitted with a determination coefficient
higher than 0.9 unless the fit is restricted to the points
below the critical value B = 12G giving 〈s〉 = 24 ± 3.
Above that value, the measurements give shorter chains
than predicted by this fit. The coefficients obtained from

Fig. 5. Structures wider than one particle (magnetic ribbons).
Top left: Experimental observations of magnetic ribbons with
different widths. Bottom: Structures whose magnetic energy
has been numerically computed, from the sum of all the dipole-
dipole interaction energy. The different structures with 16 par-
ticles have been depicted. The small arrow in each circle gives
the orientation of the magnetic dipoles. Top right: The dis-
tance D used to compute the energy barrier to the formation
of the structures is pictured.

the fit presented in fig. 4 are C1 = 4.4 · 106 ± 1.3 · 106 T−2

and C2 = 2.1 ± 1.4.
The fact that chains shorter than predicted by the

model are observed is not incompatible with the numeri-
cal simulations of Andreu et al. because these simulations
implied situations were the mean length of the chains was
equal to or below 7 particles [9]. For such situations, the
model provides a relevant fit with our data. However, that
model assumes that particles always agglomerate in linear
chains. This is not always true. Experimentally, we ob-
served lateral aggregation of long chains, leading to struc-
tures with more than one particle of width, which are mag-
netic ribbons, as illustrated in fig. 5. We then calculated
the magnetic energy of different structures, chains and rib-
bons, illustrated in fig. 5, and assessed the energy barrier
to the formation of ribbons by lateral aggregation. To do
this we considered a dimensionless mean energy given by

uN (N, d, z) =
1

NU0

N−1
∑

i=0

N
∑

j=i+1

U(|ri − rj |, θij), (5)

where U(r, θ) is defined in eq. (1), U0 = χ2πR3B2

18µ0

is a

reference magnetic energy, ri is the position of the par-
ticle i of the structure containing N particles, θij is the
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Fig. 6. Mean dimensionless energy of a particle uN =
1

NU0

∑N−1

i=0

∑N

j=i+1
U(|ri−rj |, θij), with U0 = χ2πR3B2

18µ0
, in the

different structures as a function of the number of the particles
N , for z = 0. The most stable structure with 30 particles is the
ribbon with two particles of width. When N increases further,
the most stable structure becomes successively the structure
with 3 particles (N ≈ 113) then 4 particles (N ≈ 263).

angle between the direction of the field B and the vector
ri − rj , d denotes the type of structure as on fig. 5 and

z ≡
D−2R cos ( π

6
)

2R
is a dimensionless distance used to com-

pute the barrier energy to the formation of the ribbons by
lateral aggregation. This reasoning is similar to analyses
from previous studies published in recent articles [34,35],
and the asymptotic value we obtained for limN→∞ uN in
the case of linear chains approaches −2ζ(3) ≈ −2.404 as
expected from the results of those studies.

This estimation shows that ribbons composed of two
linear chains side by side are the most stable structures
for aggregates of 30 particles (see fig. 6). When aggregates
contain on average 30 particles, there is a mixture of linear
chains of 30 particles and ribbons composed of two linear
chains of 15 particles. The mean size of those aggregates
is then about 23 particles. This is approximately the size
from which the model diverges from our experimental data
(see fig. 4).

We also noticed that above the critical value of the
field, which seems actually to be determined by a criti-
cal size of chains, our measurements were very sensitive
to external noise such as residual flows from the fluid.
We believe this sensitivity to be due to the energy barrier
preventing the appearance of the most stable structures.
Indeed, fig. 7 clearly shows there is a barrier of potential to
the formation of the structure by lateral aggregation. This
implies a complex configuration space with metastable
states for the chains. It is worthwhile to notice that the U0

reference energy can be expressed as kBT C1B2

2 , and rib-

bons have been observed in our cases for B2 ranging from
2 · 10−6 T2 to 6 · 10−6 T2. In such cases, U0 ranges from
4.4 kBT to 13.2 kBT . The potential barriers we have com-
puted were ranging from 0.5U0 to 2U0, depending on the

Fig. 7. Dimensionless mean magnetic energy uN for a ribbon
with two particles of width and N = 35 particles. The variable

z ≡
D−2R cos ( π

6
)

2R
is a dimensionless distance separating the two

chains forming the ribbon, as pictured in the fig. 5. One can
distinguish an energy barrier.

number of particles in the considered structures and the
width d of the ribbons. Then, as weakest barriers are of the
order of 2kBT , thermal agitation of the particles itself is
likely to trigger some ribbons formation, but not as much
as observed in our experiments. Actually, some external
noise can move one or several chains from a metastable
state to another one and then changing the mean length
of the chains. In our experimental setup, such noise can be
produced, for instance, by the flow around a small moving
air or oil bubble accidentally trapped in the chamber with
the colloidal suspension. During our experiments, which
can last up to 5 hours, such perturbations are likely to
occur, but not systematically.

5 Conclusion

In the present paper, we reported the first experimental
observation of the saturation predicted by the model of
Andreu et al. [9]. We experimentally validated this model
on a range of experimental parameters such that 〈s〉 < 23,
but we showed that this model diverges with experimental
data above a critical value for which we proposed an expla-
nation, by highlighting the existence of magnetic ribbons.
In the future, the model could be improved by consider-
ing the existence of these ribbons, in order to predict the
mean size of the chains above the critical size. Our obser-
vations also highlighted that the hypothesis of irreversible
aggregation assumed by the usual Smoluchowsky equation
is not verified for long-time experiments. A more accurate
equation taking into account some terms expressing the
reversibility of this aggregation could be developed. The
physical mechanisms we highlighted here could also be a
starting point to develop protocols of controlled ribbons
generation.
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13/88).

References

1. J. Faraudo, J.S. Andreu, J. Camacho, Soft Matter 9, 6654
(2013).

2. J. Faraudo, J. Camacho, Colloid Polym. Sci. 288, 207
(2010).
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